| use crate::raw::{ |
| Allocator, Bucket, Global, RawDrain, RawExtractIf, RawIntoIter, RawIter, RawTable, |
| }; |
| use crate::{Equivalent, TryReserveError}; |
| use core::borrow::Borrow; |
| use core::fmt::{self, Debug}; |
| use core::hash::{BuildHasher, Hash}; |
| use core::iter::{FromIterator, FusedIterator}; |
| use core::marker::PhantomData; |
| use core::mem; |
| use core::ops::Index; |
| |
| /// Default hasher for `HashMap`. |
| #[cfg(feature = "ahash")] |
| pub type DefaultHashBuilder = core::hash::BuildHasherDefault<ahash::AHasher>; |
| |
| /// Dummy default hasher for `HashMap`. |
| #[cfg(not(feature = "ahash"))] |
| pub enum DefaultHashBuilder {} |
| |
| /// A hash map implemented with quadratic probing and SIMD lookup. |
| /// |
| /// The default hashing algorithm is currently [`AHash`], though this is |
| /// subject to change at any point in the future. This hash function is very |
| /// fast for all types of keys, but this algorithm will typically *not* protect |
| /// against attacks such as HashDoS. |
| /// |
| /// The hashing algorithm can be replaced on a per-`HashMap` basis using the |
| /// [`default`], [`with_hasher`], and [`with_capacity_and_hasher`] methods. Many |
| /// alternative algorithms are available on crates.io, such as the [`fnv`] crate. |
| /// |
| /// It is required that the keys implement the [`Eq`] and [`Hash`] traits, although |
| /// this can frequently be achieved by using `#[derive(PartialEq, Eq, Hash)]`. |
| /// If you implement these yourself, it is important that the following |
| /// property holds: |
| /// |
| /// ```text |
| /// k1 == k2 -> hash(k1) == hash(k2) |
| /// ``` |
| /// |
| /// In other words, if two keys are equal, their hashes must be equal. |
| /// |
| /// It is a logic error for a key to be modified in such a way that the key's |
| /// hash, as determined by the [`Hash`] trait, or its equality, as determined by |
| /// the [`Eq`] trait, changes while it is in the map. This is normally only |
| /// possible through [`Cell`], [`RefCell`], global state, I/O, or unsafe code. |
| /// |
| /// It is also a logic error for the [`Hash`] implementation of a key to panic. |
| /// This is generally only possible if the trait is implemented manually. If a |
| /// panic does occur then the contents of the `HashMap` may become corrupted and |
| /// some items may be dropped from the table. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// // Type inference lets us omit an explicit type signature (which |
| /// // would be `HashMap<String, String>` in this example). |
| /// let mut book_reviews = HashMap::new(); |
| /// |
| /// // Review some books. |
| /// book_reviews.insert( |
| /// "Adventures of Huckleberry Finn".to_string(), |
| /// "My favorite book.".to_string(), |
| /// ); |
| /// book_reviews.insert( |
| /// "Grimms' Fairy Tales".to_string(), |
| /// "Masterpiece.".to_string(), |
| /// ); |
| /// book_reviews.insert( |
| /// "Pride and Prejudice".to_string(), |
| /// "Very enjoyable.".to_string(), |
| /// ); |
| /// book_reviews.insert( |
| /// "The Adventures of Sherlock Holmes".to_string(), |
| /// "Eye lyked it alot.".to_string(), |
| /// ); |
| /// |
| /// // Check for a specific one. |
| /// // When collections store owned values (String), they can still be |
| /// // queried using references (&str). |
| /// if !book_reviews.contains_key("Les Misérables") { |
| /// println!("We've got {} reviews, but Les Misérables ain't one.", |
| /// book_reviews.len()); |
| /// } |
| /// |
| /// // oops, this review has a lot of spelling mistakes, let's delete it. |
| /// book_reviews.remove("The Adventures of Sherlock Holmes"); |
| /// |
| /// // Look up the values associated with some keys. |
| /// let to_find = ["Pride and Prejudice", "Alice's Adventure in Wonderland"]; |
| /// for &book in &to_find { |
| /// match book_reviews.get(book) { |
| /// Some(review) => println!("{}: {}", book, review), |
| /// None => println!("{} is unreviewed.", book) |
| /// } |
| /// } |
| /// |
| /// // Look up the value for a key (will panic if the key is not found). |
| /// println!("Review for Jane: {}", book_reviews["Pride and Prejudice"]); |
| /// |
| /// // Iterate over everything. |
| /// for (book, review) in &book_reviews { |
| /// println!("{}: \"{}\"", book, review); |
| /// } |
| /// ``` |
| /// |
| /// `HashMap` also implements an [`Entry API`](#method.entry), which allows |
| /// for more complex methods of getting, setting, updating and removing keys and |
| /// their values: |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// // type inference lets us omit an explicit type signature (which |
| /// // would be `HashMap<&str, u8>` in this example). |
| /// let mut player_stats = HashMap::new(); |
| /// |
| /// fn random_stat_buff() -> u8 { |
| /// // could actually return some random value here - let's just return |
| /// // some fixed value for now |
| /// 42 |
| /// } |
| /// |
| /// // insert a key only if it doesn't already exist |
| /// player_stats.entry("health").or_insert(100); |
| /// |
| /// // insert a key using a function that provides a new value only if it |
