| #![allow(dead_code, unused_imports)] |
| |
| macro_rules! convert_fn { |
| (fn $name:ident($var:ident : $vartype:ty) -> $restype:ty { |
| if feature("f16c") { $f16c:expr } |
| else { $fallback:expr }}) => { |
| #[inline] |
| pub(crate) fn $name($var: $vartype) -> $restype { |
| // Use CPU feature detection if using std |
| #[cfg(all( |
| feature = "use-intrinsics", |
| feature = "std", |
| any(target_arch = "x86", target_arch = "x86_64"), |
| not(target_feature = "f16c") |
| ))] |
| { |
| if is_x86_feature_detected!("f16c") { |
| $f16c |
| } else { |
| $fallback |
| } |
| } |
| // Use intrinsics directly when a compile target or using no_std |
| #[cfg(all( |
| feature = "use-intrinsics", |
| any(target_arch = "x86", target_arch = "x86_64"), |
| target_feature = "f16c" |
| ))] |
| { |
| $f16c |
| } |
| // Fallback to software |
| #[cfg(any( |
| not(feature = "use-intrinsics"), |
| not(any(target_arch = "x86", target_arch = "x86_64")), |
| all(not(feature = "std"), not(target_feature = "f16c")) |
| ))] |
| { |
| $fallback |
| } |
| } |
| }; |
| } |
| |
| convert_fn! { |
| fn f32_to_f16(f: f32) -> u16 { |
| if feature("f16c") { |
| unsafe { x86::f32_to_f16_x86_f16c(f) } |
| } else { |
| f32_to_f16_fallback(f) |
| } |
| } |
| } |
| |
| convert_fn! { |
| fn f64_to_f16(f: f64) -> u16 { |
| if feature("f16c") { |
| unsafe { x86::f32_to_f16_x86_f16c(f as f32) } |
| } else { |
| f64_to_f16_fallback(f) |
| } |
| } |
| } |
| |
| convert_fn! { |
| fn f16_to_f32(i: u16) -> f32 { |
| if feature("f16c") { |
| unsafe { x86::f16_to_f32_x86_f16c(i) } |
| } else { |
| f16_to_f32_fallback(i) |
| } |
| } |
| } |
| |
| convert_fn! { |
| fn f16_to_f64(i: u16) -> f64 { |
| if feature("f16c") { |
| unsafe { x86::f16_to_f32_x86_f16c(i) as f64 } |
| } else { |
| f16_to_f64_fallback(i) |
| } |
| } |
| } |
| |
| // TODO: While SIMD versions are faster, further improvements can be made by doing runtime feature |
| // detection once at beginning of convert slice method, rather than per chunk |
| |
| convert_fn! { |
| fn f32x4_to_f16x4(f: &[f32]) -> [u16; 4] { |
| if feature("f16c") { |
| unsafe { x86::f32x4_to_f16x4_x86_f16c(f) } |
| } else { |
| f32x4_to_f16x4_fallback(f) |
| } |
| } |
| } |
| |
| convert_fn! { |
| fn f16x4_to_f32x4(i: &[u16]) -> [f32; 4] { |
| if feature("f16c") { |
| unsafe { x86::f16x4_to_f32x4_x86_f16c(i) } |
| } else { |
| f16x4_to_f32x4_fallback(i) |
| } |
| } |
| } |
| |
| convert_fn! { |
| fn f64x4_to_f16x4(f: &[f64]) -> [u16; 4] { |
| if feature("f16c") { |
| unsafe { x86::f64x4_to_f16x4_x86_f16c(f) } |
| } else { |
| f64x4_to_f16x4_fallback(f) |
| } |
| } |
| } |
| |
| convert_fn! { |
| fn f16x4_to_f64x4(i: &[u16]) -> [f64; 4] { |
| if feature("f16c") { |
| unsafe { x86::f16x4_to_f64x4_x86_f16c(i) } |
| } else { |
| f16x4_to_f64x4_fallback(i) |
| } |
| } |
| } |
| |
| /////////////// Fallbacks //////////////// |
| |
| // In the below functions, round to nearest, with ties to even. |
| // Let us call the most significant bit that will be shifted out the round_bit. |
| // |
| // Round up if either |
| // a) Removed part > tie. |
| // (mantissa & round_bit) != 0 && (mantissa & (round_bit - 1)) != 0 |
| // b) Removed part == tie, and retained part is odd. |
| // (mantissa & round_bit) != 0 && (mantissa & (2 * round_bit)) != 0 |
| // (If removed part == tie and retained part is even, do not round up.) |
| // These two conditions can be combined into one: |
| // (mantissa & round_bit) != 0 && (mantissa & ((round_bit - 1) | (2 * round_bit))) != 0 |
| // which can be simplified into |
| // (mantissa & round_bit) != 0 && (mantissa & (3 * round_bit - 1)) != 0 |
| |
| fn f32_to_f16_fallback(value: f32) -> u16 { |
| // Convert to raw bytes |
| let x = value.to_bits(); |
| |
| // Extract IEEE754 components |
