| #[cfg(all(feature = "serde", feature = "alloc"))] |
| #[allow(unused_imports)] |
| use alloc::string::ToString; |
| #[cfg(feature = "bytemuck")] |
| use bytemuck::{Pod, Zeroable}; |
| use core::{ |
| cmp::Ordering, |
| iter::{Product, Sum}, |
| num::FpCategory, |
| ops::{Add, AddAssign, Div, DivAssign, Mul, MulAssign, Neg, Rem, RemAssign, Sub, SubAssign}, |
| }; |
| #[cfg(not(target_arch = "spirv"))] |
| use core::{ |
| fmt::{ |
| Binary, Debug, Display, Error, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex, |
| }, |
| num::ParseFloatError, |
| str::FromStr, |
| }; |
| #[cfg(feature = "serde")] |
| use serde::{Deserialize, Serialize}; |
| #[cfg(feature = "zerocopy")] |
| use zerocopy::{AsBytes, FromBytes}; |
| |
| pub(crate) mod arch; |
| |
| /// A 16-bit floating point type implementing the IEEE 754-2008 standard [`binary16`] a.k.a "half" |
| /// format. |
| /// |
| /// This 16-bit floating point type is intended for efficient storage where the full range and |
| /// precision of a larger floating point value is not required. |
| /// |
| /// [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format |
| #[allow(non_camel_case_types)] |
| #[derive(Clone, Copy, Default)] |
| #[repr(transparent)] |
| #[cfg_attr(feature = "serde", derive(Serialize))] |
| #[cfg_attr( |
| feature = "rkyv", |
| derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
| )] |
| #[cfg_attr(feature = "rkyv", archive(resolver = "F16Resolver"))] |
| #[cfg_attr(feature = "bytemuck", derive(Zeroable, Pod))] |
| #[cfg_attr(feature = "zerocopy", derive(AsBytes, FromBytes))] |
| #[cfg_attr(kani, derive(kani::Arbitrary))] |
| pub struct f16(u16); |
| |
| impl f16 { |
| /// Constructs a 16-bit floating point value from the raw bits. |
| #[inline] |
| #[must_use] |
| pub const fn from_bits(bits: u16) -> f16 { |
| f16(bits) |
| } |
| |
| /// Constructs a 16-bit floating point value from a 32-bit floating point value. |
| /// |
| /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result. |
| /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits |
| /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
| /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
| /// 16-bit value. |
| #[inline] |
| #[must_use] |
| pub fn from_f32(value: f32) -> f16 { |
| f16(arch::f32_to_f16(value)) |
| } |
| |
| /// Constructs a 16-bit floating point value from a 32-bit floating point value. |
| /// |
| /// This function is identical to [`from_f32`][Self::from_f32] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`from_f32`][Self::from_f32] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This operation is lossy. If the 32-bit value is to large to fit in 16-bits, ±∞ will result. |
| /// NaN values are preserved. 32-bit subnormal values are too tiny to be represented in 16-bits |
| /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
| /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
| /// 16-bit value. |
| #[inline] |
| #[must_use] |
| pub const fn from_f32_const(value: f32) -> f16 { |
| f16(arch::f32_to_f16_fallback(value)) |
| } |
| |
| /// Constructs a 16-bit floating point value from a 64-bit floating point value. |
| /// |
| /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result. |
| /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits |
| /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
| /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
| /// 16-bit value. |
| #[inline] |
| #[must_use] |
| pub fn from_f64(value: f64) -> f16 { |
| f16(arch::f64_to_f16(value)) |
| } |
| |
| /// Constructs a 16-bit floating point value from a 64-bit floating point value. |
| /// |
| /// This function is identical to [`from_f64`][Self::from_f64] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`from_f64`][Self::from_f64] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This operation is lossy. If the 64-bit value is to large to fit in 16-bits, ±∞ will result. |
| /// NaN values are preserved. 64-bit subnormal values are too tiny to be represented in 16-bits |
| /// and result in ±0. Exponents that underflow the minimum 16-bit exponent will result in 16-bit |
| /// subnormals or ±0. All other values are truncated and rounded to the nearest representable |
| /// 16-bit value. |
| #[inline] |
| #[must_use] |
| pub const fn from_f64_const(value: f64) -> f16 { |
| f16(arch::f64_to_f16_fallback(value)) |
| } |
| |
| /// Converts a [`f16`] into the underlying bit representation. |
| #[inline] |
| #[must_use] |
| pub const fn to_bits(self) -> u16 { |
| self.0 |
| } |
| |
| /// Returns the memory representation of the underlying bit representation as a byte array in |
| /// little-endian byte order. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let bytes = f16::from_f32(12.5).to_le_bytes(); |
| /// assert_eq!(bytes, [0x40, 0x4A]); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn to_le_bytes(self) -> [u8; 2] { |
| self.0.to_le_bytes() |
| } |
| |
| /// Returns the memory representation of the underlying bit representation as a byte array in |
| /// big-endian (network) byte order. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let bytes = f16::from_f32(12.5).to_be_bytes(); |
| /// assert_eq!(bytes, [0x4A, 0x40]); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn to_be_bytes(self) -> [u8; 2] { |
| self.0.to_be_bytes() |
| } |
| |
| /// Returns the memory representation of the underlying bit representation as a byte array in |
| /// native byte order. |
| /// |
| /// As the target platform's native endianness is used, portable code should use |
| /// [`to_be_bytes`][Self::to_be_bytes] or [`to_le_bytes`][Self::to_le_bytes], as appropriate, |
| /// instead. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let bytes = f16::from_f32(12.5).to_ne_bytes(); |
| /// assert_eq!(bytes, if cfg!(target_endian = "big") { |
| /// [0x4A, 0x40] |
| /// } else { |
| /// [0x40, 0x4A] |
| /// }); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn to_ne_bytes(self) -> [u8; 2] { |
| self.0.to_ne_bytes() |
| } |
| |
| /// Creates a floating point value from its representation as a byte array in little endian. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let value = f16::from_le_bytes([0x40, 0x4A]); |
| /// assert_eq!(value, f16::from_f32(12.5)); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_le_bytes(bytes: [u8; 2]) -> f16 { |
| f16::from_bits(u16::from_le_bytes(bytes)) |
| } |
| |
| /// Creates a floating point value from its representation as a byte array in big endian. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let value = f16::from_be_bytes([0x4A, 0x40]); |
| /// assert_eq!(value, f16::from_f32(12.5)); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_be_bytes(bytes: [u8; 2]) -> f16 { |
| f16::from_bits(u16::from_be_bytes(bytes)) |
| } |
| |
| /// Creates a floating point value from its representation as a byte array in native endian. |
| /// |
| /// As the target platform's native endianness is used, portable code likely wants to use |
| /// [`from_be_bytes`][Self::from_be_bytes] or [`from_le_bytes`][Self::from_le_bytes], as |