| /// // doesn't already exist |
| /// player_stats.entry("defence").or_insert_with(random_stat_buff); |
| /// |
| /// // update a key, guarding against the key possibly not being set |
| /// let stat = player_stats.entry("attack").or_insert(100); |
| /// *stat += random_stat_buff(); |
| /// ``` |
| /// |
| /// The easiest way to use `HashMap` with a custom key type is to derive [`Eq`] and [`Hash`]. |
| /// We must also derive [`PartialEq`]. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// [`PartialEq`]: https://doc.rust-lang.org/std/cmp/trait.PartialEq.html |
| /// [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html |
| /// [`Cell`]: https://doc.rust-lang.org/std/cell/struct.Cell.html |
| /// [`default`]: #method.default |
| /// [`with_hasher`]: #method.with_hasher |
| /// [`with_capacity_and_hasher`]: #method.with_capacity_and_hasher |
| /// [`fnv`]: https://crates.io/crates/fnv |
| /// [`AHash`]: https://crates.io/crates/ahash |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// #[derive(Hash, Eq, PartialEq, Debug)] |
| /// struct Viking { |
| /// name: String, |
| /// country: String, |
| /// } |
| /// |
| /// impl Viking { |
| /// /// Creates a new Viking. |
| /// fn new(name: &str, country: &str) -> Viking { |
| /// Viking { name: name.to_string(), country: country.to_string() } |
| /// } |
| /// } |
| /// |
| /// // Use a HashMap to store the vikings' health points. |
| /// let mut vikings = HashMap::new(); |
| /// |
| /// vikings.insert(Viking::new("Einar", "Norway"), 25); |
| /// vikings.insert(Viking::new("Olaf", "Denmark"), 24); |
| /// vikings.insert(Viking::new("Harald", "Iceland"), 12); |
| /// |
| /// // Use derived implementation to print the status of the vikings. |
| /// for (viking, health) in &vikings { |
| /// println!("{:?} has {} hp", viking, health); |
| /// } |
| /// ``` |
| /// |
| /// A `HashMap` with fixed list of elements can be initialized from an array: |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let timber_resources: HashMap<&str, i32> = [("Norway", 100), ("Denmark", 50), ("Iceland", 10)] |
| /// .iter().cloned().collect(); |
| /// // use the values stored in map |
| /// ``` |
| pub struct HashMap<K, V, S = DefaultHashBuilder, A: Allocator = Global> { |
| pub(crate) hash_builder: S, |
| pub(crate) table: RawTable<(K, V), A>, |
| } |
| |
| impl<K: Clone, V: Clone, S: Clone, A: Allocator + Clone> Clone for HashMap<K, V, S, A> { |
| fn clone(&self) -> Self { |
| HashMap { |
| hash_builder: self.hash_builder.clone(), |
| table: self.table.clone(), |
| } |
| } |
| |
| fn clone_from(&mut self, source: &Self) { |
| self.table.clone_from(&source.table); |
| |
| // Update hash_builder only if we successfully cloned all elements. |
| self.hash_builder.clone_from(&source.hash_builder); |
| } |
| } |
| |
| /// Ensures that a single closure type across uses of this which, in turn prevents multiple |
| /// instances of any functions like RawTable::reserve from being generated |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(crate) fn make_hasher<Q, V, S>(hash_builder: &S) -> impl Fn(&(Q, V)) -> u64 + '_ |
| where |
| Q: Hash, |
| S: BuildHasher, |
| { |
| move |val| make_hash::<Q, S>(hash_builder, &val.0) |
| } |
| |
| /// Ensures that a single closure type across uses of this which, in turn prevents multiple |
| /// instances of any functions like RawTable::reserve from being generated |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn equivalent_key<Q, K, V>(k: &Q) -> impl Fn(&(K, V)) -> bool + '_ |
| where |
| Q: ?Sized + Equivalent<K>, |
| { |
| move |x| k.equivalent(&x.0) |
| } |
| |
| /// Ensures that a single closure type across uses of this which, in turn prevents multiple |
| /// instances of any functions like RawTable::reserve from being generated |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn equivalent<Q, K>(k: &Q) -> impl Fn(&K) -> bool + '_ |
| where |
| Q: ?Sized + Equivalent<K>, |
| { |
| move |x| k.equivalent(x) |
| } |
| |
| #[cfg(not(feature = "nightly"))] |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(crate) fn make_hash<Q, S>(hash_builder: &S, val: &Q) -> u64 |
| where |
| Q: Hash + ?Sized, |
| S: BuildHasher, |
| { |
| use core::hash::Hasher; |
| let mut state = hash_builder.build_hasher(); |
| val.hash(&mut state); |
| state.finish() |
| } |
| |
| #[cfg(feature = "nightly")] |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(crate) fn make_hash<Q, S>(hash_builder: &S, val: &Q) -> u64 |
| where |
| Q: Hash + ?Sized, |
| S: BuildHasher, |
| { |
| hash_builder.hash_one(val) |
| } |
| |
| #[cfg(feature = "ahash")] |
| impl<K, V> HashMap<K, V, DefaultHashBuilder> { |
| /// Creates an empty `HashMap`. |
| /// |
| /// The hash map is initially created with a capacity of 0, so it will not allocate until it |
| /// is first inserted into. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`], for example with |
| /// [`with_hasher`](HashMap::with_hasher) method. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// let mut map: HashMap<&str, i32> = HashMap::new(); |