| let sign = x & 0x8000_0000u32; |
| let exp = x & 0x7F80_0000u32; |
| let man = x & 0x007F_FFFFu32; |
| |
| // Check for all exponent bits being set, which is Infinity or NaN |
| if exp == 0x7F80_0000u32 { |
| // Set mantissa MSB for NaN (and also keep shifted mantissa bits) |
| let nan_bit = if man == 0 { 0 } else { 0x0200u32 }; |
| return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 13)) as u16; |
| } |
| |
| // The number is normalized, start assembling half precision version |
| let half_sign = sign >> 16; |
| // Unbias the exponent, then bias for half precision |
| let unbiased_exp = ((exp >> 23) as i32) - 127; |
| let half_exp = unbiased_exp + 15; |
| |
| // Check for exponent overflow, return +infinity |
| if half_exp >= 0x1F { |
| return (half_sign | 0x7C00u32) as u16; |
| } |
| |
| // Check for underflow |
| if half_exp <= 0 { |
| // Check mantissa for what we can do |
| if 14 - half_exp > 24 { |
| // No rounding possibility, so this is a full underflow, return signed zero |
| return half_sign as u16; |
| } |
| // Don't forget about hidden leading mantissa bit when assembling mantissa |
| let man = man | 0x0080_0000u32; |
| let mut half_man = man >> (14 - half_exp); |
| // Check for rounding (see comment above functions) |
| let round_bit = 1 << (13 - half_exp); |
| if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
| half_man += 1; |
| } |
| // No exponent for subnormals |
| return (half_sign | half_man) as u16; |
| } |
| |
| // Rebias the exponent |
| let half_exp = (half_exp as u32) << 10; |
| let half_man = man >> 13; |
| // Check for rounding (see comment above functions) |
| let round_bit = 0x0000_1000u32; |
| if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
| // Round it |
| ((half_sign | half_exp | half_man) + 1) as u16 |
| } else { |
| (half_sign | half_exp | half_man) as u16 |
| } |
| } |
| |
| fn f64_to_f16_fallback(value: f64) -> u16 { |
| // Convert to raw bytes, truncating the last 32-bits of mantissa; that precision will always |
| // be lost on half-precision. |
| let val = value.to_bits(); |
| let x = (val >> 32) as u32; |
| |
| // Extract IEEE754 components |
| let sign = x & 0x8000_0000u32; |
| let exp = x & 0x7FF0_0000u32; |
| let man = x & 0x000F_FFFFu32; |
| |
| // Check for all exponent bits being set, which is Infinity or NaN |
| if exp == 0x7FF0_0000u32 { |
| // Set mantissa MSB for NaN (and also keep shifted mantissa bits). |
| // We also have to check the last 32 bits. |
| let nan_bit = if man == 0 && (val as u32 == 0) { |
| 0 |
| } else { |
| 0x0200u32 |
| }; |
| return ((sign >> 16) | 0x7C00u32 | nan_bit | (man >> 10)) as u16; |
| } |
| |
| // The number is normalized, start assembling half precision version |
| let half_sign = sign >> 16; |
| // Unbias the exponent, then bias for half precision |
| let unbiased_exp = ((exp >> 20) as i64) - 1023; |
| let half_exp = unbiased_exp + 15; |
| |
| // Check for exponent overflow, return +infinity |
| if half_exp >= 0x1F { |
| return (half_sign | 0x7C00u32) as u16; |
| } |
| |
| // Check for underflow |
| if half_exp <= 0 { |
| // Check mantissa for what we can do |
| if 10 - half_exp > 21 { |
| // No rounding possibility, so this is a full underflow, return signed zero |
| return half_sign as u16; |
| } |
| // Don't forget about hidden leading mantissa bit when assembling mantissa |
| let man = man | 0x0010_0000u32; |
| let mut half_man = man >> (11 - half_exp); |
| // Check for rounding (see comment above functions) |
| let round_bit = 1 << (10 - half_exp); |
| if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
| half_man += 1; |
| } |
| // No exponent for subnormals |
| return (half_sign | half_man) as u16; |
| } |
| |
| // Rebias the exponent |
| let half_exp = (half_exp as u32) << 10; |