| /// appropriate instead. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// let value = f16::from_ne_bytes(if cfg!(target_endian = "big") { |
| /// [0x4A, 0x40] |
| /// } else { |
| /// [0x40, 0x4A] |
| /// }); |
| /// assert_eq!(value, f16::from_f32(12.5)); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn from_ne_bytes(bytes: [u8; 2]) -> f16 { |
| f16::from_bits(u16::from_ne_bytes(bytes)) |
| } |
| |
| /// Converts a [`f16`] value into a `f32` value. |
| /// |
| /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
| /// in 32-bit floating point. |
| #[inline] |
| #[must_use] |
| pub fn to_f32(self) -> f32 { |
| arch::f16_to_f32(self.0) |
| } |
| |
| /// Converts a [`f16`] value into a `f32` value. |
| /// |
| /// This function is identical to [`to_f32`][Self::to_f32] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`to_f32`][Self::to_f32] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
| /// in 32-bit floating point. |
| #[inline] |
| #[must_use] |
| pub const fn to_f32_const(self) -> f32 { |
| arch::f16_to_f32_fallback(self.0) |
| } |
| |
| /// Converts a [`f16`] value into a `f64` value. |
| /// |
| /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
| /// in 64-bit floating point. |
| #[inline] |
| #[must_use] |
| pub fn to_f64(self) -> f64 { |
| arch::f16_to_f64(self.0) |
| } |
| |
| /// Converts a [`f16`] value into a `f64` value. |
| /// |
| /// This function is identical to [`to_f64`][Self::to_f64] except it never uses hardware |
| /// intrinsics, which allows it to be `const`. [`to_f64`][Self::to_f64] should be preferred |
| /// in any non-`const` context. |
| /// |
| /// This conversion is lossless as all 16-bit floating point values can be represented exactly |
| /// in 64-bit floating point. |
| #[inline] |
| #[must_use] |
| pub const fn to_f64_const(self) -> f64 { |
| arch::f16_to_f64_fallback(self.0) |
| } |
| |
| /// Returns `true` if this value is `NaN` and `false` otherwise. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let nan = f16::NAN; |
| /// let f = f16::from_f32(7.0_f32); |
| /// |
| /// assert!(nan.is_nan()); |
| /// assert!(!f.is_nan()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_nan(self) -> bool { |
| self.0 & 0x7FFFu16 > 0x7C00u16 |
| } |
| |
| /// Returns `true` if this value is ±∞ and `false`. |
| /// otherwise. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let f = f16::from_f32(7.0f32); |
| /// let inf = f16::INFINITY; |
| /// let neg_inf = f16::NEG_INFINITY; |
| /// let nan = f16::NAN; |
| /// |
| /// assert!(!f.is_infinite()); |
| /// assert!(!nan.is_infinite()); |
| /// |
| /// assert!(inf.is_infinite()); |
| /// assert!(neg_inf.is_infinite()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_infinite(self) -> bool { |
| self.0 & 0x7FFFu16 == 0x7C00u16 |
| } |
| |
| /// Returns `true` if this number is neither infinite nor `NaN`. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let f = f16::from_f32(7.0f32); |
| /// let inf = f16::INFINITY; |
| /// let neg_inf = f16::NEG_INFINITY; |
| /// let nan = f16::NAN; |
| /// |
| /// assert!(f.is_finite()); |
| /// |
| /// assert!(!nan.is_finite()); |
| /// assert!(!inf.is_finite()); |
| /// assert!(!neg_inf.is_finite()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_finite(self) -> bool { |
| self.0 & 0x7C00u16 != 0x7C00u16 |
| } |
| |
| /// Returns `true` if the number is neither zero, infinite, subnormal, or `NaN`. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let min = f16::MIN_POSITIVE; |
| /// let max = f16::MAX; |
| /// let lower_than_min = f16::from_f32(1.0e-10_f32); |
| /// let zero = f16::from_f32(0.0_f32); |
| /// |
| /// assert!(min.is_normal()); |
| /// assert!(max.is_normal()); |
| /// |
| /// assert!(!zero.is_normal()); |
| /// assert!(!f16::NAN.is_normal()); |
| /// assert!(!f16::INFINITY.is_normal()); |
| /// // Values between `0` and `min` are Subnormal. |
| /// assert!(!lower_than_min.is_normal()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_normal(self) -> bool { |
| let exp = self.0 & 0x7C00u16; |
| exp != 0x7C00u16 && exp != 0 |
| } |
| |
| /// Returns the floating point category of the number. |
| /// |
| /// If only one property is going to be tested, it is generally faster to use the specific |
| /// predicate instead. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// use std::num::FpCategory; |
| /// # use half::prelude::*; |
| /// |
| /// let num = f16::from_f32(12.4_f32); |
| /// let inf = f16::INFINITY; |
| /// |
| /// assert_eq!(num.classify(), FpCategory::Normal); |
| /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| /// ``` |
| #[must_use] |
| pub const fn classify(self) -> FpCategory { |
| let exp = self.0 & 0x7C00u16; |
| let man = self.0 & 0x03FFu16; |
| match (exp, man) { |
| (0, 0) => FpCategory::Zero, |
| (0, _) => FpCategory::Subnormal, |
| (0x7C00u16, 0) => FpCategory::Infinite, |
| (0x7C00u16, _) => FpCategory::Nan, |
| _ => FpCategory::Normal, |
| } |
| } |
| |
| /// Returns a number that represents the sign of `self`. |
| /// |
| /// * `1.0` if the number is positive, `+0.0` or [`INFINITY`][f16::INFINITY] |
| /// * `-1.0` if the number is negative, `-0.0` or [`NEG_INFINITY`][f16::NEG_INFINITY] |
| /// * [`NAN`][f16::NAN] if the number is `NaN` |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let f = f16::from_f32(3.5_f32); |
| /// |
| /// assert_eq!(f.signum(), f16::from_f32(1.0)); |
| /// assert_eq!(f16::NEG_INFINITY.signum(), f16::from_f32(-1.0)); |
| /// |
| /// assert!(f16::NAN.signum().is_nan()); |
| /// ``` |
| #[must_use] |
| pub const fn signum(self) -> f16 { |
| if self.is_nan() { |
| self |
| } else if self.0 & 0x8000u16 != 0 { |
| Self::NEG_ONE |
| } else { |
| Self::ONE |
| } |
| } |
| |
| /// Returns `true` if and only if `self` has a positive sign, including `+0.0`, `NaNs` with a |
| /// positive sign bit and +∞. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let nan = f16::NAN; |
| /// let f = f16::from_f32(7.0_f32); |
| /// let g = f16::from_f32(-7.0_f32); |
| /// |
| /// assert!(f.is_sign_positive()); |
| /// assert!(!g.is_sign_positive()); |
| /// // `NaN` can be either positive or negative |
| /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_sign_positive(self) -> bool { |
| self.0 & 0x8000u16 == 0 |
| } |
| |
| /// Returns `true` if and only if `self` has a negative sign, including `-0.0`, `NaNs` with a |
| /// negative sign bit and −∞. |
| /// |
| /// # Examples |
| /// |
| /// ```rust |
| /// # use half::prelude::*; |
| /// |
| /// let nan = f16::NAN; |
| /// let f = f16::from_f32(7.0f32); |
| /// let g = f16::from_f32(-7.0f32); |
| /// |
| /// assert!(!f.is_sign_negative()); |
| /// assert!(g.is_sign_negative()); |
| /// // `NaN` can be either positive or negative |
| /// assert!(nan.is_sign_positive() != nan.is_sign_negative()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn is_sign_negative(self) -> bool { |
| self.0 & 0x8000u16 != 0 |
| } |
| |
| /// Returns a number composed of the magnitude of `self` and the sign of `sign`. |
| /// |
| /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`. |