| /// assert_eq!(map.len(), 0); |
| /// assert_eq!(map.capacity(), 0); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn new() -> Self { |
| Self::default() |
| } |
| |
| /// Creates an empty `HashMap` with the specified capacity. |
| /// |
| /// The hash map will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the hash map will not allocate. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`], for example with |
| /// [`with_capacity_and_hasher`](HashMap::with_capacity_and_hasher) method. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// let mut map: HashMap<&str, i32> = HashMap::with_capacity(10); |
| /// assert_eq!(map.len(), 0); |
| /// assert!(map.capacity() >= 10); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn with_capacity(capacity: usize) -> Self { |
| Self::with_capacity_and_hasher(capacity, DefaultHashBuilder::default()) |
| } |
| } |
| |
| #[cfg(feature = "ahash")] |
| impl<K, V, A: Allocator> HashMap<K, V, DefaultHashBuilder, A> { |
| /// Creates an empty `HashMap` using the given allocator. |
| /// |
| /// The hash map is initially created with a capacity of 0, so it will not allocate until it |
| /// is first inserted into. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`], for example with |
| /// [`with_hasher_in`](HashMap::with_hasher_in) method. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use bumpalo::Bump; |
| /// |
| /// let bump = Bump::new(); |
| /// let mut map = HashMap::new_in(&bump); |
| /// |
| /// // The created HashMap holds none elements |
| /// assert_eq!(map.len(), 0); |
| /// |
| /// // The created HashMap also doesn't allocate memory |
| /// assert_eq!(map.capacity(), 0); |
| /// |
| /// // Now we insert element inside created HashMap |
| /// map.insert("One", 1); |
| /// // We can see that the HashMap holds 1 element |
| /// assert_eq!(map.len(), 1); |
| /// // And it also allocates some capacity |
| /// assert!(map.capacity() > 1); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn new_in(alloc: A) -> Self { |
| Self::with_hasher_in(DefaultHashBuilder::default(), alloc) |
| } |
| |
| /// Creates an empty `HashMap` with the specified capacity using the given allocator. |
| /// |
| /// The hash map will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the hash map will not allocate. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`], for example with |
| /// [`with_capacity_and_hasher_in`](HashMap::with_capacity_and_hasher_in) method. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use bumpalo::Bump; |
| /// |
| /// let bump = Bump::new(); |
| /// let mut map = HashMap::with_capacity_in(5, &bump); |
| /// |
| /// // The created HashMap holds none elements |
| /// assert_eq!(map.len(), 0); |
| /// // But it can hold at least 5 elements without reallocating |
| /// let empty_map_capacity = map.capacity(); |
| /// assert!(empty_map_capacity >= 5); |
| /// |
| /// // Now we insert some 5 elements inside created HashMap |
| /// map.insert("One", 1); |
| /// map.insert("Two", 2); |
| /// map.insert("Three", 3); |
| /// map.insert("Four", 4); |
| /// map.insert("Five", 5); |
| /// |
| /// // We can see that the HashMap holds 5 elements |
| /// assert_eq!(map.len(), 5); |
| /// // But its capacity isn't changed |
| /// assert_eq!(map.capacity(), empty_map_capacity) |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn with_capacity_in(capacity: usize, alloc: A) -> Self { |
| Self::with_capacity_and_hasher_in(capacity, DefaultHashBuilder::default(), alloc) |
| } |
| } |
| |
| impl<K, V, S> HashMap<K, V, S> { |
| /// Creates an empty `HashMap` which will use the given hash builder to hash |
| /// keys. |
| /// |
| /// The hash map is initially created with a capacity of 0, so it will not |
| /// allocate until it is first inserted into. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`]. |
| /// |
| /// The `hash_builder` passed should implement the [`BuildHasher`] trait for |
| /// the HashMap to be useful, see its documentation for details. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let s = DefaultHashBuilder::default(); |
| /// let mut map = HashMap::with_hasher(s); |
| /// assert_eq!(map.len(), 0); |
| /// assert_eq!(map.capacity(), 0); |
| /// |
| /// map.insert(1, 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub const fn with_hasher(hash_builder: S) -> Self { |
| Self { |
| hash_builder, |
| table: RawTable::new(), |
| } |
| } |
| |
| /// Creates an empty `HashMap` with the specified capacity, using `hash_builder` |
| /// to hash the keys. |
| /// |
| /// The hash map will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the hash map will not allocate. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`]. |
| /// |
| /// The `hash_builder` passed should implement the [`BuildHasher`] trait for |
| /// the HashMap to be useful, see its documentation for details. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let s = DefaultHashBuilder::default(); |
| /// let mut map = HashMap::with_capacity_and_hasher(10, s); |
| /// assert_eq!(map.len(), 0); |
| /// assert!(map.capacity() >= 10); |
