//! This crate implements a structure that can be used as a generic array type. | |
//! Core Rust array types `[T; N]` can't be used generically with | |
//! respect to `N`, so for example this: | |
//! | |
//! ```rust{compile_fail} | |
//! struct Foo<T, N> { | |
//! data: [T; N] | |
//! } | |
//! ``` | |
//! | |
//! won't work. | |
//! | |
//! **generic-array** exports a `GenericArray<T,N>` type, which lets | |
//! the above be implemented as: | |
//! | |
//! ```rust | |
//! use generic_array::{ArrayLength, GenericArray}; | |
//! | |
//! struct Foo<T, N: ArrayLength<T>> { | |
//! data: GenericArray<T,N> | |
//! } | |
//! ``` | |
//! | |
//! The `ArrayLength<T>` trait is implemented by default for | |
//! [unsigned integer types](../typenum/uint/index.html) from | |
//! [typenum](../typenum/index.html): | |
//! | |
//! ```rust | |
//! # use generic_array::{ArrayLength, GenericArray}; | |
//! use generic_array::typenum::U5; | |
//! | |
//! struct Foo<N: ArrayLength<i32>> { | |
//! data: GenericArray<i32, N> | |
//! } | |
//! | |
//! # fn main() { | |
//! let foo = Foo::<U5>{data: GenericArray::default()}; | |
//! # } | |
//! ``` | |
//! | |
//! For example, `GenericArray<T, U5>` would work almost like `[T; 5]`: | |
//! | |
//! ```rust | |
//! # use generic_array::{ArrayLength, GenericArray}; | |
//! use generic_array::typenum::U5; | |
//! | |
//! struct Foo<T, N: ArrayLength<T>> { | |
//! data: GenericArray<T, N> | |
//! } | |
//! | |
//! # fn main() { | |
//! let foo = Foo::<i32, U5>{data: GenericArray::default()}; | |
//! # } | |
//! ``` | |
//! | |
//! For ease of use, an `arr!` macro is provided - example below: | |
//! | |
//! ``` | |
//! # #[macro_use] | |
//! # extern crate generic_array; | |
//! # extern crate typenum; | |
//! # fn main() { | |
//! let array = arr![u32; 1, 2, 3]; | |
//! assert_eq!(array[2], 3); | |
//! # } | |
//! ``` | |
#![deny(missing_docs)] | |
#![deny(meta_variable_misuse)] | |
#![no_std] | |
#![cfg_attr(docsrs, feature(doc_auto_cfg))] | |
#[cfg(feature = "serde")] | |
extern crate serde; | |
#[cfg(feature = "zeroize")] | |
extern crate zeroize; | |
#[cfg(test)] | |
extern crate bincode; | |
pub extern crate typenum; | |
mod hex; | |
mod impls; | |
#[cfg(feature = "serde")] | |
mod impl_serde; | |
#[cfg(feature = "zeroize")] | |
mod impl_zeroize; | |
use core::iter::FromIterator; | |
use core::marker::PhantomData; | |
use core::mem::{MaybeUninit, ManuallyDrop}; | |
use core::ops::{Deref, DerefMut}; | |
use core::{mem, ptr, slice}; | |
use typenum::bit::{B0, B1}; | |
use typenum::uint::{UInt, UTerm, Unsigned}; | |
#[cfg_attr(test, macro_use)] | |
pub mod arr; | |
pub mod functional; | |
pub mod iter; | |
pub mod sequence; | |
use self::functional::*; | |
pub use self::iter::GenericArrayIter; | |
use self::sequence::*; | |
/// Trait making `GenericArray` work, marking types to be used as length of an array | |
pub unsafe trait ArrayLength<T>: Unsigned { | |
/// Associated type representing the array type for the number | |
type ArrayType; | |
} | |
unsafe impl<T> ArrayLength<T> for UTerm { | |
#[doc(hidden)] | |
type ArrayType = [T; 0]; | |
} | |
/// Internal type used to generate a struct of appropriate size | |
#[allow(dead_code)] | |
#[repr(C)] | |
#[doc(hidden)] | |
pub struct GenericArrayImplEven<T, U> { | |
parent1: U, | |
parent2: U, | |
_marker: PhantomData<T>, | |
} | |
impl<T: Clone, U: Clone> Clone for GenericArrayImplEven<T, U> { | |
fn clone(&self) -> GenericArrayImplEven<T, U> { | |