| /// If `self` is NaN, then NaN with the sign of `sign` is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// let f = f16::from_f32(3.5); |
| /// |
| /// assert_eq!(f.copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
| /// assert_eq!(f.copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
| /// assert_eq!((-f).copysign(f16::from_f32(0.42)), f16::from_f32(3.5)); |
| /// assert_eq!((-f).copysign(f16::from_f32(-0.42)), f16::from_f32(-3.5)); |
| /// |
| /// assert!(f16::NAN.copysign(f16::from_f32(1.0)).is_nan()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub const fn copysign(self, sign: f16) -> f16 { |
| f16((sign.0 & 0x8000u16) | (self.0 & 0x7FFFu16)) |
| } |
| |
| /// Returns the maximum of the two numbers. |
| /// |
| /// If one of the arguments is NaN, then the other argument is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// let x = f16::from_f32(1.0); |
| /// let y = f16::from_f32(2.0); |
| /// |
| /// assert_eq!(x.max(y), y); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub fn max(self, other: f16) -> f16 { |
| if other > self && !other.is_nan() { |
| other |
| } else { |
| self |
| } |
| } |
| |
| /// Returns the minimum of the two numbers. |
| /// |
| /// If one of the arguments is NaN, then the other argument is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// let x = f16::from_f32(1.0); |
| /// let y = f16::from_f32(2.0); |
| /// |
| /// assert_eq!(x.min(y), x); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub fn min(self, other: f16) -> f16 { |
| if other < self && !other.is_nan() { |
| other |
| } else { |
| self |
| } |
| } |
| |
| /// Restrict a value to a certain interval unless it is NaN. |
| /// |
| /// Returns `max` if `self` is greater than `max`, and `min` if `self` is less than `min`. |
| /// Otherwise this returns `self`. |
| /// |
| /// Note that this function returns NaN if the initial value was NaN as well. |
| /// |
| /// # Panics |
| /// Panics if `min > max`, `min` is NaN, or `max` is NaN. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use half::prelude::*; |
| /// assert!(f16::from_f32(-3.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(-2.0)); |
| /// assert!(f16::from_f32(0.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(0.0)); |
| /// assert!(f16::from_f32(2.0).clamp(f16::from_f32(-2.0), f16::from_f32(1.0)) == f16::from_f32(1.0)); |
| /// assert!(f16::NAN.clamp(f16::from_f32(-2.0), f16::from_f32(1.0)).is_nan()); |
| /// ``` |
| #[inline] |
| #[must_use] |
| pub fn clamp(self, min: f16, max: f16) -> f16 { |
| assert!(min <= max); |
| let mut x = self; |
| if x < min { |
| x = min; |
| } |
| if x > max { |
| x = max; |
| } |
| x |
| } |
| |
| /// Returns the ordering between `self` and `other`. |
| /// |
| /// Unlike the standard partial comparison between floating point numbers, |
| /// this comparison always produces an ordering in accordance to |
| /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| /// floating point standard. The values are ordered in the following sequence: |
| /// |
| /// - negative quiet NaN |
| /// - negative signaling NaN |
| /// - negative infinity |
| /// - negative numbers |
| /// - negative subnormal numbers |
| /// - negative zero |
| /// - positive zero |
| /// - positive subnormal numbers |
| /// - positive numbers |
| /// - positive infinity |
| /// - positive signaling NaN |
| /// - positive quiet NaN. |
| /// |
| /// The ordering established by this function does not always agree with the |
| /// [`PartialOrd`] and [`PartialEq`] implementations of `f16`. For example, |
| /// they consider negative and positive zero equal, while `total_cmp` |
| /// doesn't. |
| /// |
| /// The interpretation of the signaling NaN bit follows the definition in |
| /// the IEEE 754 standard, which may not match the interpretation by some of |
| /// the older, non-conformant (e.g. MIPS) hardware implementations. |
| /// |
| /// # Examples |
| /// ``` |
| /// # use half::f16; |
| /// let mut v: Vec<f16> = vec![]; |
| /// v.push(f16::ONE); |
| /// v.push(f16::INFINITY); |
| /// v.push(f16::NEG_INFINITY); |
| /// v.push(f16::NAN); |
| /// v.push(f16::MAX_SUBNORMAL); |
| /// v.push(-f16::MAX_SUBNORMAL); |
| /// v.push(f16::ZERO); |
| /// v.push(f16::NEG_ZERO); |
| /// v.push(f16::NEG_ONE); |
| /// v.push(f16::MIN_POSITIVE); |
| /// |
| /// v.sort_by(|a, b| a.total_cmp(&b)); |
| /// |
| /// assert!(v |
| /// .into_iter() |
| /// .zip( |
| /// [ |
| /// f16::NEG_INFINITY, |
| /// f16::NEG_ONE, |
| /// -f16::MAX_SUBNORMAL, |
| /// f16::NEG_ZERO, |
| /// f16::ZERO, |
| /// f16::MAX_SUBNORMAL, |
| /// f16::MIN_POSITIVE, |
| /// f16::ONE, |
| /// f16::INFINITY, |
| /// f16::NAN |
| /// ] |
| /// .iter() |
| /// ) |
| /// .all(|(a, b)| a.to_bits() == b.to_bits())); |
| /// ``` |
| // Implementation based on: https://doc.rust-lang.org/std/primitive.f32.html#method.total_cmp |
| #[inline] |
| #[must_use] |
| pub fn total_cmp(&self, other: &Self) -> Ordering { |
| let mut left = self.to_bits() as i16; |
| let mut right = other.to_bits() as i16; |
| left ^= (((left >> 15) as u16) >> 1) as i16; |
| right ^= (((right >> 15) as u16) >> 1) as i16; |
| left.cmp(&right) |
| } |
| |
| /// Alternate serialize adapter for serializing as a float. |
| /// |
| /// By default, [`f16`] serializes as a newtype of [`u16`]. This is an alternate serialize |
| /// implementation that serializes as an [`f32`] value. It is designed for use with |
| /// `serialize_with` serde attributes. Deserialization from `f32` values is already supported by |
| /// the default deserialize implementation. |
| /// |
| /// # Examples |
| /// |
| /// A demonstration on how to use this adapater: |
| /// |
| /// ``` |
| /// use serde::{Serialize, Deserialize}; |
| /// use half::f16; |
| /// |
| /// #[derive(Serialize, Deserialize)] |
| /// struct MyStruct { |
| /// #[serde(serialize_with = "f16::serialize_as_f32")] |
| /// value: f16 // Will be serialized as f32 instead of u16 |
| /// } |
| /// ``` |
| #[cfg(feature = "serde")] |
| pub fn serialize_as_f32<S: serde::Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> { |
| serializer.serialize_f32(self.to_f32()) |
| } |
| |
| /// Alternate serialize adapter for serializing as a string. |
| /// |
| /// By default, [`f16`] serializes as a newtype of [`u16`]. This is an alternate serialize |
| /// implementation that serializes as a string value. It is designed for use with |
| /// `serialize_with` serde attributes. Deserialization from string values is already supported |
| /// by the default deserialize implementation. |
| /// |
| /// # Examples |
| /// |
| /// A demonstration on how to use this adapater: |
| /// |
| /// ``` |
| /// use serde::{Serialize, Deserialize}; |
| /// use half::f16; |
| /// |
| /// #[derive(Serialize, Deserialize)] |
| /// struct MyStruct { |
| /// #[serde(serialize_with = "f16::serialize_as_string")] |
| /// value: f16 // Will be serialized as a string instead of u16 |
| /// } |
| /// ``` |
| #[cfg(all(feature = "serde", feature = "alloc"))] |
| pub fn serialize_as_string<S: serde::Serializer>( |
| &self, |
| serializer: S, |
| ) -> Result<S::Ok, S::Error> { |
| serializer.serialize_str(&self.to_string()) |
| } |