| /// |
| /// map.insert(1, 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn with_capacity_and_hasher(capacity: usize, hash_builder: S) -> Self { |
| Self { |
| hash_builder, |
| table: RawTable::with_capacity(capacity), |
| } |
| } |
| } |
| |
| impl<K, V, S, A: Allocator> HashMap<K, V, S, A> { |
| /// Returns a reference to the underlying allocator. |
| #[inline] |
| pub fn allocator(&self) -> &A { |
| self.table.allocator() |
| } |
| |
| /// Creates an empty `HashMap` which will use the given hash builder to hash |
| /// keys. It will be allocated with the given allocator. |
| /// |
| /// The hash map is initially created with a capacity of 0, so it will not allocate until it |
| /// is first inserted into. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`]. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let s = DefaultHashBuilder::default(); |
| /// let mut map = HashMap::with_hasher(s); |
| /// map.insert(1, 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub const fn with_hasher_in(hash_builder: S, alloc: A) -> Self { |
| Self { |
| hash_builder, |
| table: RawTable::new_in(alloc), |
| } |
| } |
| |
| /// Creates an empty `HashMap` with the specified capacity, using `hash_builder` |
| /// to hash the keys. It will be allocated with the given allocator. |
| /// |
| /// The hash map will be able to hold at least `capacity` elements without |
| /// reallocating. If `capacity` is 0, the hash map will not allocate. |
| /// |
| /// # HashDoS resistance |
| /// |
| /// The `hash_builder` normally use a fixed key by default and that does |
| /// not allow the `HashMap` to be protected against attacks such as [`HashDoS`]. |
| /// Users who require HashDoS resistance should explicitly use |
| /// [`ahash::RandomState`] or [`std::collections::hash_map::RandomState`] |
| /// as the hasher when creating a [`HashMap`]. |
| /// |
| /// [`HashDoS`]: https://en.wikipedia.org/wiki/Collision_attack |
| /// [`std::collections::hash_map::RandomState`]: https://doc.rust-lang.org/std/collections/hash_map/struct.RandomState.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let s = DefaultHashBuilder::default(); |
| /// let mut map = HashMap::with_capacity_and_hasher(10, s); |
| /// map.insert(1, 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn with_capacity_and_hasher_in(capacity: usize, hash_builder: S, alloc: A) -> Self { |
| Self { |
| hash_builder, |
| table: RawTable::with_capacity_in(capacity, alloc), |
| } |
| } |
| |
| /// Returns a reference to the map's [`BuildHasher`]. |
| /// |
| /// [`BuildHasher`]: https://doc.rust-lang.org/std/hash/trait.BuildHasher.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::DefaultHashBuilder; |
| /// |
| /// let hasher = DefaultHashBuilder::default(); |
| /// let map: HashMap<i32, i32> = HashMap::with_hasher(hasher); |
| /// let hasher: &DefaultHashBuilder = map.hasher(); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn hasher(&self) -> &S { |
| &self.hash_builder |
| } |
| |
| /// Returns the number of elements the map can hold without reallocating. |
| /// |
| /// This number is a lower bound; the `HashMap<K, V>` might be able to hold |
| /// more, but is guaranteed to be able to hold at least this many. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// let map: HashMap<i32, i32> = HashMap::with_capacity(100); |
| /// assert_eq!(map.len(), 0); |
| /// assert!(map.capacity() >= 100); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn capacity(&self) -> usize { |
| self.table.capacity() |
| } |
| |
| /// An iterator visiting all keys in arbitrary order. |
| /// The iterator element type is `&'a K`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// assert_eq!(map.len(), 3); |
| /// let mut vec: Vec<&str> = Vec::new(); |
| /// |
| /// for key in map.keys() { |
| /// println!("{}", key); |
| /// vec.push(*key); |
| /// } |
| /// |
| /// // The `Keys` iterator produces keys in arbitrary order, so the |
| /// // keys must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, ["a", "b", "c"]); |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn keys(&self) -> Keys<'_, K, V> { |
| Keys { inner: self.iter() } |
| } |
| |
| /// An iterator visiting all values in arbitrary order. |
| /// The iterator element type is `&'a V`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// assert_eq!(map.len(), 3); |
| /// let mut vec: Vec<i32> = Vec::new(); |
| /// |
| /// for val in map.values() { |
| /// println!("{}", val); |
| /// vec.push(*val); |
| /// } |
| /// |
| /// // The `Values` iterator produces values in arbitrary order, so the |
| /// // values must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [1, 2, 3]); |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn values(&self) -> Values<'_, K, V> { |
| Values { inner: self.iter() } |
| } |
| |
| /// An iterator visiting all values mutably in arbitrary order. |
| /// The iterator element type is `&'a mut V`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// |
| /// for val in map.values_mut() { |
| /// *val = *val + 10; |
