| #[cfg(all(feature = "serde", feature = "alloc"))] |
| #[allow(unused_imports)] |
| use alloc::string::ToString; |
| #[cfg(feature = "bytemuck")] |
| use bytemuck::{Pod, Zeroable}; |
| use core::{ |
| cmp::Ordering, |
| iter::{Product, Sum}, |
| num::FpCategory, |
| ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
| }; |
| #[cfg(not(target_arch = "spirv"))] |
| use core::{ |
| fmt::{ |
| Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, |
| }, |
| num::ParseFloatError, |
| str::FromStr, |
| }; |
| #[cfg(feature = "serde")] |
| use serde::{Deserialize, Serialize}; |
| #[cfg(feature = "zerocopy")] |
| use zerocopy::{AsBytes, FromBytes}; |
| |
| pub(crate) mod convert; |
| |
| /// A 16-bit floating point type implementing the [`bfloat16`] format. |
| /// |
| /// The [`bfloat16`] floating point format is a truncated 16-bit version of the IEEE 754 standard |
| /// `binary32`, a.k.a [`f32`]. [`bf16`] has approximately the same dynamic range as [`f32`] by |
| /// having a lower precision than [`f16`][crate::f16]. While [`f16`][crate::f16] has a precision of |
| /// 11 bits, [`bf16`] has a precision of only 8 bits. |
| /// |
| /// [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format |
| #[allow(non_camel_case_types)] |
| #[derive(Clone, Copy, Default)] |
| #[repr(transparent)] |
| #[cfg_attr(feature = "serde", derive(Serialize))] |
| #[cfg_attr( |
| feature = "rkyv", |
| derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
| )] |
| #[cfg_attr(feature = "rkyv", archive(resolver = "Bf16Resolver"))] |
| #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] |
| #[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))] |
| #[cfg_attr(kani, derive(kani::Arbitrary))] |
| pub struct bf16(u16); |
| |
| impl bf16 { |
| /// Constructs a [`bf16`] value from the raw bits. |
| #[inline] |
| #[must_use] |
| pub const fn from_bits(bits: u16) -> bf16 { |
| bf16(bits) |
| } |
| |
| /// Constructs a [`bf16`] value from a 32-bit floating point value. |
| /// |
| /// This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values |
| /// are preserved. Subnormal values that are too tiny to be represented will result in ±0. All |
| /// other values are truncated and rounded to the nearest representable value. |
| #[inline] |
| #[must_use] |
| pub fn from_f32(value: f32) -> bf16 { |
| Self::from_f32_const(value) |
| } |
| |
| /// Constructs a [`bf16`] value from a 32-bit floating point value. |
| /// |
| /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This operation is lossy. If the 32-bit value is too large to fit, ±∞ will result. NaN values |
| /// are preserved. Subnormal values that are too tiny to be represented will result in ±0. All |
| /// other values are truncated and rounded to the nearest representable value. |
| #[inline] |
| #[must_use] |
| pub const fn from_f32_const(value: f32) -> bf16 { |
| bf16(convert::f32_to_bf16(value)) |
| } |
| |
| /// Constructs a [`bf16`] value from a 64-bit floating point value. |
| /// |
| /// This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values |
| /// are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0. |
| /// Exponents that underflow the minimum exponent will result in subnormals or ±0. All other |
| /// values are truncated and rounded to the nearest representable value. |
| #[inline] |
| #[must_use] |
| pub fn from_f64(value: f64) -> bf16 { |
| Self::from_f64_const(value) |
| } |
| |
| /// Constructs a [`bf16`] value from a 64-bit floating point value. |
| /// |
| /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This operation is lossy. If the 64-bit value is to large to fit, ±∞ will result. NaN values |
| /// are preserved. 64-bit subnormal values are too tiny to be represented and result in ±0. |
| /// Exponents that underflow the minimum exponent will result in subnormals or ±0. All other |
| /// values are truncated and rounded to the nearest representable value. |
| #[inline] |
| #[must_use] |
| pub const fn from_f64_const(value: f64) -> bf16 { |
| bf16(convert::f64_to_bf16(value)) |
| } |
| |
| /// Converts a [`bf16`] into the underlying bit representation. |
| #[inline] |
| #[must_use] |
| pub const fn to_bits(self) -> u16 { |
| self.0 |
| } |
| |
| /// Returns the memory representation of the underlying bit representation as a byte array in |
| /// little-endian byte order. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let bytes = bf16::from_f32(12.5).to_le_bytes(); |
| /// assert_eq!(bytes, [0x48, 0x41]); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn to_le_bytes(self) -> [u8; 2] { |
| self.0.to_le_bytes() |
| } |
| |
| /// Returns the memory representation of the underlying bit representation as a byte array in |
| /// big-endian (network) byte order. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let bytes = bf16::from_f32(12.5).to_be_bytes(); |
| /// assert_eq!(bytes, [0x41, 0x48]); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn to_be_bytes(self) -> [u8; 2] { |
| self.0.to_be_bytes() |
| } |
| |
| /// Returns the memory representation of the underlying bit representation as a byte array in |
| /// native byte order. |
| /// |
| /// As the target platform's native endianness is used, portable code should use |
| /// [`to_be_bytes`][bf16::to_be_bytes] or [`to_le_bytes`][bf16::to_le_bytes], as appropriate, |
| /// instead. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let bytes = bf16::from_f32(12.5).to_ne_bytes(); |
| /// assert_eq!(bytes, if cfg!(target_endian = "big") { |
| /// [0x41, 0x48] |
| /// } else { |
| /// [0x48, 0x41] |
| /// }); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn to_ne_bytes(self) -> [u8; 2] { |
| self.0.to_ne_bytes() |
| } |
| |
| /// Creates a floating point value from its representation as a byte array in little endian. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let value = bf16::from_le_bytes([0x48, 0x41]); |
| /// assert_eq!(value, bf16::from_f32(12.5)); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_le_bytes(bytes: [u8; 2]) -> bf16 { |
| bf16::from_bits(u16::from_le_bytes(bytes)) |
| } |
| |
| /// Creates a floating point value from its representation as a byte array in big endian. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let value = bf16::from_be_bytes([0x41, 0x48]); |
| /// assert_eq!(value, bf16::from_f32(12.5)); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_be_bytes(bytes: [u8; 2]) -> bf16 { |
| bf16::from_bits(u16::from_be_bytes(bytes)) |
| } |
| |
| /// Creates a floating point value from its representation as a byte array in native endian. |
| /// |