GenericArrayImplEven { | |
parent1: self.parent1.clone(), | |
parent2: self.parent2.clone(), | |
_marker: PhantomData, | |
} | |
} | |
} | |
impl<T: Copy, U: Copy> Copy for GenericArrayImplEven<T, U> {} | |
/// Internal type used to generate a struct of appropriate size | |
#[allow(dead_code)] | |
#[repr(C)] | |
#[doc(hidden)] | |
pub struct GenericArrayImplOdd<T, U> { | |
parent1: U, | |
parent2: U, | |
data: T, | |
} | |
impl<T: Clone, U: Clone> Clone for GenericArrayImplOdd<T, U> { | |
fn clone(&self) -> GenericArrayImplOdd<T, U> { | |
GenericArrayImplOdd { | |
parent1: self.parent1.clone(), | |
parent2: self.parent2.clone(), | |
data: self.data.clone(), | |
} | |
} | |
} | |
impl<T: Copy, U: Copy> Copy for GenericArrayImplOdd<T, U> {} | |
unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B0> { | |
#[doc(hidden)] | |
type ArrayType = GenericArrayImplEven<T, N::ArrayType>; | |
} | |
unsafe impl<T, N: ArrayLength<T>> ArrayLength<T> for UInt<N, B1> { | |
#[doc(hidden)] | |
type ArrayType = GenericArrayImplOdd<T, N::ArrayType>; | |
} | |
/// Struct representing a generic array - `GenericArray<T, N>` works like [T; N] | |
#[allow(dead_code)] | |
#[repr(transparent)] | |
pub struct GenericArray<T, U: ArrayLength<T>> { | |
data: U::ArrayType, | |
} | |
unsafe impl<T: Send, N: ArrayLength<T>> Send for GenericArray<T, N> {} | |
unsafe impl<T: Sync, N: ArrayLength<T>> Sync for GenericArray<T, N> {} | |
impl<T, N> Deref for GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
type Target = [T]; | |
#[inline(always)] | |
fn deref(&self) -> &[T] { | |
unsafe { slice::from_raw_parts(self as *const Self as *const T, N::USIZE) } | |
} | |
} | |
impl<T, N> DerefMut for GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
#[inline(always)] | |
fn deref_mut(&mut self) -> &mut [T] { | |
unsafe { slice::from_raw_parts_mut(self as *mut Self as *mut T, N::USIZE) } | |
} | |
} | |
/// Creates an array one element at a time using a mutable iterator | |
/// you can write to with `ptr::write`. | |
/// | |
/// Increment the position while iterating to mark off created elements, | |
/// which will be dropped if `into_inner` is not called. | |
#[doc(hidden)] | |
pub struct ArrayBuilder<T, N: ArrayLength<T>> { | |
array: MaybeUninit<GenericArray<T, N>>, | |
position: usize, | |
} | |
impl<T, N: ArrayLength<T>> ArrayBuilder<T, N> { | |
#[doc(hidden)] | |
#[inline] | |
pub unsafe fn new() -> ArrayBuilder<T, N> { | |
ArrayBuilder { | |
array: MaybeUninit::uninit(), | |
position: 0, | |
} | |
} | |
/// Creates a mutable iterator for writing to the array using `ptr::write`. | |
/// | |
/// Increment the position value given as a mutable reference as you iterate | |
/// to mark how many elements have been created. | |
#[doc(hidden)] | |
#[inline] | |
pub unsafe fn iter_position(&mut self) -> (slice::IterMut<T>, &mut usize) { | |
((&mut *self.array.as_mut_ptr()).iter_mut(), &mut self.position) | |
} | |
/// When done writing (assuming all elements have been written to), | |
/// get the inner array. | |
#[doc(hidden)] | |
#[inline] | |
pub unsafe fn into_inner(self) -> GenericArray<T, N> { | |
let array = ptr::read(&self.array); | |
mem::forget(self); | |
array.assume_init() | |
} | |
} | |
impl<T, N: ArrayLength<T>> Drop for ArrayBuilder<T, N> { | |
fn drop(&mut self) { | |
if mem::needs_drop::<T>() { | |
unsafe { | |
for value in &mut (&mut *self.array.as_mut_ptr())[..self.position] { | |
ptr::drop_in_place(value); | |
} | |
} | |
} | |
} | |
} | |