| /// } |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// let mut vec: Vec<i32> = Vec::new(); |
| /// |
| /// for val in map.values() { |
| /// println!("{}", val); |
| /// vec.push(*val); |
| /// } |
| /// |
| /// // The `Values` iterator produces values in arbitrary order, so the |
| /// // values must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [11, 12, 13]); |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { |
| ValuesMut { |
| inner: self.iter_mut(), |
| } |
| } |
| |
| /// An iterator visiting all key-value pairs in arbitrary order. |
| /// The iterator element type is `(&'a K, &'a V)`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// assert_eq!(map.len(), 3); |
| /// let mut vec: Vec<(&str, i32)> = Vec::new(); |
| /// |
| /// for (key, val) in map.iter() { |
| /// println!("key: {} val: {}", key, val); |
| /// vec.push((*key, *val)); |
| /// } |
| /// |
| /// // The `Iter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]); |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn iter(&self) -> Iter<'_, K, V> { |
| // Here we tie the lifetime of self to the iter. |
| unsafe { |
| Iter { |
| inner: self.table.iter(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| /// An iterator visiting all key-value pairs in arbitrary order, |
| /// with mutable references to the values. |
| /// The iterator element type is `(&'a K, &'a mut V)`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// |
| /// // Update all values |
| /// for (_, val) in map.iter_mut() { |
| /// *val *= 2; |
| /// } |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// let mut vec: Vec<(&str, i32)> = Vec::new(); |
| /// |
| /// for (key, val) in &map { |
| /// println!("key: {} val: {}", key, val); |
| /// vec.push((*key, *val)); |
| /// } |
| /// |
| /// // The `Iter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [("a", 2), ("b", 4), ("c", 6)]); |
| /// |
| /// assert_eq!(map.len(), 3); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { |
| // Here we tie the lifetime of self to the iter. |
| unsafe { |
| IterMut { |
| inner: self.table.iter(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn raw_capacity(&self) -> usize { |
| self.table.buckets() |
| } |
| |
| /// Returns the number of elements in the map. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut a = HashMap::new(); |
| /// assert_eq!(a.len(), 0); |
| /// a.insert(1, "a"); |
| /// assert_eq!(a.len(), 1); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn len(&self) -> usize { |
| self.table.len() |
| } |
| |
| /// Returns `true` if the map contains no elements. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut a = HashMap::new(); |
| /// assert!(a.is_empty()); |
| /// a.insert(1, "a"); |
| /// assert!(!a.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Clears the map, returning all key-value pairs as an iterator. Keeps the |
| /// allocated memory for reuse. |
| /// |
| /// If the returned iterator is dropped before being fully consumed, it |
| /// drops the remaining key-value pairs. The returned iterator keeps a |
| /// mutable borrow on the vector to optimize its implementation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut a = HashMap::new(); |
| /// a.insert(1, "a"); |
| /// a.insert(2, "b"); |
| /// let capacity_before_drain = a.capacity(); |
| /// |
| /// for (k, v) in a.drain().take(1) { |
| /// assert!(k == 1 || k == 2); |
| /// assert!(v == "a" || v == "b"); |
| /// } |
| /// |
| /// // As we can see, the map is empty and contains no element. |
| /// assert!(a.is_empty() && a.len() == 0); |
| /// // But map capacity is equal to old one. |
| /// assert_eq!(a.capacity(), capacity_before_drain); |
| /// |
| /// let mut a = HashMap::new(); |
| /// a.insert(1, "a"); |
| /// a.insert(2, "b"); |
| /// |
| /// { // Iterator is dropped without being consumed. |
| /// let d = a.drain(); |
| /// } |
| /// |
| /// // But the map is empty even if we do not use Drain iterator. |
| /// assert!(a.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn drain(&mut self) -> Drain<'_, K, V, A> { |
| Drain { |
| inner: self.table.drain(), |
| } |
| } |
| |
| /// Retains only the elements specified by the predicate. Keeps the |
| /// allocated memory for reuse. |
| /// |
| /// In other words, remove all pairs `(k, v)` such that `f(&k, &mut v)` returns `false`. |
| /// The elements are visited in unsorted (and unspecified) order. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<i32, i32> = (0..8).map(|x|(x, x*10)).collect(); |
| /// assert_eq!(map.len(), 8); |
| /// |
| /// map.retain(|&k, _| k % 2 == 0); |
| /// |
| /// // We can see, that the number of elements inside map is changed. |
| /// assert_eq!(map.len(), 4); |
| /// |
| /// let mut vec: Vec<(i32, i32)> = map.iter().map(|(&k, &v)| (k, v)).collect(); |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [(0, 0), (2, 20), (4, 40), (6, 60)]); |
| /// ``` |
| pub fn retain<F>(&mut self, mut f: F) |
| where |
| F: FnMut(&K, &mut V) -> bool, |
| { |
| // Here we only use `iter` as a temporary, preventing use-after-free |
| unsafe { |
| for item in self.table.iter() { |