| /// As the target platform's native endianness is used, portable code likely wants to use |
| /// [`from_be_bytes`][bf16::from_be_bytes] or [`from_le_bytes`][bf16::from_le_bytes], as |
| /// appropriate instead. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let value = bf16::from_ne_bytes(if cfg!(target_endian = "big") { |
| /// [0x41, 0x48] |
| /// } else { |
| /// [0x48, 0x41] |
| /// }); |
| /// assert_eq!(value, bf16::from_f32(12.5)); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_ne_bytes(bytes: [u8; 2]) -> bf16 { |
| bf16::from_bits(u16::from_ne_bytes(bytes)) |
| } |
| |
| /// Converts a [`bf16`] value into an [`f32`] value. |
| /// |
| /// This conversion is lossless as all values can be represented exactly in [`f32`]. |
| #[inline] |
| #[must_use] |
| pub fn to_f32(self) -> f32 { |
| self.to_f32_const() |
| } |
| |
| /// Converts a [`bf16`] value into an [`f32`] value. |
| /// |
| /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This conversion is lossless as all values can be represented exactly in [`f32`]. |
| #[inline] |
| #[must_use] |
| pub const fn to_f32_const(self) -> f32 { |
| convert::bf16_to_f32(self.0) |
| } |
| |
| /// Converts a [`bf16`] value into an [`f64`] value. |
| /// |
| /// This conversion is lossless as all values can be represented exactly in [`f64`]. |
| #[inline] |
| #[must_use] |
| pub fn to_f64(self) -> f64 { |
| self.to_f64_const() |
| } |
| |
| /// Converts a [`bf16`] value into an [`f64`] value. |
| /// |
| /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This conversion is lossless as all values can be represented exactly in [`f64`]. |
| #[inline] |
| #[must_use] |
| pub const fn to_f64_const(self) -> f64 { |
| convert::bf16_to_f64(self.0) |
| } |
| |
| /// Returns `true` if this value is NaN and `false` otherwise. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let nan = bf16::NAN; |
| /// let f = bf16::from_f32(7.0_f32); |
| /// |
| /// assert!(nan.is_nan()); |
| /// assert!(!f.is_nan()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_nan(self) -> bool { |
| self.0 & 0x7FFFu16 > 0x7F80u16 |
| } |
| |
| /// Returns `true` if this value is ±∞ and `false` otherwise. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let f = bf16::from_f32(7.0f32); |
| /// let inf = bf16::INFINITY; |
| /// let neg_inf = bf16::NEG_INFINITY; |
| /// let nan = bf16::NAN; |
| /// |
| /// assert!(!f.is_infinite()); |
| /// assert!(!nan.is_infinite()); |
| /// |
| /// assert!(inf.is_infinite()); |
| /// assert!(neg_inf.is_infinite()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_infinite(self) -> bool { |
| self.0 & 0x7FFFu16 == 0x7F80u16 |
| } |
| |
| /// Returns `true` if this number is neither infinite nor NaN. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let f = bf16::from_f32(7.0f32); |
| /// let inf = bf16::INFINITY; |
| /// let neg_inf = bf16::NEG_INFINITY; |
| /// let nan = bf16::NAN; |
| /// |
| /// assert!(f.is_finite()); |
| /// |
| /// assert!(!nan.is_finite()); |
| /// assert!(!inf.is_finite()); |
| /// assert!(!neg_inf.is_finite()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_finite(self) -> bool { |
| self.0 & 0x7F80u16 != 0x7F80u16 |
| } |
| |
| /// Returns `true` if the number is neither zero, infinite, subnormal, or NaN. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let min = bf16::MIN_POSITIVE; |
| /// let max = bf16::MAX; |
| /// let lower_than_min = bf16::from_f32(1.0e-39_f32); |
| /// let zero = bf16::from_f32(0.0_f32); |
| /// |
| /// assert!(min.is_normal()); |
| /// assert!(max.is_normal()); |
| /// |
| /// assert!(!zero.is_normal()); |
| /// assert!(!bf16::NAN.is_normal()); |
| /// assert!(!bf16::INFINITY.is_normal()); |
| /// // Values between 0 and `min` are subnormal. |
| /// assert!(!lower_than_min.is_normal()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_normal(self) -> bool { |
| let exp = self.0 & 0x7F80u16; |
| exp != 0x7F80u16 && exp != 0 |
| } |
| |
| /// Returns the floating point category of the number. |
| /// |
| /// If only one property is going to be tested, it is generally faster to use the specific |
| /// predicate instead. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use std::num::FpCategory; |
| /// # use half::prelude::*; |
| /// |
| /// let num = bf16::from_f32(12.4_f32); |
| /// let inf = bf16::INFINITY; |
| /// |
| /// assert_eq!(num.classify(), FpCategory::Normal); |
| /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| /// ``` |
| #[must_use] |
| pub const fn classify(self) -> FpCategory { |
| let exp = self.0 & 0x7F80u16; |
| let man = self.0 & 0x007Fu16; |
| match (exp, man) { |
| (0, 0) => FpCategory::Zero, |
| (0, _) => FpCategory::Subnormal, |
| (0x7F80u16, 0) => FpCategory::Infinite, |
| (0x7F80u16, _) => FpCategory::Nan, |
| _ => FpCategory::Normal, |
| } |
| } |
| |
| /// Returns a number that represents the sign of `self`. |
| /// |
| /// * 1.0 if the number is positive, +0.0 or [`INFINITY`][bf16::INFINITY] |
| /// * −1.0 if the number is negative, −0.0` or [`NEG_INFINITY`][bf16::NEG_INFINITY] |
| /// * [`NAN`][bf16::NAN] if the number is NaN |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let f = bf16::from_f32(3.5_f32); |
| /// |
| /// assert_eq!(f.signum(), bf16::from_f32(1.0)); |
| /// assert_eq!(bf16::NEG_INFINITY.signum(), bf16::from_f32(-1.0)); |
| /// |
| /// assert!(bf16::NAN.signum().is_nan()); |
| /// ``` |
| #[must_use] |
| pub const fn signum(self) -> bf16 { |
| if self.is_nan() { |
| self |
| } else if self.0 & 0x8000u16 != 0 { |
| Self::NEG_ONE |
| } else { |
| Self::ONE |
| } |
| } |
| |
| /// Returns `true` if and only if `self` has a positive sign, including +0.0, NaNs with a |
| /// positive sign bit and +∞. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let nan = bf16::NAN; |
| /// let f = bf16::from_f32(7.0_f32); |
| /// let g = bf16::from_f32(-7.0_f32); |
| /// |
| /// assert!(f.is_sign_positive()); |
| /// assert!(!g.is_sign_positive()); |
| /// // NaN can be either positive or negative |
| /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_sign_positive(self) -> bool { |
| self.0 & 0x8000u16 == 0 |
| } |
| |
| /// Returns `true` if and only if `self` has a negative sign, including −0.0, NaNs with a |
| /// negative sign bit and −∞. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let nan = bf16::NAN; |
| /// let f = bf16::from_f32(7.0f32); |
| /// let g = bf16::from_f32(-7.0f32); |
| /// |
| /// assert!(!f.is_sign_negative()); |
| /// assert!(g.is_sign_negative()); |
| /// // NaN can be either positive or negative |
| /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_sign_negative(self) -> bool { |