| |
| /// Approximate number of [`f16`] significant digits in base 10 |
| pub const DIGITS: u32 = 3; |
| /// [`f16`] |
| /// [machine epsilon](https://en.wikipedia.org/wiki/Machine_epsilon) value |
| /// |
| /// This is the difference between 1.0 and the next largest representable number. |
| pub const EPSILON: f16 = f16(0x1400u16); |
| /// [`f16`] positive Infinity (+∞) |
| pub const INFINITY: f16 = f16(0x7C00u16); |
| /// Number of [`f16`] significant digits in base 2 |
| pub const MANTISSA_DIGITS: u32 = 11; |
| /// Largest finite [`f16`] value |
| pub const MAX: f16 = f16(0x7BFF); |
| /// Maximum possible [`f16`] power of 10 exponent |
| pub const MAX_10_EXP: i32 = 4; |
| /// Maximum possible [`f16`] power of 2 exponent |
| pub const MAX_EXP: i32 = 16; |
| /// Smallest finite [`f16`] value |
| pub const MIN: f16 = f16(0xFBFF); |
| /// Minimum possible normal [`f16`] power of 10 exponent |
| pub const MIN_10_EXP: i32 = -4; |
| /// One greater than the minimum possible normal [`f16`] power of 2 exponent |
| pub const MIN_EXP: i32 = -13; |
| /// Smallest positive normal [`f16`] value |
| pub const MIN_POSITIVE: f16 = f16(0x0400u16); |
| /// [`f16`] Not a Number (NaN) |
| pub const NAN: f16 = f16(0x7E00u16); |
| /// [`f16`] negative infinity (-∞) |
| pub const NEG_INFINITY: f16 = f16(0xFC00u16); |
| /// The radix or base of the internal representation of [`f16`] |
| pub const RADIX: u32 = 2; |
| |
| /// Minimum positive subnormal [`f16`] value |
| pub const MIN_POSITIVE_SUBNORMAL: f16 = f16(0x0001u16); |
| /// Maximum subnormal [`f16`] value |
| pub const MAX_SUBNORMAL: f16 = f16(0x03FFu16); |
| |
| /// [`f16`] 1 |
| pub const ONE: f16 = f16(0x3C00u16); |
| /// [`f16`] 0 |
| pub const ZERO: f16 = f16(0x0000u16); |
| /// [`f16`] -0 |
| pub const NEG_ZERO: f16 = f16(0x8000u16); |
| /// [`f16`] -1 |
| pub const NEG_ONE: f16 = f16(0xBC00u16); |
| |
| /// [`f16`] Euler's number (ℯ) |
| pub const E: f16 = f16(0x4170u16); |
| /// [`f16`] Archimedes' constant (π) |
| pub const PI: f16 = f16(0x4248u16); |
| /// [`f16`] 1/π |
| pub const FRAC_1_PI: f16 = f16(0x3518u16); |
| /// [`f16`] 1/√2 |
| pub const FRAC_1_SQRT_2: f16 = f16(0x39A8u16); |
| /// [`f16`] 2/π |
| pub const FRAC_2_PI: f16 = f16(0x3918u16); |
| /// [`f16`] 2/√π |
| pub const FRAC_2_SQRT_PI: f16 = f16(0x3C83u16); |
| /// [`f16`] π/2 |
| pub const FRAC_PI_2: f16 = f16(0x3E48u16); |
| /// [`f16`] π/3 |
| pub const FRAC_PI_3: f16 = f16(0x3C30u16); |
| /// [`f16`] π/4 |
| pub const FRAC_PI_4: f16 = f16(0x3A48u16); |
| /// [`f16`] π/6 |
| pub const FRAC_PI_6: f16 = f16(0x3830u16); |
| /// [`f16`] π/8 |
| pub const FRAC_PI_8: f16 = f16(0x3648u16); |
| /// [`f16`] 𝗅𝗇 10 |
| pub const LN_10: f16 = f16(0x409Bu16); |
| /// [`f16`] 𝗅𝗇 2 |
| pub const LN_2: f16 = f16(0x398Cu16); |
| /// [`f16`] 𝗅𝗈𝗀₁₀ℯ |
| pub const LOG10_E: f16 = f16(0x36F3u16); |
| /// [`f16`] 𝗅𝗈𝗀₁₀2 |
| pub const LOG10_2: f16 = f16(0x34D1u16); |
| /// [`f16`] 𝗅𝗈𝗀₂ℯ |
| pub const LOG2_E: f16 = f16(0x3DC5u16); |
| /// [`f16`] 𝗅𝗈𝗀₂10 |
| pub const LOG2_10: f16 = f16(0x42A5u16); |
| /// [`f16`] √2 |
| pub const SQRT_2: f16 = f16(0x3DA8u16); |
| } |
| |
| impl From<f16> for f32 { |
| #[inline] |
| fn from(x: f16) -> f32 { |
| x.to_f32() |
| } |
| } |
| |
| impl From<f16> for f64 { |
| #[inline] |
| fn from(x: f16) -> f64 { |
| x.to_f64() |
| } |
| } |
| |
| impl From<i8> for f16 { |
| #[inline] |
| fn from(x: i8) -> f16 { |
| // Convert to f32, then to f16 |
| f16::from_f32(f32::from(x)) |
| } |
| } |
| |
| impl From<u8> for f16 { |
| #[inline] |
| fn from(x: u8) -> f16 { |
| // Convert to f32, then to f16 |
| f16::from_f32(f32::from(x)) |
| } |
| } |
| |
| impl PartialEq for f16 { |
| fn eq(&self, other: &f16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| (self.0 == other.0) || ((self.0 | other.0) & 0x7FFFu16 == 0) |
| } |
| } |
| } |
| |
| impl PartialOrd for f16 { |
| fn partial_cmp(&self, other: &f16) -> Option<Ordering> { |
| if self.is_nan() || other.is_nan() { |
| None |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => Some(self.0.cmp(&other.0)), |
| (false, true) => { |
| if (self.0 | other.0) & 0x7FFFu16 == 0 { |
| Some(Ordering::Equal) |
| } else { |
| Some(Ordering::Greater) |
| } |
| } |
| (true, false) => { |
| if (self.0 | other.0) & 0x7FFFu16 == 0 { |
| Some(Ordering::Equal) |
| } else { |
| Some(Ordering::Less) |
| } |
| } |
| (true, true) => Some(other.0.cmp(&self.0)), |
| } |
| } |
| } |
| |
| fn lt(&self, other: &f16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 < other.0, |
| (false, true) => false, |
| (true, false) => (self.0 | other.0) & 0x7FFFu16 != 0, |
| (true, true) => self.0 > other.0, |
| } |
| } |
| } |
| |
| fn le(&self, other: &f16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 <= other.0, |
| (false, true) => (self.0 | other.0) & 0x7FFFu16 == 0, |
| (true, false) => true, |
| (true, true) => self.0 >= other.0, |
| } |
| } |
| } |
| |
| fn gt(&self, other: &f16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 > other.0, |
| (false, true) => (self.0 | other.0) & 0x7FFFu16 != 0, |
| (true, false) => false, |
| (true, true) => self.0 < other.0, |
| } |
| } |
| } |
| |
| fn ge(&self, other: &f16) -> bool { |
| if self.is_nan() || other.is_nan() { |
| false |
| } else { |
| let neg = self.0 & 0x8000u16 != 0; |
| let other_neg = other.0 & 0x8000u16 != 0; |
| match (neg, other_neg) { |
| (false, false) => self.0 >= other.0, |
| (false, true) => true, |
| (true, false) => (self.0 | other.0) & 0x7FFFu16 == 0, |
| (true, true) => self.0 <= other.0, |
| } |
| } |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl FromStr for f16 { |
| type Err = ParseFloatError; |
| fn from_str(src: &str) -> Result<f16, ParseFloatError> { |
| f32::from_str(src).map(f16::from_f32) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Debug for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| Debug::fmt(&self.to_f32(), f) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Display for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| Display::fmt(&self.to_f32(), f) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl LowerExp for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:e}", self.to_f32()) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl UpperExp for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:E}", self.to_f32()) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Binary for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:b}", self.0) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl Octal for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:o}", self.0) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl LowerHex for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:x}", self.0) |
| } |
| } |
| |
| #[cfg(not(target_arch = "spirv"))] |
| impl UpperHex for f16 { |
| fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error> { |
| write!(f, "{:X}", self.0) |
| } |
| } |
| |
| impl Neg for f16 { |
| type Output = Self; |
| |
| #[inline] |
| fn neg(self) -> Self::Output { |
| Self(self.0 ^ 0x8000) |
| } |
| } |
| |
| impl Neg for &f16 { |
| type Output = <f16 as Neg>::Output; |