| let &mut (ref key, ref mut value) = item.as_mut(); |
| if !f(key, value) { |
| self.table.erase(item); |
| } |
| } |
| } |
| } |
| |
| /// Drains elements which are true under the given predicate, |
| /// and returns an iterator over the removed items. |
| /// |
| /// In other words, move all pairs `(k, v)` such that `f(&k, &mut v)` returns `true` out |
| /// into another iterator. |
| /// |
| /// Note that `extract_if` lets you mutate every value in the filter closure, regardless of |
| /// whether you choose to keep or remove it. |
| /// |
| /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating |
| /// or the iteration short-circuits, then the remaining elements will be retained. |
| /// Use [`retain()`] with a negated predicate if you do not need the returned iterator. |
| /// |
| /// Keeps the allocated memory for reuse. |
| /// |
| /// [`retain()`]: HashMap::retain |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect(); |
| /// |
| /// let drained: HashMap<i32, i32> = map.extract_if(|k, _v| k % 2 == 0).collect(); |
| /// |
| /// let mut evens = drained.keys().cloned().collect::<Vec<_>>(); |
| /// let mut odds = map.keys().cloned().collect::<Vec<_>>(); |
| /// evens.sort(); |
| /// odds.sort(); |
| /// |
| /// assert_eq!(evens, vec![0, 2, 4, 6]); |
| /// assert_eq!(odds, vec![1, 3, 5, 7]); |
| /// |
| /// let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x)).collect(); |
| /// |
| /// { // Iterator is dropped without being consumed. |
| /// let d = map.extract_if(|k, _v| k % 2 != 0); |
| /// } |
| /// |
| /// // ExtractIf was not exhausted, therefore no elements were drained. |
| /// assert_eq!(map.len(), 8); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn extract_if<F>(&mut self, f: F) -> ExtractIf<'_, K, V, F, A> |
| where |
| F: FnMut(&K, &mut V) -> bool, |
| { |
| ExtractIf { |
| f, |
| inner: RawExtractIf { |
| iter: unsafe { self.table.iter() }, |
| table: &mut self.table, |
| }, |
| } |
| } |
| |
| /// Clears the map, removing all key-value pairs. Keeps the allocated memory |
| /// for reuse. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut a = HashMap::new(); |
| /// a.insert(1, "a"); |
| /// let capacity_before_clear = a.capacity(); |
| /// |
| /// a.clear(); |
| /// |
| /// // Map is empty. |
| /// assert!(a.is_empty()); |
| /// // But map capacity is equal to old one. |
| /// assert_eq!(a.capacity(), capacity_before_clear); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn clear(&mut self) { |
| self.table.clear(); |
| } |
| |
| /// Creates a consuming iterator visiting all the keys in arbitrary order. |
| /// The map cannot be used after calling this. |
| /// The iterator element type is `K`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// |
| /// let mut vec: Vec<&str> = map.into_keys().collect(); |
| /// |
| /// // The `IntoKeys` iterator produces keys in arbitrary order, so the |
| /// // keys must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, ["a", "b", "c"]); |
| /// ``` |
| #[inline] |
| pub fn into_keys(self) -> IntoKeys<K, V, A> { |
| IntoKeys { |
| inner: self.into_iter(), |
| } |
| } |
| |
| /// Creates a consuming iterator visiting all the values in arbitrary order. |
| /// The map cannot be used after calling this. |
| /// The iterator element type is `V`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert("a", 1); |
| /// map.insert("b", 2); |
| /// map.insert("c", 3); |
| /// |
| /// let mut vec: Vec<i32> = map.into_values().collect(); |
| /// |
| /// // The `IntoValues` iterator produces values in arbitrary order, so |
| /// // the values must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [1, 2, 3]); |
| /// ``` |
| #[inline] |
| pub fn into_values(self) -> IntoValues<K, V, A> { |
| IntoValues { |
| inner: self.into_iter(), |
| } |
| } |
| } |
| |
| impl<K, V, S, A> HashMap<K, V, S, A> |
| where |
| K: Eq + Hash, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| /// Reserves capacity for at least `additional` more elements to be inserted |
| /// in the `HashMap`. The collection may reserve more space to avoid |
| /// frequent reallocations. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the new capacity exceeds [`isize::MAX`] bytes and [`abort`] the program |
| /// in case of allocation error. Use [`try_reserve`](HashMap::try_reserve) instead |
| /// if you want to handle memory allocation failure. |
| /// |
| /// [`isize::MAX`]: https://doc.rust-lang.org/std/primitive.isize.html |
| /// [`abort`]: https://doc.rust-lang.org/alloc/alloc/fn.handle_alloc_error.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// let mut map: HashMap<&str, i32> = HashMap::new(); |
| /// // Map is empty and doesn't allocate memory |
| /// assert_eq!(map.capacity(), 0); |
| /// |
| /// map.reserve(10); |
| /// |
| /// // And now map can hold at least 10 elements |
| /// assert!(map.capacity() >= 10); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn reserve(&mut self, additional: usize) { |
| self.table |
| .reserve(additional, make_hasher::<_, V, S>(&self.hash_builder)); |
| } |
| |
| /// Tries to reserve capacity for at least `additional` more elements to be inserted |