| self.0 & 0x8000u16 != 0 |
| } |
| |
| /// Returns a number composed of the magnitude of `self` and the sign of `sign`. |
| /// |
| /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
| /// If `self` is NaN, then NaN with the sign of `sign` is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// let f = bf16::from_f32(3.5); |
| /// |
| /// assert_eq!(f.copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); |
| /// assert_eq!(f.copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); |
| /// assert_eq!((-f).copysign(bf16::from_f32(0.42)), bf16::from_f32(3.5)); |
| /// assert_eq!((-f).copysign(bf16::from_f32(-0.42)), bf16::from_f32(-3.5)); |
| /// |
| /// assert!(bf16::NAN.copysign(bf16::from_f32(1.0)).is_nan()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn copysign(self, sign: bf16) -> bf16 { |
| bf16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) |
| } |
| |
| /// Returns the maximum of the two numbers. |
| /// |
| /// If one of the arguments is NaN, then the other argument is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// let x = bf16::from_f32(1.0); |
| /// let y = bf16::from_f32(2.0); |
| /// |
| /// assert_eq!(x.max(y), y); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub fn max(self, other: bf16) -> bf16 { |
| if other > self && !other.is_nan() { |
| other |
| } else { |
| self |
| } |
| } |
| |
| /// Returns the minimum of the two numbers. |
| /// |
| /// If one of the arguments is NaN, then the other argument is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// let x = bf16::from_f32(1.0); |
| /// let y = bf16::from_f32(2.0); |
| /// |
| /// assert_eq!(x.min(y), x); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub fn min(self, other: bf16) -> bf16 { |
| if other < self && !other.is_nan() { |
| other |
| } else { |
| self |
| } |
| } |
| |
| /// Restrict a value to a certain interval unless it is NaN. |
| /// |
| /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. |
| /// Otherwise this returns `self`. |
| /// |
| /// Note that this function returns NaN if the initial value was NaN as well. |
| /// |
| /// # Panics |
| /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// assert!(bf16::from_f32(-3.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(-2.0)); |
| /// assert!(bf16::from_f32(0.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(0.0)); |
| /// assert!(bf16::from_f32(2.0).clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)) == bf16::from_f32(1.0)); |
| /// assert!(bf16::NAN.clamp(bf16::from_f32(-2.0), bf16::from_f32(1.0)).is_nan()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub fn clamp(self, min: bf16, max: bf16) -> bf16 { |
| assert!(min <= max); |
| let mut x = self; |
| if x < min { |
| x = min; |
| } |
| if x > max { |
| x = max; |
| } |
| x |
| } |
| |
| /// Returns the ordering between `self` and `other`. |
| /// |
| /// Unlike the standard partial comparison between floating point numbers, |
| /// this comparison always produces an ordering in accordance to |
| /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| /// floating point standard. The values are ordered in the following sequence: |
| /// |
| /// - negative quiet NaN |
| /// - negative signaling NaN |
| /// - negative infinity |
| /// - negative numbers |
| /// - negative subnormal numbers |
| /// - negative zero |
| /// - positive zero |
| /// - positive subnormal numbers |
| /// - positive numbers |
| /// - positive infinity |
| /// - positive signaling NaN |
| /// - positive quiet NaN. |
| /// |
| /// The ordering established by this function does not always agree with the |
| /// [`PartialOrd`] and [`PartialEq`] implementations of `bf16`. For example, |
| /// they consider negative and positive zero equal, while `total_cmp` |
| /// doesn't. |
| /// |
| /// The interpretation of the signaling NaN bit follows the definition in |
| /// the IEEE 754 standard, which may not match the interpretation by some of |
| /// the older, non-conformant (e.g. MIPS) hardware implementations. |
| /// |
| /// # Examples |
| /// ``` |
| /// # use half::bf16; |
| /// let mut v: Vec<bf16> = vec![]; |
| /// v.push(bf16::ONE); |
| /// v.push(bf16::INFINITY); |
| /// v.push(bf16::NEG_INFINITY); |
| /// v.push(bf16::NAN); |
| /// v.push(bf16::MAX_SUBNORMAL); |
| /// v.push(-bf16::MAX_SUBNORMAL); |
| /// v.push(bf16::ZERO); |
| /// v.push(bf16::NEG_ZERO); |
| /// v.push(bf16::NEG_ONE); |
| /// v.push(bf16::MIN_POSITIVE); |
| /// |
| /// v.sort_by(|a, b| a.total_cmp(&b)); |
| /// |
| /// assert!(v |
| /// .into_iter() |
| /// .zip( |
| /// [ |
| /// bf16::NEG_INFINITY, |
| /// bf16::NEG_ONE, |
| /// -bf16::MAX_SUBNORMAL, |
| /// bf16::NEG_ZERO, |
| /// bf16::ZERO, |
| /// bf16::MAX_SUBNORMAL, |
| /// bf16::MIN_POSITIVE, |
| /// bf16::ONE, |
| /// bf16::INFINITY, |
| /// bf16::NAN |
| /// ] |
| /// .iter() |
| /// ) |
| /// .all(|(a, b)| a.to_bits() == b.to_bits())); |
| /// ``` |
| // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp |
| #[inline] |
| #[must_use] |
| pub fn total_cmp(&self, other: &Self) -> Ordering { |
| let mut left = self.to_bits() as i16; |
| let mut right = other.to_bits() as i16; |
| left ^= (((left >> 15) as u16) >> 1) as i16; |
| right ^= (((right >> 15) as u16) >> 1) as i16; |
| left.cmp(&right) |
| } |
| |
| /// Alternate serialize adapter for serializing as a float. |
| /// |
| /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize |
| /// implementation that serializes as an [`f32`] value. It is designed for use with |
| /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by |
| /// the default deserialize implementation. |
| /// |
| /// # Examples |
| /// |
| /// A demonstration on how to use this adapater: |
| /// |
| /// ``` |
| /// use serde::{Serialize, Deserialize}; |
| /// use half::bf16; |
| /// |
| /// #[derive(Serialize, Deserialize)] |
| /// struct MyStruct { |
| /// #[serde(serialize_with = "bf16::serialize_as_f32")] |
| /// value: bf16 // Will be serialized as f32 instead of u16 |
| /// } |
| /// ``` |
| #[cfg(feature = "serde")] |
| pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { |
| serializer.serialize_f32(self.to_f32()) |
| } |
| |
| /// Alternate serialize adapter for serializing as a string. |
| /// |
| /// By default, [`bf16`] serializes as a newtype of [`u16`]. This is an alternate serialize |
| /// implementation that serializes as a string value. It is designed for use with |
| /// `serialize_with` serde attributes. Deserialization from string values is already supported |
| /// by the default deserialize implementation. |