| let half_man = man >> 10; |
| // Check for rounding (see comment above functions) |
| let round_bit = 0x0000_0200u32; |
| if (man & round_bit) != 0 && (man & (3 * round_bit - 1)) != 0 { |
| // Round it |
| ((half_sign | half_exp | half_man) + 1) as u16 |
| } else { |
| (half_sign | half_exp | half_man) as u16 |
| } |
| } |
| |
| fn f16_to_f32_fallback(i: u16) -> f32 { |
| // Check for signed zero |
| if i & 0x7FFFu16 == 0 { |
| return f32::from_bits((i as u32) << 16); |
| } |
| |
| let half_sign = (i & 0x8000u16) as u32; |
| let half_exp = (i & 0x7C00u16) as u32; |
| let half_man = (i & 0x03FFu16) as u32; |
| |
| // Check for an infinity or NaN when all exponent bits set |
| if half_exp == 0x7C00u32 { |
| // Check for signed infinity if mantissa is zero |
| if half_man == 0 { |
| return f32::from_bits((half_sign << 16) | 0x7F80_0000u32); |
| } else { |
| // NaN, keep current mantissa but also set most significiant mantissa bit |
| return f32::from_bits((half_sign << 16) | 0x7FC0_0000u32 | (half_man << 13)); |
| } |
| } |
| |
| // Calculate single-precision components with adjusted exponent |
| let sign = half_sign << 16; |
| // Unbias exponent |
| let unbiased_exp = ((half_exp as i32) >> 10) - 15; |
| |
| // Check for subnormals, which will be normalized by adjusting exponent |
| if half_exp == 0 { |
| // Calculate how much to adjust the exponent by |
| let e = (half_man as u16).leading_zeros() - 6; |
| |
| // Rebias and adjust exponent |
| let exp = (127 - 15 - e) << 23; |
| let man = (half_man << (14 + e)) & 0x7F_FF_FFu32; |
| return f32::from_bits(sign | exp | man); |
| } |
| |
| // Rebias exponent for a normalized normal |
| let exp = ((unbiased_exp + 127) as u32) << 23; |
| let man = (half_man & 0x03FFu32) << 13; |
| f32::from_bits(sign | exp | man) |
| } |
| |
| fn f16_to_f64_fallback(i: u16) -> f64 { |
| // Check for signed zero |
| if i & 0x7FFFu16 == 0 { |
| return f64::from_bits((i as u64) << 48); |
| } |
| |
| let half_sign = (i & 0x8000u16) as u64; |
| let half_exp = (i & 0x7C00u16) as u64; |
| let half_man = (i & 0x03FFu16) as u64; |
| |
| // Check for an infinity or NaN when all exponent bits set |
| if half_exp == 0x7C00u64 { |
| // Check for signed infinity if mantissa is zero |
| if half_man == 0 { |
| return f64::from_bits((half_sign << 48) | 0x7FF0_0000_0000_0000u64); |
| } else { |
| // NaN, keep current mantissa but also set most significiant mantissa bit |
| return f64::from_bits((half_sign << 48) | 0x7FF8_0000_0000_0000u64 | (half_man << 42)); |
| } |
| } |
| |
| // Calculate double-precision components with adjusted exponent |
| let sign = half_sign << 48; |
| // Unbias exponent |
| let unbiased_exp = ((half_exp as i64) >> 10) - 15; |
| |
| // Check for subnormals, which will be normalized by adjusting exponent |
| if half_exp == 0 { |
| // Calculate how much to adjust the exponent by |
| let e = (half_man as u16).leading_zeros() - 6; |
| |
| // Rebias and adjust exponent |
| let exp = ((1023 - 15 - e) as u64) << 52; |
| let man = (half_man << (43 + e)) & 0xF_FFFF_FFFF_FFFFu64; |
| return f64::from_bits(sign | exp | man); |
| } |
| |
| // Rebias exponent for a normalized normal |
| let exp = ((unbiased_exp + 1023) as u64) << 52; |
| let man = (half_man & 0x03FFu64) << 42; |
| f64::from_bits(sign | exp | man) |
| } |
| |
| #[inline] |
| fn f16x4_to_f32x4_fallback(v: &[u16]) -> [f32; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| [ |
| f16_to_f32_fallback(v[0]), |
| f16_to_f32_fallback(v[1]), |
| f16_to_f32_fallback(v[2]), |
| f16_to_f32_fallback(v[3]), |
| ] |
| } |
| |
| #[inline] |
| fn f32x4_to_f16x4_fallback(v: &[f32]) -> [u16; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| [ |
| f32_to_f16_fallback(v[0]), |
| f32_to_f16_fallback(v[1]), |