/// Consumes an array. | |
/// | |
/// Increment the position while iterating and any leftover elements | |
/// will be dropped if position does not go to N | |
#[doc(hidden)] | |
pub struct ArrayConsumer<T, N: ArrayLength<T>> { | |
array: ManuallyDrop<GenericArray<T, N>>, | |
position: usize, | |
} | |
impl<T, N: ArrayLength<T>> ArrayConsumer<T, N> { | |
#[doc(hidden)] | |
#[inline] | |
pub unsafe fn new(array: GenericArray<T, N>) -> ArrayConsumer<T, N> { | |
ArrayConsumer { | |
array: ManuallyDrop::new(array), | |
position: 0, | |
} | |
} | |
/// Creates an iterator and mutable reference to the internal position | |
/// to keep track of consumed elements. | |
/// | |
/// Increment the position as you iterate to mark off consumed elements | |
#[doc(hidden)] | |
#[inline] | |
pub unsafe fn iter_position(&mut self) -> (slice::Iter<T>, &mut usize) { | |
(self.array.iter(), &mut self.position) | |
} | |
} | |
impl<T, N: ArrayLength<T>> Drop for ArrayConsumer<T, N> { | |
fn drop(&mut self) { | |
if mem::needs_drop::<T>() { | |
for value in &mut self.array[self.position..N::USIZE] { | |
unsafe { | |
ptr::drop_in_place(value); | |
} | |
} | |
} | |
} | |
} | |
impl<'a, T: 'a, N> IntoIterator for &'a GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
type IntoIter = slice::Iter<'a, T>; | |
type Item = &'a T; | |
fn into_iter(self: &'a GenericArray<T, N>) -> Self::IntoIter { | |
self.as_slice().iter() | |
} | |
} | |
impl<'a, T: 'a, N> IntoIterator for &'a mut GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
type IntoIter = slice::IterMut<'a, T>; | |
type Item = &'a mut T; | |
fn into_iter(self: &'a mut GenericArray<T, N>) -> Self::IntoIter { | |
self.as_mut_slice().iter_mut() | |
} | |
} | |
impl<T, N> FromIterator<T> for GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
fn from_iter<I>(iter: I) -> GenericArray<T, N> | |
where | |
I: IntoIterator<Item = T>, | |
{ | |
unsafe { | |
let mut destination = ArrayBuilder::new(); | |
{ | |
let (destination_iter, position) = destination.iter_position(); | |
iter.into_iter() | |
.zip(destination_iter) | |
.for_each(|(src, dst)| { | |
ptr::write(dst, src); | |
*position += 1; | |
}); | |
} | |
if destination.position < N::USIZE { | |
from_iter_length_fail(destination.position, N::USIZE); | |
} | |
destination.into_inner() | |
} | |
} | |
} | |
#[inline(never)] | |
#[cold] | |
fn from_iter_length_fail(length: usize, expected: usize) -> ! { | |
panic!( | |
"GenericArray::from_iter received {} elements but expected {}", | |
length, expected | |
); | |
} | |
unsafe impl<T, N> GenericSequence<T> for GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
Self: IntoIterator<Item = T>, | |
{ | |
type Length = N; | |
type Sequence = Self; | |
fn generate<F>(mut f: F) -> GenericArray<T, N> | |
where | |
F: FnMut(usize) -> T, | |
{ | |
unsafe { | |
let mut destination = ArrayBuilder::new(); | |
{ | |
let (destination_iter, position) = destination.iter_position(); | |
destination_iter.enumerate().for_each(|(i, dst)| { | |
ptr::write(dst, f(i)); | |
*position += 1; | |
}); | |
} | |
destination.into_inner() | |
} | |
} | |
#[doc(hidden)] | |
fn inverted_zip<B, U, F>( | |
self, | |
lhs: GenericArray<B, Self::Length>, | |
mut f: F, | |
) -> MappedSequence<GenericArray<B, Self::Length>, B, U> | |
where | |
GenericArray<B, Self::Length>: | |
GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>, | |
Self: MappedGenericSequence<T, U>, | |
Self::Length: ArrayLength<B> + ArrayLength<U>, | |