| /// |
| /// # Examples |
| /// |
| /// A demonstration on how to use this adapater: |
| /// |
| /// ``` |
| /// use serde::{Serialize, Deserialize}; |
| /// use half::bf16; |
| /// |
| /// #[derive(Serialize, Deserialize)] |
| /// struct MyStruct { |
| /// #[serde(serialize_with = "bf16::serialize_as_string")] |
| /// value: bf16 // Will be serialized as a string instead of u16 |
| /// } |
| /// ``` |
| #[cfg(all(feature = "serde", feature = "alloc"))] |
| pub fn serialize_as_string<S: serde::Serializer>( |
| &self, |
| serializer: S, |
| ) -> Result<S::Ok, S::Error> { |
| serializer.serialize_str(&self.to_string()) |
| } |
| |
| /// Approximate number of [`bf16`] significant digits in base 10 |
| pub const DIGITS: u32 = 2; |
| /// [`bf16`] |
| /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value |
| /// |
| /// This is the difference between 1.0 and the next largest representable number. |
| pub const EPSILON: bf16 = bf16(0x3C00u16); |
| /// [`bf16`] positive Infinity (+∞) |
| pub const INFINITY: bf16 = bf16(0x7F80u16); |
| /// Number of [`bf16`] significant digits in base 2 |
| pub const MANTISSA_DIGITS: u32 = 8; |
| /// Largest finite [`bf16`] value |
| pub const MAX: bf16 = bf16(0x7F7F); |
| /// Maximum possible [`bf16`] power of 10 exponent |
| pub const MAX_10_EXP: i32 = 38; |
| /// Maximum possible [`bf16`] power of 2 exponent |
| pub const MAX_EXP: i32 = 128; |
| /// Smallest finite [`bf16`] value |
| pub const MIN: bf16 = bf16(0xFF7F); |
| /// Minimum possible normal [`bf16`] power of 10 exponent |
| pub const MIN_10_EXP: i32 = -37; |
| /// One greater than the minimum possible normal [`bf16`] power of 2 exponent |
| pub const MIN_EXP: i32 = -125; |
| /// Smallest positive normal [`bf16`] value |
| pub const MIN_POSITIVE: bf16 = bf16(0x0080u16); |
| /// [`bf16`] Not a Number (NaN) |
| pub const NAN: bf16 = bf16(0x7FC0u16); |
| /// [`bf16`] negative infinity (-∞). |
| pub const NEG_INFINITY: bf16 = bf16(0xFF80u16); |
| /// The radix or base of the internal representation of [`bf16`] |
| pub const RADIX: u32 = 2; |
| |
| /// Minimum positive subnormal [`bf16`] value |
| pub const MIN_POSITIVE_SUBNORMAL: bf16 = bf16(0x0001u16); |
| /// Maximum subnormal [`bf16`] value |
| pub const MAX_SUBNORMAL: bf16 = bf16(0x007Fu16); |
| |
| /// [`bf16`] 1 |
| pub const ONE: bf16 = bf16(0x3F80u16); |
| /// [`bf16`] 0 |
| pub const ZERO: bf16 = bf16(0x0000u16); |
| /// [`bf16`] -0 |
| pub const NEG_ZERO: bf16 = bf16(0x8000u16); |
| /// [`bf16`] -1 |
| pub const NEG_ONE: bf16 = bf16(0xBF80u16); |
| |
| /// [`bf16`] Euler's number (ℯ) |
| pub const E: bf16 = bf16(0x402Eu16); |
| /// [`bf16`] Archimedes' constant (π) |
| pub const PI: bf16 = bf16(0x4049u16); |
| /// [`bf16`] 1/π |
| pub const FRAC_1_PI: bf16 = bf16(0x3EA3u16); |
| /// [`bf16`] 1/√2 |
| pub const FRAC_1_SQRT_2: bf16 = bf16(0x3F35u16); |
| /// [`bf16`] 2/π |
| pub const FRAC_2_PI: bf16 = bf16(0x3F23u16); |
| /// [`bf16`] 2/√π |
| pub const FRAC_2_SQRT_PI: bf16 = bf16(0x3F90u16); |
| /// [`bf16`] π/2 |
| pub const FRAC_PI_2: bf16 = bf16(0x3FC9u16); |
| /// [`bf16`] π/3 |
| pub const FRAC_PI_3: bf16 = bf16(0x3F86u16); |
| /// [`bf16`] π/4 |
| pub const FRAC_PI_4: bf16 = bf16(0x3F49u16); |
| /// [`bf16`] π/6 |
| pub const FRAC_PI_6: bf16 = bf16(0x3F06u16); |
| /// [`bf16`] π/8 |
| pub const FRAC_PI_8: bf16 = bf16(0x3EC9u16); |
| /// [`bf16`] 𝗅𝗇 10 |
| pub const LN_10: bf16 = bf16(0x4013u16); |
| /// [`bf16`] 𝗅𝗇 2 |
| pub const LN_2: bf16 = bf16(0x3F31u16); |
| /// [`bf16`] 𝗅𝗈𝗀₁₀ℯ |
| pub const LOG10_E: bf16 = bf16(0x3EDEu16); |
| /// [`bf16`] 𝗅𝗈𝗀₁₀2 |
| pub const LOG10_2: bf16 = bf16(0x3E9Au16); |
| /// [`bf16`] 𝗅𝗈𝗀₂ℯ |
| pub const LOG2_E: bf16 = bf16(0x3FB9u16); |
| /// [`bf16`] 𝗅𝗈𝗀₂10 |
| pub const LOG2_10: bf16 = bf16(0x4055u16); |
| /// [`bf16`] √2 |
| pub const SQRT_2: bf16 = bf16(0x3FB5u16); |
| } |
| |
| impl From<bf16> for f32 { |
| #[inline] |
| fn from(x: bf16) -> f32 { |
| x.to_f32() |
| } |
| } |
| |
| impl From<bf16> for f64 { |
| #[inline] |
| fn from(x: bf16) -> f64 { |
| x.to_f64() |
| } |
| } |
| |
| impl From<i8> for bf16 { |
| #[inline] |
| fn from(x: i8) -> bf16 { |
| // Convert to f32, then to bf16 |
| bf16::from_f32(f32::from(x)) |
| } |
| } |
| |
| impl From<u8> for bf16 { |
| #[inline] |
| fn from(x: u8) -> bf16 { |
| // Convert to f32, then to f16 |
| bf16::from_f32(f32::from(x)) |
| } |
| } |
| |
| impl PartialEq for bf16 { |
| fn eq(&self, other: &bf16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) |
| } |
| } |
| } |
| |
| impl PartialOrd for bf16 { |
| fn partial_cmp(&self, other: &bf16) -> Option<Ordering> { |
| if self.is_nan() || other.is_nan() { |
| None |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => Some(self.0.cmp(&other.0)), |
| (false, true) => { |
| if (self.0 | other.0) & 0x7FFFu16 == 0 { |
| Some(Ordering::Equal) |
| } else { |
| Some(Ordering::Greater) |
| } |
| } |
| (true, false) => { |
| if (self.0 | other.0) & 0x7FFFu16 == 0 { |
| Some(Ordering::Equal) |
| } else { |
| Some(Ordering::Less) |
| } |
| } |
| (true, true) => Some(other.0.cmp(&self.0)), |
| } |
| } |
| } |
| |
| fn lt(&self, other: &bf16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 < other.0, |
| (false, true) => false, |
| (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, |
| (true, true) => self.0 > other.0, |
| } |
| } |
| } |
| |
| fn le(&self, other: &bf16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 <= other.0, |
| (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, |
| (true, false) => true, |
| (true, true) => self.0 >= other.0, |
| } |
| } |
| } |
| |
| fn gt(&self, other: &bf16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 > other.0, |
| (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, |
| (true, false) => false, |
| (true, true) => self.0 < other.0, |
| } |
| } |
| } |
| |
| fn ge(&self, other: &bf16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 >= other.0, |
| (false, true) => true, |
| (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, |
| (true, true) => self.0 <= other.0, |
| } |
| } |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl FromStr for bf16 { |
| type Err = ParseFloatError; |
| fn from_str(src: &str) -> Result<bf16, ParseFloatError> { |