| f32_to_f16_fallback(v[2]), |
| f32_to_f16_fallback(v[3]), |
| ] |
| } |
| |
| #[inline] |
| fn f16x4_to_f64x4_fallback(v: &[u16]) -> [f64; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| [ |
| f16_to_f64_fallback(v[0]), |
| f16_to_f64_fallback(v[1]), |
| f16_to_f64_fallback(v[2]), |
| f16_to_f64_fallback(v[3]), |
| ] |
| } |
| |
| #[inline] |
| fn f64x4_to_f16x4_fallback(v: &[f64]) -> [u16; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| [ |
| f64_to_f16_fallback(v[0]), |
| f64_to_f16_fallback(v[1]), |
| f64_to_f16_fallback(v[2]), |
| f64_to_f16_fallback(v[3]), |
| ] |
| } |
| |
| /////////////// x86/x86_64 f16c //////////////// |
| #[cfg(all( |
| feature = "use-intrinsics", |
| any(target_arch = "x86", target_arch = "x86_64") |
| ))] |
| mod x86 { |
| use core::{mem::MaybeUninit, ptr}; |
| |
| #[cfg(target_arch = "x86")] |
| use core::arch::x86::{__m128, __m128i, _mm_cvtph_ps, _mm_cvtps_ph, _MM_FROUND_TO_NEAREST_INT}; |
| #[cfg(target_arch = "x86_64")] |
| use core::arch::x86_64::{ |
| __m128, __m128i, _mm_cvtph_ps, _mm_cvtps_ph, _MM_FROUND_TO_NEAREST_INT, |
| }; |
| |
| #[target_feature(enable = "f16c")] |
| #[inline] |
| pub(super) unsafe fn f16_to_f32_x86_f16c(i: u16) -> f32 { |
| let mut vec = MaybeUninit::<__m128i>::zeroed(); |
| vec.as_mut_ptr().cast::<u16>().write(i); |
| let retval = _mm_cvtph_ps(vec.assume_init()); |
| *(&retval as *const __m128).cast() |
| } |
| |
| #[target_feature(enable = "f16c")] |
| #[inline] |
| pub(super) unsafe fn f32_to_f16_x86_f16c(f: f32) -> u16 { |
| let mut vec = MaybeUninit::<__m128>::zeroed(); |
| vec.as_mut_ptr().cast::<f32>().write(f); |
| let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); |
| *(&retval as *const __m128i).cast() |
| } |
| |
| #[target_feature(enable = "f16c")] |
| #[inline] |
| pub(super) unsafe fn f16x4_to_f32x4_x86_f16c(v: &[u16]) -> [f32; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| let mut vec = MaybeUninit::<__m128i>::zeroed(); |
| ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); |
| let retval = _mm_cvtph_ps(vec.assume_init()); |
| *(&retval as *const __m128).cast() |
| } |
| |
| #[target_feature(enable = "f16c")] |
| #[inline] |
| pub(super) unsafe fn f32x4_to_f16x4_x86_f16c(v: &[f32]) -> [u16; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| let mut vec = MaybeUninit::<__m128>::uninit(); |
| ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); |
| let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); |
| *(&retval as *const __m128i).cast() |
| } |
| |
| #[target_feature(enable = "f16c")] |
| #[inline] |
| pub(super) unsafe fn f16x4_to_f64x4_x86_f16c(v: &[u16]) -> [f64; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| let mut vec = MaybeUninit::<__m128i>::zeroed(); |
| ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); |
| let retval = _mm_cvtph_ps(vec.assume_init()); |
| let array = *(&retval as *const __m128).cast::<[f32; 4]>(); |
| // Let compiler vectorize this regular cast for now. |
| // TODO: investigate auto-detecting sse2/avx convert features |
| [ |
| array[0] as f64, |
| array[1] as f64, |
| array[2] as f64, |
| array[3] as f64, |
| ] |
| } |
| |
| #[target_feature(enable = "f16c")] |
| #[inline] |
| pub(super) unsafe fn f64x4_to_f16x4_x86_f16c(v: &[f64]) -> [u16; 4] { |
| debug_assert!(v.len() >= 4); |
| |
| // Let compiler vectorize this regular cast for now. |
| // TODO: investigate auto-detecting sse2/avx convert features |
| let v = [v[0] as f32, v[1] as f32, v[2] as f32, v[3] as f32]; |
| |
| let mut vec = MaybeUninit::<__m128>::uninit(); |
| ptr::copy_nonoverlapping(v.as_ptr(), vec.as_mut_ptr().cast(), 4); |
| let retval = _mm_cvtps_ph(vec.assume_init(), _MM_FROUND_TO_NEAREST_INT); |
| *(&retval as *const __m128i).cast() |
| } |
| } |