| |
| #[inline] |
| fn neg(self) -> Self::Output { |
| Neg::neg(*self) |
| } |
| } |
| |
| impl Add for f16 { |
| type Output = Self; |
| |
| #[inline] |
| fn add(self, rhs: Self) -> Self::Output { |
| f16(arch::add_f16(self.0, rhs.0)) |
| } |
| } |
| |
| impl Add<&f16> for f16 { |
| type Output = <f16 as Add<f16>>::Output; |
| |
| #[inline] |
| fn add(self, rhs: &f16) -> Self::Output { |
| self.add(*rhs) |
| } |
| } |
| |
| impl Add<&f16> for &f16 { |
| type Output = <f16 as Add<f16>>::Output; |
| |
| #[inline] |
| fn add(self, rhs: &f16) -> Self::Output { |
| (*self).add(*rhs) |
| } |
| } |
| |
| impl Add<f16> for &f16 { |
| type Output = <f16 as Add<f16>>::Output; |
| |
| #[inline] |
| fn add(self, rhs: f16) -> Self::Output { |
| (*self).add(rhs) |
| } |
| } |
| |
| impl AddAssign for f16 { |
| #[inline] |
| fn add_assign(&mut self, rhs: Self) { |
| *self = (*self).add(rhs); |
| } |
| } |
| |
| impl AddAssign<&f16> for f16 { |
| #[inline] |
| fn add_assign(&mut self, rhs: &f16) { |
| *self = (*self).add(rhs); |
| } |
| } |
| |
| impl Sub for f16 { |
| type Output = Self; |
| |
| #[inline] |
| fn sub(self, rhs: Self) -> Self::Output { |
| f16(arch::subtract_f16(self.0, rhs.0)) |
| } |
| } |
| |
| impl Sub<&f16> for f16 { |
| type Output = <f16 as Sub<f16>>::Output; |
| |
| #[inline] |
| fn sub(self, rhs: &f16) -> Self::Output { |
| self.sub(*rhs) |
| } |
| } |
| |
| impl Sub<&f16> for &f16 { |
| type Output = <f16 as Sub<f16>>::Output; |
| |
| #[inline] |
| fn sub(self, rhs: &f16) -> Self::Output { |
| (*self).sub(*rhs) |
| } |
| } |
| |
| impl Sub<f16> for &f16 { |
| type Output = <f16 as Sub<f16>>::Output; |
| |
| #[inline] |
| fn sub(self, rhs: f16) -> Self::Output { |
| (*self).sub(rhs) |
| } |
| } |
| |
| impl SubAssign for f16 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: Self) { |
| *self = (*self).sub(rhs); |
| } |
| } |
| |
| impl SubAssign<&f16> for f16 { |
| #[inline] |
| fn sub_assign(&mut self, rhs: &f16) { |
| *self = (*self).sub(rhs); |
| } |
| } |
| |
| impl Mul for f16 { |
| type Output = Self; |
| |
| #[inline] |
| fn mul(self, rhs: Self) -> Self::Output { |
| f16(arch::multiply_f16(self.0, rhs.0)) |
| } |
| } |
| |
| impl Mul<&f16> for f16 { |
| type Output = <f16 as Mul<f16>>::Output; |
| |
| #[inline] |
| fn mul(self, rhs: &f16) -> Self::Output { |
| self.mul(*rhs) |
| } |
| } |
| |
| impl Mul<&f16> for &f16 { |
| type Output = <f16 as Mul<f16>>::Output; |
| |
| #[inline] |
| fn mul(self, rhs: &f16) -> Self::Output { |
| (*self).mul(*rhs) |
| } |
| } |
| |
| impl Mul<f16> for &f16 { |
| type Output = <f16 as Mul<f16>>::Output; |
| |
| #[inline] |
| fn mul(self, rhs: f16) -> Self::Output { |
| (*self).mul(rhs) |
| } |
| } |
| |
| impl MulAssign for f16 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: Self) { |
| *self = (*self).mul(rhs); |
| } |
| } |
| |
| impl MulAssign<&f16> for f16 { |
| #[inline] |
| fn mul_assign(&mut self, rhs: &f16) { |
| *self = (*self).mul(rhs); |
| } |
| } |
| |
| impl Div for f16 { |
| type Output = Self; |
| |
| #[inline] |
| fn div(self, rhs: Self) -> Self::Output { |
| f16(arch::divide_f16(self.0, rhs.0)) |
| } |
| } |
| |
| impl Div<&f16> for f16 { |
| type Output = <f16 as Div<f16>>::Output; |
| |
| #[inline] |
| fn div(self, rhs: &f16) -> Self::Output { |
| self.div(*rhs) |
| } |
| } |
| |
| impl Div<&f16> for &f16 { |
| type Output = <f16 as Div<f16>>::Output; |
| |
| #[inline] |
| fn div(self, rhs: &f16) -> Self::Output { |
| (*self).div(*rhs) |
| } |
| } |
| |
| impl Div<f16> for &f16 { |
| type Output = <f16 as Div<f16>>::Output; |
| |
| #[inline] |
| fn div(self, rhs: f16) -> Self::Output { |
| (*self).div(rhs) |
| } |
| } |
| |
| impl DivAssign for f16 { |
| #[inline] |
| fn div_assign(&mut self, rhs: Self) { |
| *self = (*self).div(rhs); |
| } |
| } |
| |
| impl DivAssign<&f16> for f16 { |
| #[inline] |
| fn div_assign(&mut self, rhs: &f16) { |
| *self = (*self).div(rhs); |
| } |
| } |
| |
| impl Rem for f16 { |
| type Output = Self; |
| |
| #[inline] |
| fn rem(self, rhs: Self) -> Self::Output { |
| f16(arch::remainder_f16(self.0, rhs.0)) |
| } |
| } |
| |
| impl Rem<&f16> for f16 { |
| type Output = <f16 as Rem<f16>>::Output; |
| |
| #[inline] |
| fn rem(self, rhs: &f16) -> Self::Output { |
| self.rem(*rhs) |
| } |
| } |
| |
| impl Rem<&f16> for &f16 { |
| type Output = <f16 as Rem<f16>>::Output; |
| |
| #[inline] |
| fn rem(self, rhs: &f16) -> Self::Output { |
| (*self).rem(*rhs) |
| } |
| } |
| |
| impl Rem<f16> for &f16 { |
| type Output = <f16 as Rem<f16>>::Output; |
| |
| #[inline] |
| fn rem(self, rhs: f16) -> Self::Output { |
| (*self).rem(rhs) |
| } |
| } |
| |
| impl RemAssign for f16 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: Self) { |
| *self = (*self).rem(rhs); |
| } |
| } |
| |
| impl RemAssign<&f16> for f16 { |
| #[inline] |
| fn rem_assign(&mut self, rhs: &f16) { |
| *self = (*self).rem(rhs); |
| } |
| } |
| |
| impl Product for f16 { |
| #[inline] |
| fn product<I: Iterator<Item = Self>>(iter: I) -> Self { |
| f16(arch::product_f16(iter.map(|f| f.to_bits()))) |
| } |
| } |
| |
| impl<'a> Product<&'a f16> for f16 { |
| #[inline] |
| fn product<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
| f16(arch::product_f16(iter.map(|f| f.to_bits()))) |
| } |
| } |
| |
| impl Sum for f16 { |
| #[inline] |
| fn sum<I: Iterator<Item = Self>>(iter: I) -> Self { |
| f16(arch::sum_f16(iter.map(|f| f.to_bits()))) |
| } |
| } |
| |
| impl<'a> Sum<&'a f16> for f16 { |
| #[inline] |
| fn sum<I: Iterator<Item = &'a f16>>(iter: I) -> Self { |
| f16(arch::sum_f16(iter.map(|f| f.to_bits()))) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| struct Visitor; |
| |
| #[cfg(feature = "serde")] |
| impl<'de> Deserialize<'de> for f16 { |
| fn deserialize<D>(deserializer: D) -> Result<f16, D::Error> |
| where |
| D: serde::de::Deserializer<'de>, |
| { |
| deserializer.deserialize_newtype_struct("f16", Visitor) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<'de> serde::de::Visitor<'de> for Visitor { |
| type Value = f16; |
| |
| fn expecting(&self, formatter: &mut core::fmt::Formatter) -> core::fmt::Result { |
| write!(formatter, "tuple struct f16") |
| } |
| |
| fn visit_newtype_struct<D>(self, deserializer: D) -> Result<Self::Value, D::Error> |
| where |
| D: serde::Deserializer<'de>, |
| { |
| Ok(f16(<u16 as Deserialize>::deserialize(deserializer)?)) |
| } |
| |
| fn visit_str<E>(self, v: &str) -> Result<Self::Value, E> |
| where |
| E: serde::de::Error, |
| { |
| v.parse().map_err(|_| { |
| serde::de::Error::invalid_value(serde::de::Unexpected::Str(v), &"a float string") |
| }) |
| } |
| |
| fn visit_f32<E>(self, v: f32) -> Result<Self::Value, E> |
| where |
| E: serde::de::Error, |
| { |
| Ok(f16::from_f32(v)) |
| } |
| |
| fn visit_f64<E>(self, v: f64) -> Result<Self::Value, E> |
| where |
| E: serde::de::Error, |
| { |
| Ok(f16::from_f64(v)) |
| } |
| } |
| |
| #[allow( |
| clippy::cognitive_complexity, |
| clippy::float_cmp, |
| clippy::neg_cmp_op_on_partial_ord |
| )] |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| #[allow(unused_imports)] |
| use core::cmp::Ordering; |