| f32::from_str(src).map(bf16::from_f32) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Debug for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| Debug::fmt(&self.to_f32(), f) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Display for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| Display::fmt(&self.to_f32(), f) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl LowerExp for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:e}", self.to_f32()) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl UpperExp for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:E}", self.to_f32()) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Binary for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:b}", self.0) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Octal for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:o}", self.0) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl LowerHex for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:x}", self.0) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl UpperHex for bf16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:X}", self.0) |
| } |
| } |
| |
| impl Neg for bf16 { |
| type Output = Self; |
| |
| fn neg(self) -> Self::Output { |
| Self(self.0 ^ 0x8000) |
| } |
| } |
| |
| impl Neg for &bf16 { |
| type Output = <bf16 as Neg>::Output; |
| |
| #[inline] |
| fn neg(self) -> Self::Output { |
| Neg::neg(*self) |
| } |
| } |
| |
| impl Add for bf16 { |
| type Output = Self; |
| |
| fn add(self, rhs: Self) -> Self::Output { |
| Self::from_f32(Self::to_f32(self) + Self::to_f32(rhs)) |
| } |
| } |
| |
| impl Add<&bf16> for bf16 { |
| type Output = <bf16 as Add<bf16>>::Output; |
| |
| #[inline] |
| fn add(self, rhs: &bf16) -> Self::Output { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&bf16> for &bf16 { |
| type Output = <bf16 as Add<bf16>>::Output; |
| |
| #[inline] |
| fn add(self, rhs: &bf16) -> Self::Output { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<bf16> for &bf16 { |
| type Output = <bf16 as Add<bf16>>::Output; |
| |
| #[inline] |
| fn add(self, rhs: bf16) -> Self::Output { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl AddAssign for bf16 { |
| #[inline] |
| fn add_assign(&mut self, rhs: Self) { |
| *self = (*self).add(rhs); |
| } |
| } |
| |
| impl AddAssign<&bf16> for bf16 { |
| #[inline] |
| fn add_assign(&mut self, rhs: &bf16) { |
| *self = (*self).add(rhs); |
| } |
| } |
| |
| impl Sub for bf16 { |
| type Output = Self; |
| |
| fn sub(self, rhs: Self) -> Self::Output { |
| Self::from_f32(Self::to_f32(self) - Self::to_f32(rhs)) |
| } |
| } |
| |
| impl Sub<&bf16> for bf16 { |
| type Output = <bf16 as Sub<bf16>>::Output; |
| |
| #[inline] |
| fn sub(self, rhs: &bf16) -> Self::Output { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&bf16> for &bf16 { |
| type Output = <bf16 as Sub<bf16>>::Output; |
| |
| #[inline] |
| fn sub(self, rhs: &bf16) -> Self::Output { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<bf16> for &bf16 { |
| type Output = <bf16 as Sub<bf16>>::Output; |
| |
| #[inline] |
| fn sub(self, rhs: bf16) -> Self::Output { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl SubAssign for bf16 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Self) { |
| *self = (*self).sub(rhs); |
| } |
| } |
| |
| impl SubAssign<&bf16> for bf16 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: &bf16) { |
| *self = (*self).sub(rhs); |
| } |
| } |
| |
| impl Mul for bf16 { |
| type Output = Self; |
| |
| fn mul(self, rhs: Self) -> Self::Output { |
| Self::from_f32(Self::to_f32(self) * Self::to_f32(rhs)) |
| } |
| } |
| |
| impl Mul<&bf16> for bf16 { |
| type Output = <bf16 as Mul<bf16>>::Output; |
| |
| #[inline] |
| fn mul(self, rhs: &bf16) -> Self::Output { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&bf16> for &bf16 { |
| type Output = <bf16 as Mul<bf16>>::Output; |
| |
| #[inline] |
| fn mul(self, rhs: &bf16) -> Self::Output { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<bf16> for &bf16 { |
| type Output = <bf16 as Mul<bf16>>::Output; |
| |
| #[inline] |
| fn mul(self, rhs: bf16) -> Self::Output { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl MulAssign for bf16 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: Self) { |
| *self = (*self).mul(rhs); |
| } |
| } |
| |
| impl MulAssign<&bf16> for bf16 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: &bf16) { |
| *self = (*self).mul(rhs); |
| } |
| } |
| |
| impl Div for bf16 { |
| type Output = Self; |
| |
| fn div(self, rhs: Self) -> Self::Output { |
| Self::from_f32(Self::to_f32(self) / Self::to_f32(rhs)) |
| } |
| } |
| |
| impl Div<&bf16> for bf16 { |
| type Output = <bf16 as Div<bf16>>::Output; |
| |
| #[inline] |
| fn div(self, rhs: &bf16) -> Self::Output { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&bf16> for &bf16 { |
| type Output = <bf16 as Div<bf16>>::Output; |
| |
| #[inline] |
| fn div(self, rhs: &bf16) -> Self::Output { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<bf16> for &bf16 { |
| type Output = <bf16 as Div<bf16>>::Output; |
| |
| #[inline] |
| fn div(self, rhs: bf16) -> Self::Output { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl DivAssign for bf16 { |
| #[inline] |
| fn div_assign(&mut self, rhs: Self) { |
| *self = (*self).div(rhs); |
| } |
| } |
| |
| impl DivAssign<&bf16> for bf16 { |
| #[inline] |
| fn div_assign(&mut self, rhs: &bf16) { |
| *self = (*self).div(rhs); |
| } |
| } |
| |
| impl Rem for bf16 { |
| type Output = Self; |
| |
| fn rem(self, rhs: Self) -> Self::Output { |
| Self::from_f32(Self::to_f32(self) % Self::to_f32(rhs)) |
| } |
| } |
| |
| impl Rem<&bf16> for bf16 { |
| type Output = <bf16 as Rem<bf16>>::Output; |
| |
| #[inline] |
| fn rem(self, rhs: &bf16) -> Self::Output { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&bf16> for &bf16 { |
| type Output = <bf16 as Rem<bf16>>::Output; |
| |
| #[inline] |
| fn rem(self, rhs: &bf16) -> Self::Output { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<bf16> for &bf16 { |
| type Output = <bf16 as Rem<bf16>>::Output; |
| |
| #[inline] |
| fn rem(self, rhs: bf16) -> Self::Output { |
| (*self).rem(rhs) |
| } |
| } |
| |
| impl RemAssign for bf16 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: Self) { |
| *self = (*self).rem(rhs); |
| } |
| } |
| |
| impl RemAssign<&bf16> for bf16 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: &bf16) { |
| *self = (*self).rem(rhs); |
| } |
| } |
| |
| impl Product for bf16 { |
| #[inline] |
| fn product<I: Iterator<Item = Self>>(iter: I) -> Self { |
| bf16::from_f32(iter.map(|f| f.to_f32()).product()) |
| } |
| } |
| |
| impl<'a> Product<&'a bf16> for bf16 { |
| #[inline] |
| fn product<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { |
| bf16::from_f32(iter.map(|f| f.to_f32()).product()) |
| } |
| } |
| |
| impl Sum for bf16 { |
| #[inline] |
| fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