| /// in the given `HashMap<K,V>`. The collection may reserve more space to avoid |
| /// frequent reallocations. |
| /// |
| /// # Errors |
| /// |
| /// If the capacity overflows, or the allocator reports a failure, then an error |
| /// is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, isize> = HashMap::new(); |
| /// // Map is empty and doesn't allocate memory |
| /// assert_eq!(map.capacity(), 0); |
| /// |
| /// map.try_reserve(10).expect("why is the test harness OOMing on 10 bytes?"); |
| /// |
| /// // And now map can hold at least 10 elements |
| /// assert!(map.capacity() >= 10); |
| /// ``` |
| /// If the capacity overflows, or the allocator reports a failure, then an error |
| /// is returned: |
| /// ``` |
| /// # fn test() { |
| /// use hashbrown::HashMap; |
| /// use hashbrown::TryReserveError; |
| /// let mut map: HashMap<i32, i32> = HashMap::new(); |
| /// |
| /// match map.try_reserve(usize::MAX) { |
| /// Err(error) => match error { |
| /// TryReserveError::CapacityOverflow => {} |
| /// _ => panic!("TryReserveError::AllocError ?"), |
| /// }, |
| /// _ => panic!(), |
| /// } |
| /// # } |
| /// # fn main() { |
| /// # #[cfg(not(miri))] |
| /// # test() |
| /// # } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.table |
| .try_reserve(additional, make_hasher::<_, V, S>(&self.hash_builder)) |
| } |
| |
| /// Shrinks the capacity of the map as much as possible. It will drop |
| /// down as much as possible while maintaining the internal rules |
| /// and possibly leaving some space in accordance with the resize policy. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); |
| /// map.insert(1, 2); |
| /// map.insert(3, 4); |
| /// assert!(map.capacity() >= 100); |
| /// map.shrink_to_fit(); |
| /// assert!(map.capacity() >= 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn shrink_to_fit(&mut self) { |
| self.table |
| .shrink_to(0, make_hasher::<_, V, S>(&self.hash_builder)); |
| } |
| |
| /// Shrinks the capacity of the map with a lower limit. It will drop |
| /// down no lower than the supplied limit while maintaining the internal rules |
| /// and possibly leaving some space in accordance with the resize policy. |
| /// |
| /// This function does nothing if the current capacity is smaller than the |
| /// supplied minimum capacity. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<i32, i32> = HashMap::with_capacity(100); |
| /// map.insert(1, 2); |
| /// map.insert(3, 4); |
| /// assert!(map.capacity() >= 100); |
| /// map.shrink_to(10); |
| /// assert!(map.capacity() >= 10); |
| /// map.shrink_to(0); |
| /// assert!(map.capacity() >= 2); |
| /// map.shrink_to(10); |
| /// assert!(map.capacity() >= 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn shrink_to(&mut self, min_capacity: usize) { |
| self.table |
| .shrink_to(min_capacity, make_hasher::<_, V, S>(&self.hash_builder)); |
| } |
| |
| /// Gets the given key's corresponding entry in the map for in-place manipulation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut letters = HashMap::new(); |
| /// |
| /// for ch in "a short treatise on fungi".chars() { |
| /// let counter = letters.entry(ch).or_insert(0); |
| /// *counter += 1; |
| /// } |
| /// |
| /// assert_eq!(letters[&'s'], 2); |
| /// assert_eq!(letters[&'t'], 3); |
| /// assert_eq!(letters[&'u'], 1); |
| /// assert_eq!(letters.get(&'y'), None); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn entry(&mut self, key: K) -> Entry<'_, K, V, S, A> { |
| let hash = make_hash::<K, S>(&self.hash_builder, &key); |
| if let Some(elem) = self.table.find(hash, equivalent_key(&key)) { |
| Entry::Occupied(OccupiedEntry { |
| hash, |
| key: Some(key), |
| elem, |
| table: self, |
| }) |
| } else { |
| Entry::Vacant(VacantEntry { |
| hash, |
| key, |
| table: self, |
| }) |
| } |
| } |
| |
| /// Gets the given key's corresponding entry by reference in the map for in-place manipulation. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut words: HashMap<String, usize> = HashMap::new(); |
| /// let source = ["poneyland", "horseyland", "poneyland", "poneyland"]; |
| /// for (i, &s) in source.iter().enumerate() { |
| /// let counter = words.entry_ref(s).or_insert(0); |
| /// *counter += 1; |
| /// } |
| /// |
| /// assert_eq!(words["poneyland"], 3); |
| /// assert_eq!(words["horseyland"], 1); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn entry_ref<'a, 'b, Q: ?Sized>(&'a mut self, key: &'b Q) -> EntryRef<'a, 'b, K, Q, V, S, A> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| let hash = make_hash::<Q, S>(&self.hash_builder, key); |
| if let Some(elem) = self.table.find(hash, equivalent_key(key)) { |
| EntryRef::Occupied(OccupiedEntryRef { |
| hash, |
| key: Some(KeyOrRef::Borrowed(key)), |
| elem, |
| table: self, |
| }) |
| } else { |
| EntryRef::Vacant(VacantEntryRef { |
| hash, |
| key: KeyOrRef::Borrowed(key), |
| table: self, |
| }) |
| } |
| } |
| |
| /// Returns a reference to the value corresponding to the key. |
| /// |
| /// The key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, "a"); |