F: FnMut(B, Self::Item) -> U, | |
{ | |
unsafe { | |
let mut left = ArrayConsumer::new(lhs); | |
let mut right = ArrayConsumer::new(self); | |
let (left_array_iter, left_position) = left.iter_position(); | |
let (right_array_iter, right_position) = right.iter_position(); | |
FromIterator::from_iter(left_array_iter.zip(right_array_iter).map(|(l, r)| { | |
let left_value = ptr::read(l); | |
let right_value = ptr::read(r); | |
*left_position += 1; | |
*right_position += 1; | |
f(left_value, right_value) | |
})) | |
} | |
} | |
#[doc(hidden)] | |
fn inverted_zip2<B, Lhs, U, F>(self, lhs: Lhs, mut f: F) -> MappedSequence<Lhs, B, U> | |
where | |
Lhs: GenericSequence<B, Length = Self::Length> + MappedGenericSequence<B, U>, | |
Self: MappedGenericSequence<T, U>, | |
Self::Length: ArrayLength<B> + ArrayLength<U>, | |
F: FnMut(Lhs::Item, Self::Item) -> U, | |
{ | |
unsafe { | |
let mut right = ArrayConsumer::new(self); | |
let (right_array_iter, right_position) = right.iter_position(); | |
FromIterator::from_iter( | |
lhs.into_iter() | |
.zip(right_array_iter) | |
.map(|(left_value, r)| { | |
let right_value = ptr::read(r); | |
*right_position += 1; | |
f(left_value, right_value) | |
}), | |
) | |
} | |
} | |
} | |
unsafe impl<T, U, N> MappedGenericSequence<T, U> for GenericArray<T, N> | |
where | |
N: ArrayLength<T> + ArrayLength<U>, | |
GenericArray<U, N>: GenericSequence<U, Length = N>, | |
{ | |
type Mapped = GenericArray<U, N>; | |
} | |
unsafe impl<T, N> FunctionalSequence<T> for GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
Self: GenericSequence<T, Item = T, Length = N>, | |
{ | |
fn map<U, F>(self, mut f: F) -> MappedSequence<Self, T, U> | |
where | |
Self::Length: ArrayLength<U>, | |
Self: MappedGenericSequence<T, U>, | |
F: FnMut(T) -> U, | |
{ | |
unsafe { | |
let mut source = ArrayConsumer::new(self); | |
let (array_iter, position) = source.iter_position(); | |
FromIterator::from_iter(array_iter.map(|src| { | |
let value = ptr::read(src); | |
*position += 1; | |
f(value) | |
})) | |
} | |
} | |
#[inline] | |
fn zip<B, Rhs, U, F>(self, rhs: Rhs, f: F) -> MappedSequence<Self, T, U> | |
where | |
Self: MappedGenericSequence<T, U>, | |
Rhs: MappedGenericSequence<B, U, Mapped = MappedSequence<Self, T, U>>, | |
Self::Length: ArrayLength<B> + ArrayLength<U>, | |
Rhs: GenericSequence<B, Length = Self::Length>, | |
F: FnMut(T, Rhs::Item) -> U, | |
{ | |
rhs.inverted_zip(self, f) | |
} | |
fn fold<U, F>(self, init: U, mut f: F) -> U | |
where | |
F: FnMut(U, T) -> U, | |
{ | |
unsafe { | |
let mut source = ArrayConsumer::new(self); | |
let (array_iter, position) = source.iter_position(); | |
array_iter.fold(init, |acc, src| { | |
let value = ptr::read(src); | |
*position += 1; | |
f(acc, value) | |
}) | |
} | |
} | |
} | |
impl<T, N> GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
/// Extracts a slice containing the entire array. | |
#[inline] | |
pub fn as_slice(&self) -> &[T] { | |
self.deref() | |
} | |
/// Extracts a mutable slice containing the entire array. | |
#[inline] | |
pub fn as_mut_slice(&mut self) -> &mut [T] { | |
self.deref_mut() | |
} | |
/// Converts slice to a generic array reference with inferred length; | |
/// | |
/// # Panics | |
/// | |
/// Panics if the slice is not equal to the length of the array. | |
#[inline] | |
pub fn from_slice(slice: &[T]) -> &GenericArray<T, N> { | |
slice.into() | |
} | |
/// Converts mutable slice to a mutable generic array reference | |
/// | |
/// # Panics | |
/// | |