| bf16::from_f32(iter.map(|f| f.to_f32()).sum()) |
| } |
| } |
| |
| impl<'a> Sum<&'a bf16> for bf16 { |
| #[inline] |
| fn sum<I: Iterator<Item = &'a bf16>>(iter: I) -> Self { |
| bf16::from_f32(iter.map(|f| f.to_f32()).sum()) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| struct Visitor; |
| |
| #[cfg(feature = "serde")] |
| impl<'de> Deserialize<'de> for bf16 { |
| fn deserialize<D>(deserializer: D) -> Result<bf16, D::Error> |
| where |
| D: serde::de::Deserializer<'de>, |
| { |
| deserializer.deserialize_newtype_struct("bf16", Visitor) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<'de> serde::de::Visitor<'de> for Visitor { |
| type Value = bf16; |
| |
| fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { |
| write!(formatter, "tuple struct bf16") |
| } |
| |
| fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
| where |
| D: serde::Deserializer<'de>, |
| { |
| Ok(bf16(<u16 as Deserialize>::deserialize(deserializer)?)) |
| } |
| |
| fn visit_str<E>(self, v: &str) -> Result<Self::Value, E> |
| where |
| E: serde::de::Error, |
| { |
| v.parse().map_err(|_| { |
| serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string") |
| }) |
| } |
| |
| fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E> |
| where |
| E: serde::de::Error, |
| { |
| Ok(bf16::from_f32(v)) |
| } |
| |
| fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E> |
| where |
| E: serde::de::Error, |
| { |
| Ok(bf16::from_f64(v)) |
| } |
| } |
| |
| #[allow( |
| clippy::cognitive_complexity, |
| clippy::float_cmp, |
| clippy::neg_cmp_op_on_partial_ord |
| )] |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| #[allow(unused_imports)] |
| use core::cmp::Ordering; |
| #[cfg(feature = "num-traits")] |
| use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; |
| use quickcheck_macros::quickcheck; |
| |
| #[cfg(feature = "num-traits")] |
| #[test] |
| fn as_primitive() { |
| let two = bf16::from_f32(2.0); |
| assert_eq!(<i32 as AsPrimitive<bf16>>::as_(2), two); |
| assert_eq!(<bf16 as AsPrimitive<i32>>::as_(two), 2); |
| |
| assert_eq!(<f32 as AsPrimitive<bf16>>::as_(2.0), two); |
| assert_eq!(<bf16 as AsPrimitive<f32>>::as_(two), 2.0); |
| |
| assert_eq!(<f64 as AsPrimitive<bf16>>::as_(2.0), two); |
| assert_eq!(<bf16 as AsPrimitive<f64>>::as_(two), 2.0); |
| } |
| |
| #[cfg(feature = "num-traits")] |
| #[test] |
| fn to_primitive() { |
| let two = bf16::from_f32(2.0); |
| assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); |
| assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); |
| assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); |
| } |
| |
| #[cfg(feature = "num-traits")] |
| #[test] |
| fn from_primitive() { |
| let two = bf16::from_f32(2.0); |
| assert_eq!(<bf16 as FromPrimitive>::from_i32(2).unwrap(), two); |
| assert_eq!(<bf16 as FromPrimitive>::from_f32(2.0).unwrap(), two); |
| assert_eq!(<bf16 as FromPrimitive>::from_f64(2.0).unwrap(), two); |
| } |
| |
| #[test] |
| fn test_bf16_consts_from_f32() { |
| let one = bf16::from_f32(1.0); |
| let zero = bf16::from_f32(0.0); |
| let neg_zero = bf16::from_f32(-0.0); |
| let neg_one = bf16::from_f32(-1.0); |
| let inf = bf16::from_f32(core::f32::INFINITY); |
| let neg_inf = bf16::from_f32(core::f32::NEG_INFINITY); |
| let nan = bf16::from_f32(core::f32::NAN); |
| |
| assert_eq!(bf16::ONE, one); |
| assert_eq!(bf16::ZERO, zero); |
| assert!(zero.is_sign_positive()); |
| assert_eq!(bf16::NEG_ZERO, neg_zero); |
| assert!(neg_zero.is_sign_negative()); |
| assert_eq!(bf16::NEG_ONE, neg_one); |
| assert!(neg_one.is_sign_negative()); |
| assert_eq!(bf16::INFINITY, inf); |
| assert_eq!(bf16::NEG_INFINITY, neg_inf); |
| assert!(nan.is_nan()); |
| assert!(bf16::NAN.is_nan()); |
| |
| let e = bf16::from_f32(core::f32::consts::E); |
| let pi = bf16::from_f32(core::f32::consts::PI); |
| let frac_1_pi = bf16::from_f32(core::f32::consts::FRAC_1_PI); |
| let frac_1_sqrt_2 = bf16::from_f32(core::f32::consts::FRAC_1_SQRT_2); |
| let frac_2_pi = bf16::from_f32(core::f32::consts::FRAC_2_PI); |
| let frac_2_sqrt_pi = bf16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); |
| let frac_pi_2 = bf16::from_f32(core::f32::consts::FRAC_PI_2); |
| let frac_pi_3 = bf16::from_f32(core::f32::consts::FRAC_PI_3); |
| let frac_pi_4 = bf16::from_f32(core::f32::consts::FRAC_PI_4); |
| let frac_pi_6 = bf16::from_f32(core::f32::consts::FRAC_PI_6); |
| let frac_pi_8 = bf16::from_f32(core::f32::consts::FRAC_PI_8); |
| let ln_10 = bf16::from_f32(core::f32::consts::LN_10); |
| let ln_2 = bf16::from_f32(core::f32::consts::LN_2); |
| let log10_e = bf16::from_f32(core::f32::consts::LOG10_E); |
| // core::f32::consts::LOG10_2 requires rustc 1.43.0 |
| let log10_2 = bf16::from_f32(2f32.log10()); |
| let log2_e = bf16::from_f32(core::f32::consts::LOG2_E); |
| // core::f32::consts::LOG2_10 requires rustc 1.43.0 |
| let log2_10 = bf16::from_f32(10f32.log2()); |
| let sqrt_2 = bf16::from_f32(core::f32::consts::SQRT_2); |
| |
| assert_eq!(bf16::E, e); |
| assert_eq!(bf16::PI, pi); |
| assert_eq!(bf16::FRAC_1_PI, frac_1_pi); |
| assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
| assert_eq!(bf16::FRAC_2_PI, frac_2_pi); |
| assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
| assert_eq!(bf16::FRAC_PI_2, frac_pi_2); |
| assert_eq!(bf16::FRAC_PI_3, frac_pi_3); |
| assert_eq!(bf16::FRAC_PI_4, frac_pi_4); |
| assert_eq!(bf16::FRAC_PI_6, frac_pi_6); |
| assert_eq!(bf16::FRAC_PI_8, frac_pi_8); |
| assert_eq!(bf16::LN_10, ln_10); |
| assert_eq!(bf16::LN_2, ln_2); |
| assert_eq!(bf16::LOG10_E, log10_e); |
| assert_eq!(bf16::LOG10_2, log10_2); |
| assert_eq!(bf16::LOG2_E, log2_e); |
| assert_eq!(bf16::LOG2_10, log2_10); |
| assert_eq!(bf16::SQRT_2, sqrt_2); |
| } |
| |
| #[test] |
| fn test_bf16_consts_from_f64() { |
| let one = bf16::from_f64(1.0); |
| let zero = bf16::from_f64(0.0); |
| let neg_zero = bf16::from_f64(-0.0); |
| let inf = bf16::from_f64(core::f64::INFINITY); |
| let neg_inf = bf16::from_f64(core::f64::NEG_INFINITY); |
| let nan = bf16::from_f64(core::f64::NAN); |
| |
| assert_eq!(bf16::ONE, one); |
| assert_eq!(bf16::ZERO, zero); |
| assert_eq!(bf16::NEG_ZERO, neg_zero); |
| assert_eq!(bf16::INFINITY, inf); |
| assert_eq!(bf16::NEG_INFINITY, neg_inf); |
| assert!(nan.is_nan()); |
| assert!(bf16::NAN.is_nan()); |
| |
| let e = bf16::from_f64(core::f64::consts::E); |
| let pi = bf16::from_f64(core::f64::consts::PI); |
| let frac_1_pi = bf16::from_f64(core::f64::consts::FRAC_1_PI); |
| let frac_1_sqrt_2 = bf16::from_f64(core::f64::consts::FRAC_1_SQRT_2); |
| let frac_2_pi = bf16::from_f64(core::f64::consts::FRAC_2_PI); |
