blob: b4890364e3030cd0438431d33b139a804f37e07f [file] [log] [blame] [edit]
use std::io;
use termcolor;
use crate::is_tty_stdout;
/// A writer that supports coloring with either line or block buffering.
pub struct StandardStream(StandardStreamKind);
/// Returns a possibly buffered writer to stdout for the given color choice.
///
/// The writer returned is either line buffered or block buffered. The decision
/// between these two is made automatically based on whether a tty is attached
/// to stdout or not. If a tty is attached, then line buffering is used.
/// Otherwise, block buffering is used. In general, block buffering is more
/// efficient, but may increase the time it takes for the end user to see the
/// first bits of output.
///
/// If you need more fine grained control over the buffering mode, then use one
/// of `stdout_buffered_line` or `stdout_buffered_block`.
///
/// The color choice given is passed along to the underlying writer. To
/// completely disable colors in all cases, use `ColorChoice::Never`.
pub fn stdout(color_choice: termcolor::ColorChoice) -> StandardStream {
if is_tty_stdout() {
stdout_buffered_line(color_choice)
} else {
stdout_buffered_block(color_choice)
}
}
/// Returns a line buffered writer to stdout for the given color choice.
///
/// This writer is useful when printing results directly to a tty such that
/// users see output as soon as it's written. The downside of this approach
/// is that it can be slower, especially when there is a lot of output.
///
/// You might consider using
/// [`stdout`](fn.stdout.html)
/// instead, which chooses the buffering strategy automatically based on
/// whether stdout is connected to a tty.
pub fn stdout_buffered_line(
color_choice: termcolor::ColorChoice,
) -> StandardStream {
let out = termcolor::StandardStream::stdout(color_choice);
StandardStream(StandardStreamKind::LineBuffered(out))
}
/// Returns a block buffered writer to stdout for the given color choice.
///
/// This writer is useful when printing results to a file since it amortizes
/// the cost of writing data. The downside of this approach is that it can
/// increase the latency of display output when writing to a tty.
///
/// You might consider using
/// [`stdout`](fn.stdout.html)
/// instead, which chooses the buffering strategy automatically based on
/// whether stdout is connected to a tty.
pub fn stdout_buffered_block(
color_choice: termcolor::ColorChoice,
) -> StandardStream {
let out = termcolor::BufferedStandardStream::stdout(color_choice);
StandardStream(StandardStreamKind::BlockBuffered(out))
}
enum StandardStreamKind {
LineBuffered(termcolor::StandardStream),
BlockBuffered(termcolor::BufferedStandardStream),
}
impl io::Write for StandardStream {
#[inline]
fn write(&mut self, buf: &[u8]) -> io::Result<usize> {
use self::StandardStreamKind::*;
match self.0 {
LineBuffered(ref mut w) => w.write(buf),
BlockBuffered(ref mut w) => w.write(buf),
}
}
#[inline]
fn flush(&mut self) -> io::Result<()> {
use self::StandardStreamKind::*;
match self.0 {
LineBuffered(ref mut w) => w.flush(),
BlockBuffered(ref mut w) => w.flush(),
}
}
}
impl termcolor::WriteColor for StandardStream {
#[inline]
fn supports_color(&self) -> bool {
use self::StandardStreamKind::*;
match self.0 {
LineBuffered(ref w) => w.supports_color(),
BlockBuffered(ref w) => w.supports_color(),
}
}
#[inline]
fn set_color(&mut self, spec: &termcolor::ColorSpec) -> io::Result<()> {
use self::StandardStreamKind::*;
match self.0 {
LineBuffered(ref mut w) => w.set_color(spec),
BlockBuffered(ref mut w) => w.set_color(spec),
}
}
#[inline]
fn reset(&mut self) -> io::Result<()> {
use self::StandardStreamKind::*;
match self.0 {
LineBuffered(ref mut w) => w.reset(),
BlockBuffered(ref mut w) => w.reset(),
}
}
#[inline]
fn is_synchronous(&self) -> bool {
use self::StandardStreamKind::*;
match self.0 {
LineBuffered(ref w) => w.is_synchronous(),
BlockBuffered(ref w) => w.is_synchronous(),
}
}
}