/// Panics if the slice is not equal to the length of the array. | |
#[inline] | |
pub fn from_mut_slice(slice: &mut [T]) -> &mut GenericArray<T, N> { | |
slice.into() | |
} | |
} | |
impl<'a, T, N: ArrayLength<T>> From<&'a [T]> for &'a GenericArray<T, N> { | |
/// Converts slice to a generic array reference with inferred length; | |
/// | |
/// # Panics | |
/// | |
/// Panics if the slice is not equal to the length of the array. | |
#[inline] | |
fn from(slice: &[T]) -> &GenericArray<T, N> { | |
assert_eq!(slice.len(), N::USIZE); | |
unsafe { &*(slice.as_ptr() as *const GenericArray<T, N>) } | |
} | |
} | |
impl<'a, T, N: ArrayLength<T>> From<&'a mut [T]> for &'a mut GenericArray<T, N> { | |
/// Converts mutable slice to a mutable generic array reference | |
/// | |
/// # Panics | |
/// | |
/// Panics if the slice is not equal to the length of the array. | |
#[inline] | |
fn from(slice: &mut [T]) -> &mut GenericArray<T, N> { | |
assert_eq!(slice.len(), N::USIZE); | |
unsafe { &mut *(slice.as_mut_ptr() as *mut GenericArray<T, N>) } | |
} | |
} | |
impl<T: Clone, N> GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
/// Construct a `GenericArray` from a slice by cloning its content | |
/// | |
/// # Panics | |
/// | |
/// Panics if the slice is not equal to the length of the array. | |
#[inline] | |
pub fn clone_from_slice(list: &[T]) -> GenericArray<T, N> { | |
Self::from_exact_iter(list.iter().cloned()) | |
.expect("Slice must be the same length as the array") | |
} | |
} | |
impl<T, N> GenericArray<T, N> | |
where | |
N: ArrayLength<T>, | |
{ | |
/// Creates a new `GenericArray` instance from an iterator with a specific size. | |
/// | |
/// Returns `None` if the size is not equal to the number of elements in the `GenericArray`. | |
pub fn from_exact_iter<I>(iter: I) -> Option<Self> | |
where | |
I: IntoIterator<Item = T>, | |
{ | |
let mut iter = iter.into_iter(); | |
unsafe { | |
let mut destination = ArrayBuilder::new(); | |
{ | |
let (destination_iter, position) = destination.iter_position(); | |
destination_iter.zip(&mut iter).for_each(|(dst, src)| { | |
ptr::write(dst, src); | |
*position += 1; | |
}); | |
// The iterator produced fewer than `N` elements. | |
if *position != N::USIZE { | |
return None; | |
} | |
// The iterator produced more than `N` elements. | |
if iter.next().is_some() { | |
return None; | |
} | |
} | |
Some(destination.into_inner()) | |
} | |
} | |
} | |
/// A reimplementation of the `transmute` function, avoiding problems | |
/// when the compiler can't prove equal sizes. | |
#[inline] | |
#[doc(hidden)] | |
pub unsafe fn transmute<A, B>(a: A) -> B { | |
let a = ManuallyDrop::new(a); | |
::core::ptr::read(&*a as *const A as *const B) | |
} | |
#[cfg(test)] | |
mod test { | |
// Compile with: | |
// cargo rustc --lib --profile test --release -- | |
// -C target-cpu=native -C opt-level=3 --emit asm | |
// and view the assembly to make sure test_assembly generates | |
// SIMD instructions instead of a naive loop. | |
#[inline(never)] | |
pub fn black_box<T>(val: T) -> T { | |
use core::{mem, ptr}; | |
let ret = unsafe { ptr::read_volatile(&val) }; | |
mem::forget(val); | |
ret | |
} | |
#[test] | |
fn test_assembly() { | |
use crate::functional::*; | |
let a = black_box(arr![i32; 1, 3, 5, 7]); | |
let b = black_box(arr![i32; 2, 4, 6, 8]); | |
let c = (&a).zip(b, |l, r| l + r); | |
let d = a.fold(0, |a, x| a + x); | |
assert_eq!(c, arr![i32; 3, 7, 11, 15]); | |
assert_eq!(d, 16); | |
} | |
} |