| let frac_2_sqrt_pi = bf16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); |
| let frac_pi_2 = bf16::from_f64(core::f64::consts::FRAC_PI_2); |
| let frac_pi_3 = bf16::from_f64(core::f64::consts::FRAC_PI_3); |
| let frac_pi_4 = bf16::from_f64(core::f64::consts::FRAC_PI_4); |
| let frac_pi_6 = bf16::from_f64(core::f64::consts::FRAC_PI_6); |
| let frac_pi_8 = bf16::from_f64(core::f64::consts::FRAC_PI_8); |
| let ln_10 = bf16::from_f64(core::f64::consts::LN_10); |
| let ln_2 = bf16::from_f64(core::f64::consts::LN_2); |
| let log10_e = bf16::from_f64(core::f64::consts::LOG10_E); |
| // core::f64::consts::LOG10_2 requires rustc 1.43.0 |
| let log10_2 = bf16::from_f64(2f64.log10()); |
| let log2_e = bf16::from_f64(core::f64::consts::LOG2_E); |
| // core::f64::consts::LOG2_10 requires rustc 1.43.0 |
| let log2_10 = bf16::from_f64(10f64.log2()); |
| let sqrt_2 = bf16::from_f64(core::f64::consts::SQRT_2); |
| |
| assert_eq!(bf16::E, e); |
| assert_eq!(bf16::PI, pi); |
| assert_eq!(bf16::FRAC_1_PI, frac_1_pi); |
| assert_eq!(bf16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
| assert_eq!(bf16::FRAC_2_PI, frac_2_pi); |
| assert_eq!(bf16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
| assert_eq!(bf16::FRAC_PI_2, frac_pi_2); |
| assert_eq!(bf16::FRAC_PI_3, frac_pi_3); |
| assert_eq!(bf16::FRAC_PI_4, frac_pi_4); |
| assert_eq!(bf16::FRAC_PI_6, frac_pi_6); |
| assert_eq!(bf16::FRAC_PI_8, frac_pi_8); |
| assert_eq!(bf16::LN_10, ln_10); |
| assert_eq!(bf16::LN_2, ln_2); |
| assert_eq!(bf16::LOG10_E, log10_e); |
| assert_eq!(bf16::LOG10_2, log10_2); |
| assert_eq!(bf16::LOG2_E, log2_e); |
| assert_eq!(bf16::LOG2_10, log2_10); |
| assert_eq!(bf16::SQRT_2, sqrt_2); |
| } |
| |
| #[test] |
| fn test_nan_conversion_to_smaller() { |
| let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); |
| let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); |
| let nan32 = f32::from_bits(0x7F80_0001u32); |
| let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
| let nan32_from_64 = nan64 as f32; |
| let neg_nan32_from_64 = neg_nan64 as f32; |
| let nan16_from_64 = bf16::from_f64(nan64); |
| let neg_nan16_from_64 = bf16::from_f64(neg_nan64); |
| let nan16_from_32 = bf16::from_f32(nan32); |
| let neg_nan16_from_32 = bf16::from_f32(neg_nan32); |
| |
| assert!(nan64.is_nan() && nan64.is_sign_positive()); |
| assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); |
| assert!(nan32.is_nan() && nan32.is_sign_positive()); |
| assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
| |
| // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103 |
| assert!(neg_nan32_from_64.is_nan()); |
| assert!(nan32_from_64.is_nan()); |
| assert!(nan16_from_64.is_nan()); |
| assert!(neg_nan16_from_64.is_nan()); |
| assert!(nan16_from_32.is_nan()); |
| assert!(neg_nan16_from_32.is_nan()); |
| } |
| |
| #[test] |
| fn test_nan_conversion_to_larger() { |
| let nan16 = bf16::from_bits(0x7F81u16); |
| let neg_nan16 = bf16::from_bits(0xFF81u16); |
| let nan32 = f32::from_bits(0x7F80_0001u32); |
| let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
| let nan32_from_16 = f32::from(nan16); |
| let neg_nan32_from_16 = f32::from(neg_nan16); |
| let nan64_from_16 = f64::from(nan16); |
| let neg_nan64_from_16 = f64::from(neg_nan16); |
| let nan64_from_32 = f64::from(nan32); |
| let neg_nan64_from_32 = f64::from(neg_nan32); |
| |
| assert!(nan16.is_nan() && nan16.is_sign_positive()); |
| assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); |
| assert!(nan32.is_nan() && nan32.is_sign_positive()); |
| assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
| |
| // // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103 |
| assert!(nan32_from_16.is_nan()); |
| assert!(neg_nan32_from_16.is_nan()); |
| assert!(nan64_from_16.is_nan()); |
| assert!(neg_nan64_from_16.is_nan()); |
| assert!(nan64_from_32.is_nan()); |
| assert!(neg_nan64_from_32.is_nan()); |
| } |
| |
| #[test] |
| fn test_bf16_to_f32() { |
| let f = bf16::from_f32(7.0); |
| assert_eq!(f.to_f32(), 7.0f32); |
| |
| // 7.1 is NOT exactly representable in 16-bit, it's rounded |
| let f = bf16::from_f32(7.1); |
| let diff = (f.to_f32() - 7.1f32).abs(); |
| // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
| assert!(diff <= 4.0 * bf16::EPSILON.to_f32()); |
| |
| let tiny32 = f32::from_bits(0x0001_0000u32); |
| assert_eq!(bf16::from_bits(0x0001).to_f32(), tiny32); |
| assert_eq!(bf16::from_bits(0x0005).to_f32(), 5.0 * tiny32); |
| |
| assert_eq!(bf16::from_bits(0x0001), bf16::from_f32(tiny32)); |
| assert_eq!(bf16::from_bits(0x0005), bf16::from_f32(5.0 * tiny32)); |
| } |
| |
| #[test] |
| fn test_bf16_to_f64() { |
| let f = bf16::from_f64(7.0); |
| assert_eq!(f.to_f64(), 7.0f64); |
| |
| // 7.1 is NOT exactly representable in 16-bit, it's rounded |
| let f = bf16::from_f64(7.1); |
| let diff = (f.to_f64() - 7.1f64).abs(); |
| // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
| assert!(diff <= 4.0 * bf16::EPSILON.to_f64()); |
| |
| let tiny64 = 2.0f64.powi(-133); |
| assert_eq!(bf16::from_bits(0x0001).to_f64(), tiny64); |
| assert_eq!(bf16::from_bits(0x0005).to_f64(), 5.0 * tiny64); |
| |
| assert_eq!(bf16::from_bits(0x0001), bf16::from_f64(tiny64)); |
| assert_eq!(bf16::from_bits(0x0005), bf16::from_f64(5.0 * tiny64)); |
| } |
| |
| #[test] |
| fn test_comparisons() { |
| let zero = bf16::from_f64(0.0); |
| let one = bf16::from_f64(1.0); |
| let neg_zero = bf16::from_f64(-0.0); |
| let neg_one = bf16::from_f64(-1.0); |
| |
| assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); |
| assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); |
| assert!(zero == neg_zero); |
| assert!(neg_zero == zero); |
| assert!(!(zero != neg_zero)); |
| assert!(!(neg_zero != zero)); |
| assert!(!(zero < neg_zero)); |
| assert!(!(neg_zero < zero)); |
| assert!(zero <= neg_zero); |
| assert!(neg_zero <= zero); |
| assert!(!(zero > neg_zero)); |
| assert!(!(neg_zero > zero)); |
| assert!(zero >= neg_zero); |
| assert!(neg_zero >= zero); |
| |
| assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); |
| assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); |
| assert!(!(one == neg_zero)); |
| assert!(!(neg_zero == one)); |
| assert!(one != neg_zero); |
| assert!(neg_zero != one); |
| assert!(!(one < neg_zero)); |
| assert!(neg_zero < one); |
| assert!(!(one <= neg_zero)); |
| assert!(neg_zero <= one); |
| assert!(one > neg_zero); |
| assert!(!(neg_zero > one)); |
| assert!(one >= neg_zero); |
| assert!(!(neg_zero >= one)); |
| |
| assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); |
| assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); |
| assert!(!(one == neg_one)); |
| assert!(!(neg_one == one)); |
| assert!(one != neg_one); |
| assert!(neg_one != one); |
| assert!(!(one < neg_one)); |
| assert!(neg_one < one); |
| assert!(!(one <= neg_one)); |
| assert!(neg_one <= one); |
| assert!(one > neg_one); |
| assert!(!(neg_one > one)); |
| assert!(one >= neg_one); |
| assert!(!(neg_one >= one)); |
| } |
| |
| #[test] |
| #[allow(clippy::erasing_op, clippy::identity_op)] |
| fn round_to_even_f32() { |
| // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 |
| let min_sub = bf16::from_bits(1); |
| let min_sub_f = (-133f32).exp2(); |
| assert_eq!(bf16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); |
| assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); |
| |
| // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) |
| // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) |
| // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 0.49).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 0.50).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 0.51).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| |
| // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) |
| // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) |
| // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 1.49).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 1.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 1.51).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| |
| // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) |
| // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) |
| // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 2.49).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 2.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| bf16::from_f32(min_sub_f * 2.51).to_bits(), |
| min_sub.to_bits() * 3 |
| ); |
| |
| assert_eq!( |
| bf16::from_f32(250.49f32).to_bits(), |
| bf16::from_f32(250.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(250.50f32).to_bits(), |
| bf16::from_f32(250.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(250.51f32).to_bits(), |
| bf16::from_f32(251.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(251.49f32).to_bits(), |
| bf16::from_f32(251.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(251.50f32).to_bits(), |
| bf16::from_f32(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(251.51f32).to_bits(), |
| bf16::from_f32(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(252.49f32).to_bits(), |
| bf16::from_f32(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(252.50f32).to_bits(), |
| bf16::from_f32(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f32(252.51f32).to_bits(), |
| bf16::from_f32(253.0).to_bits() |
| ); |
| } |
| |
| #[test] |
| #[allow(clippy::erasing_op, clippy::identity_op)] |
| fn round_to_even_f64() { |
| // smallest positive subnormal = 0b0.0000_001 * 2^-126 = 2^-133 |
| let min_sub = bf16::from_bits(1); |
| let min_sub_f = (-133f64).exp2(); |
| assert_eq!(bf16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); |
| assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); |
| |
| // 0.0000000_011111 rounded to 0.0000000 (< tie, no rounding) |
| // 0.0000000_100000 rounded to 0.0000000 (tie and even, remains at even) |
| // 0.0000000_100001 rounded to 0.0000001 (> tie, rounds up) |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 0.49).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 0.50).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 0.51).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| |
| // 0.0000001_011111 rounded to 0.0000001 (< tie, no rounding) |
| // 0.0000001_100000 rounded to 0.0000010 (tie and odd, rounds up to even) |
| // 0.0000001_100001 rounded to 0.0000010 (> tie, rounds up) |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 1.49).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 1.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 1.51).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| |
| // 0.0000010_011111 rounded to 0.0000010 (< tie, no rounding) |
| // 0.0000010_100000 rounded to 0.0000010 (tie and even, remains at even) |
| // 0.0000010_100001 rounded to 0.0000011 (> tie, rounds up) |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 2.49).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 2.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| bf16::from_f64(min_sub_f * 2.51).to_bits(), |
| min_sub.to_bits() * 3 |
| ); |
| |
| assert_eq!( |
| bf16::from_f64(250.49f64).to_bits(), |
| bf16::from_f64(250.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(250.50f64).to_bits(), |
| bf16::from_f64(250.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(250.51f64).to_bits(), |
| bf16::from_f64(251.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(251.49f64).to_bits(), |
| bf16::from_f64(251.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(251.50f64).to_bits(), |
| bf16::from_f64(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(251.51f64).to_bits(), |
| bf16::from_f64(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(252.49f64).to_bits(), |
| bf16::from_f64(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(252.50f64).to_bits(), |
| bf16::from_f64(252.0).to_bits() |
| ); |
| assert_eq!( |
| bf16::from_f64(252.51f64).to_bits(), |
| bf16::from_f64(253.0).to_bits() |
| ); |
| } |
| |
| #[cfg(feature = "std")] |
| #[test] |
| fn formatting() { |
| let f = bf16::from_f32(0.1152344); |
| |
| assert_eq!(format!("{:.3}", f), "0.115"); |
| assert_eq!(format!("{:.4}", f), "0.1152"); |
| assert_eq!(format!("{:+.4}", f), "+0.1152"); |
| assert_eq!(format!("{:>+10.4}", f), " +0.1152"); |
| |
| assert_eq!(format!("{:.3?}", f), "0.115"); |
| assert_eq!(format!("{:.4?}", f), "0.1152"); |
| assert_eq!(format!("{:+.4?}", f), "+0.1152"); |
| assert_eq!(format!("{:>+10.4?}", f), " +0.1152"); |
| } |
| |
| impl quickcheck::Arbitrary for bf16 { |
| fn arbitrary(g: &mut quickcheck::Gen) -> Self { |
| bf16(u16::arbitrary(g)) |
| } |
| } |
| |
| #[quickcheck] |
| fn qc_roundtrip_bf16_f32_is_identity(f: bf16) -> bool { |
| let roundtrip = bf16::from_f32(f.to_f32()); |
| if f.is_nan() { |
| roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
| } else { |
| f.0 == roundtrip.0 |
| } |
| } |
| |
| #[quickcheck] |
| fn qc_roundtrip_bf16_f64_is_identity(f: bf16) -> bool { |
| let roundtrip = bf16::from_f64(f.to_f64()); |
| if f.is_nan() { |
| roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
| } else { |
| f.0 == roundtrip.0 |
| } |
| } |
| } |