| #[cfg(feature = "num-traits")] |
| use num_traits::{AsPrimitive, FromPrimitive, ToPrimitive}; |
| use quickcheck_macros::quickcheck; |
| |
| #[cfg(feature = "num-traits")] |
| #[test] |
| fn as_primitive() { |
| let two = f16::from_f32(2.0); |
| assert_eq!(<i32 as AsPrimitive<f16>>::as_(2), two); |
| assert_eq!(<f16 as AsPrimitive<i32>>::as_(two), 2); |
| |
| assert_eq!(<f32 as AsPrimitive<f16>>::as_(2.0), two); |
| assert_eq!(<f16 as AsPrimitive<f32>>::as_(two), 2.0); |
| |
| assert_eq!(<f64 as AsPrimitive<f16>>::as_(2.0), two); |
| assert_eq!(<f16 as AsPrimitive<f64>>::as_(two), 2.0); |
| } |
| |
| #[cfg(feature = "num-traits")] |
| #[test] |
| fn to_primitive() { |
| let two = f16::from_f32(2.0); |
| assert_eq!(ToPrimitive::to_i32(&two).unwrap(), 2i32); |
| assert_eq!(ToPrimitive::to_f32(&two).unwrap(), 2.0f32); |
| assert_eq!(ToPrimitive::to_f64(&two).unwrap(), 2.0f64); |
| } |
| |
| #[cfg(feature = "num-traits")] |
| #[test] |
| fn from_primitive() { |
| let two = f16::from_f32(2.0); |
| assert_eq!(<f16 as FromPrimitive>::from_i32(2).unwrap(), two); |
| assert_eq!(<f16 as FromPrimitive>::from_f32(2.0).unwrap(), two); |
| assert_eq!(<f16 as FromPrimitive>::from_f64(2.0).unwrap(), two); |
| } |
| |
| #[test] |
| fn test_f16_consts() { |
| // DIGITS |
| let digits = ((f16::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
| assert_eq!(f16::DIGITS, digits); |
| // sanity check to show test is good |
| let digits32 = ((core::f32::MANTISSA_DIGITS as f32 - 1.0) * 2f32.log10()).floor() as u32; |
| assert_eq!(core::f32::DIGITS, digits32); |
| |
| // EPSILON |
| let one = f16::from_f32(1.0); |
| let one_plus_epsilon = f16::from_bits(one.to_bits() + 1); |
| let epsilon = f16::from_f32(one_plus_epsilon.to_f32() - 1.0); |
| assert_eq!(f16::EPSILON, epsilon); |
| // sanity check to show test is good |
| let one_plus_epsilon32 = f32::from_bits(1.0f32.to_bits() + 1); |
| let epsilon32 = one_plus_epsilon32 - 1f32; |
| assert_eq!(core::f32::EPSILON, epsilon32); |
| |
| // MAX, MIN and MIN_POSITIVE |
| let max = f16::from_bits(f16::INFINITY.to_bits() - 1); |
| let min = f16::from_bits(f16::NEG_INFINITY.to_bits() - 1); |
| let min_pos = f16::from_f32(2f32.powi(f16::MIN_EXP - 1)); |
| assert_eq!(f16::MAX, max); |
| assert_eq!(f16::MIN, min); |
| assert_eq!(f16::MIN_POSITIVE, min_pos); |
| // sanity check to show test is good |
| let max32 = f32::from_bits(core::f32::INFINITY.to_bits() - 1); |
| let min32 = f32::from_bits(core::f32::NEG_INFINITY.to_bits() - 1); |
| let min_pos32 = 2f32.powi(core::f32::MIN_EXP - 1); |
| assert_eq!(core::f32::MAX, max32); |
| assert_eq!(core::f32::MIN, min32); |
| assert_eq!(core::f32::MIN_POSITIVE, min_pos32); |
| |
| // MIN_10_EXP and MAX_10_EXP |
| let ten_to_min = 10f32.powi(f16::MIN_10_EXP); |
| assert!(ten_to_min / 10.0 < f16::MIN_POSITIVE.to_f32()); |
| assert!(ten_to_min > f16::MIN_POSITIVE.to_f32()); |
| let ten_to_max = 10f32.powi(f16::MAX_10_EXP); |
| assert!(ten_to_max < f16::MAX.to_f32()); |
| assert!(ten_to_max * 10.0 > f16::MAX.to_f32()); |
| // sanity check to show test is good |
| let ten_to_min32 = 10f64.powi(core::f32::MIN_10_EXP); |
| assert!(ten_to_min32 / 10.0 < f64::from(core::f32::MIN_POSITIVE)); |
| assert!(ten_to_min32 > f64::from(core::f32::MIN_POSITIVE)); |
| let ten_to_max32 = 10f64.powi(core::f32::MAX_10_EXP); |
| assert!(ten_to_max32 < f64::from(core::f32::MAX)); |
| assert!(ten_to_max32 * 10.0 > f64::from(core::f32::MAX)); |
| } |
| |
| #[test] |
| fn test_f16_consts_from_f32() { |
| let one = f16::from_f32(1.0); |
| let zero = f16::from_f32(0.0); |
| let neg_zero = f16::from_f32(-0.0); |
| let neg_one = f16::from_f32(-1.0); |
| let inf = f16::from_f32(core::f32::INFINITY); |
| let neg_inf = f16::from_f32(core::f32::NEG_INFINITY); |
| let nan = f16::from_f32(core::f32::NAN); |
| |
| assert_eq!(f16::ONE, one); |
| assert_eq!(f16::ZERO, zero); |
| assert!(zero.is_sign_positive()); |
| assert_eq!(f16::NEG_ZERO, neg_zero); |
| assert!(neg_zero.is_sign_negative()); |
| assert_eq!(f16::NEG_ONE, neg_one); |
| assert!(neg_one.is_sign_negative()); |
| assert_eq!(f16::INFINITY, inf); |
| assert_eq!(f16::NEG_INFINITY, neg_inf); |
| assert!(nan.is_nan()); |
| assert!(f16::NAN.is_nan()); |
| |
| let e = f16::from_f32(core::f32::consts::E); |
| let pi = f16::from_f32(core::f32::consts::PI); |
| let frac_1_pi = f16::from_f32(core::f32::consts::FRAC_1_PI); |
| let frac_1_sqrt_2 = f16::from_f32(core::f32::consts::FRAC_1_SQRT_2); |
| let frac_2_pi = f16::from_f32(core::f32::consts::FRAC_2_PI); |
| let frac_2_sqrt_pi = f16::from_f32(core::f32::consts::FRAC_2_SQRT_PI); |
| let frac_pi_2 = f16::from_f32(core::f32::consts::FRAC_PI_2); |
| let frac_pi_3 = f16::from_f32(core::f32::consts::FRAC_PI_3); |
| let frac_pi_4 = f16::from_f32(core::f32::consts::FRAC_PI_4); |
| let frac_pi_6 = f16::from_f32(core::f32::consts::FRAC_PI_6); |
| let frac_pi_8 = f16::from_f32(core::f32::consts::FRAC_PI_8); |
| let ln_10 = f16::from_f32(core::f32::consts::LN_10); |
| let ln_2 = f16::from_f32(core::f32::consts::LN_2); |
| let log10_e = f16::from_f32(core::f32::consts::LOG10_E); |
| // core::f32::consts::LOG10_2 requires rustc 1.43.0 |
| let log10_2 = f16::from_f32(2f32.log10()); |
| let log2_e = f16::from_f32(core::f32::consts::LOG2_E); |
| // core::f32::consts::LOG2_10 requires rustc 1.43.0 |
| let log2_10 = f16::from_f32(10f32.log2()); |
| let sqrt_2 = f16::from_f32(core::f32::consts::SQRT_2); |
| |
| assert_eq!(f16::E, e); |
| assert_eq!(f16::PI, pi); |
| assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
| assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
| assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
| assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
| assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
| assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
| assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
| assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
| assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
| assert_eq!(f16::LN_10, ln_10); |
| assert_eq!(f16::LN_2, ln_2); |
| assert_eq!(f16::LOG10_E, log10_e); |
| assert_eq!(f16::LOG10_2, log10_2); |
| assert_eq!(f16::LOG2_E, log2_e); |
| assert_eq!(f16::LOG2_10, log2_10); |
| assert_eq!(f16::SQRT_2, sqrt_2); |
| } |
| |
| #[test] |
| fn test_f16_consts_from_f64() { |
| let one = f16::from_f64(1.0); |
| let zero = f16::from_f64(0.0); |
| let neg_zero = f16::from_f64(-0.0); |
| let inf = f16::from_f64(core::f64::INFINITY); |
| let neg_inf = f16::from_f64(core::f64::NEG_INFINITY); |
| let nan = f16::from_f64(core::f64::NAN); |
| |
| assert_eq!(f16::ONE, one); |
| assert_eq!(f16::ZERO, zero); |
| assert!(zero.is_sign_positive()); |
| assert_eq!(f16::NEG_ZERO, neg_zero); |
| assert!(neg_zero.is_sign_negative()); |
| assert_eq!(f16::INFINITY, inf); |
| assert_eq!(f16::NEG_INFINITY, neg_inf); |
| assert!(nan.is_nan()); |
| assert!(f16::NAN.is_nan()); |
| |
| let e = f16::from_f64(core::f64::consts::E); |
| let pi = f16::from_f64(core::f64::consts::PI); |
| let frac_1_pi = f16::from_f64(core::f64::consts::FRAC_1_PI); |
| let frac_1_sqrt_2 = f16::from_f64(core::f64::consts::FRAC_1_SQRT_2); |
| let frac_2_pi = f16::from_f64(core::f64::consts::FRAC_2_PI); |
| let frac_2_sqrt_pi = f16::from_f64(core::f64::consts::FRAC_2_SQRT_PI); |
| let frac_pi_2 = f16::from_f64(core::f64::consts::FRAC_PI_2); |
| let frac_pi_3 = f16::from_f64(core::f64::consts::FRAC_PI_3); |
| let frac_pi_4 = f16::from_f64(core::f64::consts::FRAC_PI_4); |
| let frac_pi_6 = f16::from_f64(core::f64::consts::FRAC_PI_6); |
| let frac_pi_8 = f16::from_f64(core::f64::consts::FRAC_PI_8); |
| let ln_10 = f16::from_f64(core::f64::consts::LN_10); |
| let ln_2 = f16::from_f64(core::f64::consts::LN_2); |
| let log10_e = f16::from_f64(core::f64::consts::LOG10_E); |
| // core::f64::consts::LOG10_2 requires rustc 1.43.0 |
| let log10_2 = f16::from_f64(2f64.log10()); |
| let log2_e = f16::from_f64(core::f64::consts::LOG2_E); |
| // core::f64::consts::LOG2_10 requires rustc 1.43.0 |
| let log2_10 = f16::from_f64(10f64.log2()); |
| let sqrt_2 = f16::from_f64(core::f64::consts::SQRT_2); |
| |
| assert_eq!(f16::E, e); |
| assert_eq!(f16::PI, pi); |
| assert_eq!(f16::FRAC_1_PI, frac_1_pi); |
| assert_eq!(f16::FRAC_1_SQRT_2, frac_1_sqrt_2); |
| assert_eq!(f16::FRAC_2_PI, frac_2_pi); |
| assert_eq!(f16::FRAC_2_SQRT_PI, frac_2_sqrt_pi); |
| assert_eq!(f16::FRAC_PI_2, frac_pi_2); |
| assert_eq!(f16::FRAC_PI_3, frac_pi_3); |
| assert_eq!(f16::FRAC_PI_4, frac_pi_4); |
| assert_eq!(f16::FRAC_PI_6, frac_pi_6); |
| assert_eq!(f16::FRAC_PI_8, frac_pi_8); |
| assert_eq!(f16::LN_10, ln_10); |
| assert_eq!(f16::LN_2, ln_2); |
| assert_eq!(f16::LOG10_E, log10_e); |
| assert_eq!(f16::LOG10_2, log10_2); |
| assert_eq!(f16::LOG2_E, log2_e); |
| assert_eq!(f16::LOG2_10, log2_10); |
| assert_eq!(f16::SQRT_2, sqrt_2); |
| } |
| |
| #[test] |
| fn test_nan_conversion_to_smaller() { |
| let nan64 = f64::from_bits(0x7FF0_0000_0000_0001u64); |
| let neg_nan64 = f64::from_bits(0xFFF0_0000_0000_0001u64); |
| let nan32 = f32::from_bits(0x7F80_0001u32); |
| let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
| let nan32_from_64 = nan64 as f32; |
| let neg_nan32_from_64 = neg_nan64 as f32; |
| let nan16_from_64 = f16::from_f64(nan64); |
| let neg_nan16_from_64 = f16::from_f64(neg_nan64); |
| let nan16_from_32 = f16::from_f32(nan32); |
| let neg_nan16_from_32 = f16::from_f32(neg_nan32); |
| |
| assert!(nan64.is_nan() && nan64.is_sign_positive()); |
| assert!(neg_nan64.is_nan() && neg_nan64.is_sign_negative()); |
| assert!(nan32.is_nan() && nan32.is_sign_positive()); |
| assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
| |
| // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103 |
| assert!(nan32_from_64.is_nan()); |
| assert!(neg_nan32_from_64.is_nan()); |
| assert!(nan16_from_64.is_nan()); |
| assert!(neg_nan16_from_64.is_nan()); |
| assert!(nan16_from_32.is_nan()); |
| assert!(neg_nan16_from_32.is_nan()); |
| } |
| |
| #[test] |
| fn test_nan_conversion_to_larger() { |
| let nan16 = f16::from_bits(0x7C01u16); |
| let neg_nan16 = f16::from_bits(0xFC01u16); |
| let nan32 = f32::from_bits(0x7F80_0001u32); |
| let neg_nan32 = f32::from_bits(0xFF80_0001u32); |
| let nan32_from_16 = f32::from(nan16); |
| let neg_nan32_from_16 = f32::from(neg_nan16); |
| let nan64_from_16 = f64::from(nan16); |
| let neg_nan64_from_16 = f64::from(neg_nan16); |
| let nan64_from_32 = f64::from(nan32); |
| let neg_nan64_from_32 = f64::from(neg_nan32); |
| |
| assert!(nan16.is_nan() && nan16.is_sign_positive()); |
| assert!(neg_nan16.is_nan() && neg_nan16.is_sign_negative()); |
| assert!(nan32.is_nan() && nan32.is_sign_positive()); |
| assert!(neg_nan32.is_nan() && neg_nan32.is_sign_negative()); |
| |
| // f32/f64 NaN conversion sign is non-deterministic: https://github.com/starkat99/half-rs/issues/103 |
| assert!(nan32_from_16.is_nan()); |
| assert!(neg_nan32_from_16.is_nan()); |
| assert!(nan64_from_16.is_nan()); |
| assert!(neg_nan64_from_16.is_nan()); |
| assert!(nan64_from_32.is_nan()); |
| assert!(neg_nan64_from_32.is_nan()); |
| } |
| |
| #[test] |
| fn test_f16_to_f32() { |
| let f = f16::from_f32(7.0); |
| assert_eq!(f.to_f32(), 7.0f32); |
| |
| // 7.1 is NOT exactly representable in 16-bit, it's rounded |
| let f = f16::from_f32(7.1); |
| let diff = (f.to_f32() - 7.1f32).abs(); |
| // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
| assert!(diff <= 4.0 * f16::EPSILON.to_f32()); |
| |
| assert_eq!(f16::from_bits(0x0000_0001).to_f32(), 2.0f32.powi(-24)); |
| assert_eq!(f16::from_bits(0x0000_0005).to_f32(), 5.0 * 2.0f32.powi(-24)); |
| |
| assert_eq!(f16::from_bits(0x0000_0001), f16::from_f32(2.0f32.powi(-24))); |
| assert_eq!( |
| f16::from_bits(0x0000_0005), |
| f16::from_f32(5.0 * 2.0f32.powi(-24)) |
| ); |
| } |
| |
| #[test] |
| fn test_f16_to_f64() { |
| let f = f16::from_f64(7.0); |
| assert_eq!(f.to_f64(), 7.0f64); |
| |
| // 7.1 is NOT exactly representable in 16-bit, it's rounded |
| let f = f16::from_f64(7.1); |
| let diff = (f.to_f64() - 7.1f64).abs(); |
| // diff must be <= 4 * EPSILON, as 7 has two more significant bits than 1 |
| assert!(diff <= 4.0 * f16::EPSILON.to_f64()); |
| |
| assert_eq!(f16::from_bits(0x0000_0001).to_f64(), 2.0f64.powi(-24)); |
| assert_eq!(f16::from_bits(0x0000_0005).to_f64(), 5.0 * 2.0f64.powi(-24)); |
| |
| assert_eq!(f16::from_bits(0x0000_0001), f16::from_f64(2.0f64.powi(-24))); |
| assert_eq!( |
| f16::from_bits(0x0000_0005), |
| f16::from_f64(5.0 * 2.0f64.powi(-24)) |
| ); |
| } |
| |
| #[test] |
| fn test_comparisons() { |
| let zero = f16::from_f64(0.0); |
| let one = f16::from_f64(1.0); |
| let neg_zero = f16::from_f64(-0.0); |
| let neg_one = f16::from_f64(-1.0); |
| |
| assert_eq!(zero.partial_cmp(&neg_zero), Some(Ordering::Equal)); |
| assert_eq!(neg_zero.partial_cmp(&zero), Some(Ordering::Equal)); |
| assert!(zero == neg_zero); |
| assert!(neg_zero == zero); |
| assert!(!(zero != neg_zero)); |
| assert!(!(neg_zero != zero)); |
| assert!(!(zero < neg_zero)); |
| assert!(!(neg_zero < zero)); |
| assert!(zero <= neg_zero); |
| assert!(neg_zero <= zero); |
| assert!(!(zero > neg_zero)); |
| assert!(!(neg_zero > zero)); |
| assert!(zero >= neg_zero); |
| assert!(neg_zero >= zero); |
| |
| assert_eq!(one.partial_cmp(&neg_zero), Some(Ordering::Greater)); |
| assert_eq!(neg_zero.partial_cmp(&one), Some(Ordering::Less)); |
| assert!(!(one == neg_zero)); |
| assert!(!(neg_zero == one)); |
| assert!(one != neg_zero); |
| assert!(neg_zero != one); |
| assert!(!(one < neg_zero)); |
| assert!(neg_zero < one); |
| assert!(!(one <= neg_zero)); |
| assert!(neg_zero <= one); |
| assert!(one > neg_zero); |
| assert!(!(neg_zero > one)); |
| assert!(one >= neg_zero); |
| assert!(!(neg_zero >= one)); |
| |
| assert_eq!(one.partial_cmp(&neg_one), Some(Ordering::Greater)); |
| assert_eq!(neg_one.partial_cmp(&one), Some(Ordering::Less)); |
| assert!(!(one == neg_one)); |
| assert!(!(neg_one == one)); |
| assert!(one != neg_one); |
| assert!(neg_one != one); |
| assert!(!(one < neg_one)); |
| assert!(neg_one < one); |
| assert!(!(one <= neg_one)); |
| assert!(neg_one <= one); |
| assert!(one > neg_one); |
| assert!(!(neg_one > one)); |
| assert!(one >= neg_one); |
| assert!(!(neg_one >= one)); |
| } |
| |
| #[test] |
| #[allow(clippy::erasing_op, clippy::identity_op)] |
| fn round_to_even_f32() { |
| // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
| let min_sub = f16::from_bits(1); |
| let min_sub_f = (-24f32).exp2(); |
| assert_eq!(f16::from_f32(min_sub_f).to_bits(), min_sub.to_bits()); |
| assert_eq!(f32::from(min_sub).to_bits(), min_sub_f.to_bits()); |
| |
| // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
| // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
| // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
| assert_eq!( |
| f16::from_f32(min_sub_f * 0.49).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| f16::from_f32(min_sub_f * 0.50).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| f16::from_f32(min_sub_f * 0.51).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| |
| // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
| // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
| // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
| assert_eq!( |
| f16::from_f32(min_sub_f * 1.49).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| assert_eq!( |
| f16::from_f32(min_sub_f * 1.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| f16::from_f32(min_sub_f * 1.51).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| |
| // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
| // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
| // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
| assert_eq!( |
| f16::from_f32(min_sub_f * 2.49).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| f16::from_f32(min_sub_f * 2.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| f16::from_f32(min_sub_f * 2.51).to_bits(), |
| min_sub.to_bits() * 3 |
| ); |
| |
| assert_eq!( |
| f16::from_f32(2000.49f32).to_bits(), |
| f16::from_f32(2000.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2000.50f32).to_bits(), |
| f16::from_f32(2000.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2000.51f32).to_bits(), |
| f16::from_f32(2001.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2001.49f32).to_bits(), |
| f16::from_f32(2001.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2001.50f32).to_bits(), |
| f16::from_f32(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2001.51f32).to_bits(), |
| f16::from_f32(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2002.49f32).to_bits(), |
| f16::from_f32(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2002.50f32).to_bits(), |
| f16::from_f32(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f32(2002.51f32).to_bits(), |
| f16::from_f32(2003.0).to_bits() |
| ); |
| } |
| |
| #[test] |
| #[allow(clippy::erasing_op, clippy::identity_op)] |
| fn round_to_even_f64() { |
| // smallest positive subnormal = 0b0.0000_0000_01 * 2^-14 = 2^-24 |
| let min_sub = f16::from_bits(1); |
| let min_sub_f = (-24f64).exp2(); |
| assert_eq!(f16::from_f64(min_sub_f).to_bits(), min_sub.to_bits()); |
| assert_eq!(f64::from(min_sub).to_bits(), min_sub_f.to_bits()); |
| |
| // 0.0000000000_011111 rounded to 0.0000000000 (< tie, no rounding) |
| // 0.0000000000_100000 rounded to 0.0000000000 (tie and even, remains at even) |
| // 0.0000000000_100001 rounded to 0.0000000001 (> tie, rounds up) |
| assert_eq!( |
| f16::from_f64(min_sub_f * 0.49).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| f16::from_f64(min_sub_f * 0.50).to_bits(), |
| min_sub.to_bits() * 0 |
| ); |
| assert_eq!( |
| f16::from_f64(min_sub_f * 0.51).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| |
| // 0.0000000001_011111 rounded to 0.0000000001 (< tie, no rounding) |
| // 0.0000000001_100000 rounded to 0.0000000010 (tie and odd, rounds up to even) |
| // 0.0000000001_100001 rounded to 0.0000000010 (> tie, rounds up) |
| assert_eq!( |
| f16::from_f64(min_sub_f * 1.49).to_bits(), |
| min_sub.to_bits() * 1 |
| ); |
| assert_eq!( |
| f16::from_f64(min_sub_f * 1.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| f16::from_f64(min_sub_f * 1.51).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| |
| // 0.0000000010_011111 rounded to 0.0000000010 (< tie, no rounding) |
| // 0.0000000010_100000 rounded to 0.0000000010 (tie and even, remains at even) |
| // 0.0000000010_100001 rounded to 0.0000000011 (> tie, rounds up) |
| assert_eq!( |
| f16::from_f64(min_sub_f * 2.49).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| f16::from_f64(min_sub_f * 2.50).to_bits(), |
| min_sub.to_bits() * 2 |
| ); |
| assert_eq!( |
| f16::from_f64(min_sub_f * 2.51).to_bits(), |
| min_sub.to_bits() * 3 |
| ); |
| |
| assert_eq!( |
| f16::from_f64(2000.49f64).to_bits(), |
| f16::from_f64(2000.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2000.50f64).to_bits(), |
| f16::from_f64(2000.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2000.51f64).to_bits(), |
| f16::from_f64(2001.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2001.49f64).to_bits(), |
| f16::from_f64(2001.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2001.50f64).to_bits(), |
| f16::from_f64(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2001.51f64).to_bits(), |
| f16::from_f64(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2002.49f64).to_bits(), |
| f16::from_f64(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2002.50f64).to_bits(), |
| f16::from_f64(2002.0).to_bits() |
| ); |
| assert_eq!( |
| f16::from_f64(2002.51f64).to_bits(), |
| f16::from_f64(2003.0).to_bits() |
| ); |
| } |
| |
| #[test] |
| fn arithmetic() { |
| assert_eq!(f16::ONE + f16::ONE, f16::from_f32(2.)); |
| assert_eq!(f16::ONE - f16::ONE, f16::ZERO); |
| assert_eq!(f16::ONE * f16::ONE, f16::ONE); |
| assert_eq!(f16::from_f32(2.) * f16::from_f32(2.), f16::from_f32(4.)); |
| assert_eq!(f16::ONE / f16::ONE, f16::ONE); |
| assert_eq!(f16::from_f32(4.) / f16::from_f32(2.), f16::from_f32(2.)); |
| assert_eq!(f16::from_f32(4.) % f16::from_f32(3.), f16::from_f32(1.)); |
| } |
| |
| #[cfg(feature = "std")] |
| #[test] |
| fn formatting() { |
| let f = f16::from_f32(0.1152344); |
| |
| assert_eq!(format!("{:.3}", f), "0.115"); |
| assert_eq!(format!("{:.4}", f), "0.1152"); |
| assert_eq!(format!("{:+.4}", f), "+0.1152"); |
| assert_eq!(format!("{:>+10.4}", f), " +0.1152"); |
| |
| assert_eq!(format!("{:.3?}", f), "0.115"); |
| assert_eq!(format!("{:.4?}", f), "0.1152"); |
| assert_eq!(format!("{:+.4?}", f), "+0.1152"); |
| assert_eq!(format!("{:>+10.4?}", f), " +0.1152"); |
| } |
| |
| impl quickcheck::Arbitrary for f16 { |
| fn arbitrary(g: &mut quickcheck::Gen) -> Self { |
| f16(u16::arbitrary(g)) |
| } |
| } |
| |
| #[quickcheck] |
| fn qc_roundtrip_f16_f32_is_identity(f: f16) -> bool { |
| let roundtrip = f16::from_f32(f.to_f32()); |
| if f.is_nan() { |
| roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
| } else { |
| f.0 == roundtrip.0 |
| } |
| } |
| |
| #[quickcheck] |
| fn qc_roundtrip_f16_f64_is_identity(f: f16) -> bool { |
| let roundtrip = f16::from_f64(f.to_f64()); |
| if f.is_nan() { |
| roundtrip.is_nan() && f.is_sign_negative() == roundtrip.is_sign_negative() |
| } else { |
| f.0 == roundtrip.0 |
| } |
| } |
| } |