| /// assert_eq!(map.get(&1), Some(&"a")); |
| /// assert_eq!(map.get(&2), None); |
| /// ``` |
| #[inline] |
| pub fn get<Q: ?Sized>(&self, k: &Q) -> Option<&V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.get_inner(k) { |
| Some((_, v)) => Some(v), |
| None => None, |
| } |
| } |
| |
| /// Returns the key-value pair corresponding to the supplied key. |
| /// |
| /// The supplied key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, "a"); |
| /// assert_eq!(map.get_key_value(&1), Some((&1, &"a"))); |
| /// assert_eq!(map.get_key_value(&2), None); |
| /// ``` |
| #[inline] |
| pub fn get_key_value<Q: ?Sized>(&self, k: &Q) -> Option<(&K, &V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.get_inner(k) { |
| Some((key, value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| #[inline] |
| fn get_inner<Q: ?Sized>(&self, k: &Q) -> Option<&(K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if self.table.is_empty() { |
| None |
| } else { |
| let hash = make_hash::<Q, S>(&self.hash_builder, k); |
| self.table.get(hash, equivalent_key(k)) |
| } |
| } |
| |
| /// Returns the key-value pair corresponding to the supplied key, with a mutable reference to value. |
| /// |
| /// The supplied key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, "a"); |
| /// let (k, v) = map.get_key_value_mut(&1).unwrap(); |
| /// assert_eq!(k, &1); |
| /// assert_eq!(v, &mut "a"); |
| /// *v = "b"; |
| /// assert_eq!(map.get_key_value_mut(&1), Some((&1, &mut "b"))); |
| /// assert_eq!(map.get_key_value_mut(&2), None); |
| /// ``` |
| #[inline] |
| pub fn get_key_value_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<(&K, &mut V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.get_inner_mut(k) { |
| Some(&mut (ref key, ref mut value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| /// Returns `true` if the map contains a value for the specified key. |
| /// |
| /// The key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, "a"); |
| /// assert_eq!(map.contains_key(&1), true); |
| /// assert_eq!(map.contains_key(&2), false); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn contains_key<Q: ?Sized>(&self, k: &Q) -> bool |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.get_inner(k).is_some() |
| } |
| |
| /// Returns a mutable reference to the value corresponding to the key. |
| /// |
| /// The key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, "a"); |
| /// if let Some(x) = map.get_mut(&1) { |
| /// *x = "b"; |
| /// } |
| /// assert_eq!(map[&1], "b"); |
| /// |
| /// assert_eq!(map.get_mut(&2), None); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.get_inner_mut(k) { |
| Some(&mut (_, ref mut v)) => Some(v), |
| None => None, |
| } |
| } |
| |
| #[inline] |
| fn get_inner_mut<Q: ?Sized>(&mut self, k: &Q) -> Option<&mut (K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if self.table.is_empty() { |
| None |
| } else { |
| let hash = make_hash::<Q, S>(&self.hash_builder, k); |
| self.table.get_mut(hash, equivalent_key(k)) |
| } |
| } |
| |
| /// Attempts to get mutable references to `N` values in the map at once. |
| /// |
| /// Returns an array of length `N` with the results of each query. For soundness, at most one |
| /// mutable reference will be returned to any value. `None` will be returned if any of the |
| /// keys are duplicates or missing. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut libraries = HashMap::new(); |
| /// libraries.insert("Bodleian Library".to_string(), 1602); |
| /// libraries.insert("Athenæum".to_string(), 1807); |
| /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); |
| /// libraries.insert("Library of Congress".to_string(), 1800); |
| /// |
| /// let got = libraries.get_many_mut([ |
| /// "Athenæum", |
| /// "Library of Congress", |
| /// ]); |
| /// assert_eq!( |
| /// got, |
| /// Some([ |
| /// &mut 1807, |
| /// &mut 1800, |
| /// ]), |
| /// ); |
| /// |
| /// // Missing keys result in None |
| /// let got = libraries.get_many_mut([ |
| /// "Athenæum", |
| /// "New York Public Library", |
| /// ]); |
| /// assert_eq!(got, None); |
| /// |
| /// // Duplicate keys result in None |
| /// let got = libraries.get_many_mut([ |
| /// "Athenæum", |
| /// "Athenæum", |
| /// ]); |
| /// assert_eq!(got, None); |
| /// ``` |
| pub fn get_many_mut<Q: ?Sized, const N: usize>(&mut self, ks: [&Q; N]) -> Option<[&'_ mut V; N]> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.get_many_mut_inner(ks).map(|res| res.map(|(_, v)| v)) |
| } |
| |
| /// Attempts to get mutable references to `N` values in the map at once, without validating that |
| /// the values are unique. |
| /// |
| /// Returns an array of length `N` with the results of each query. `None` will be returned if |
| /// any of the keys are missing. |
| /// |
| /// For a safe alternative see [`get_many_mut`](`HashMap::get_many_mut`). |
| /// |
| /// # Safety |
| /// |
| /// Calling this method with overlapping keys is *[undefined behavior]* even if the resulting |
| /// references are not used. |
| /// |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut libraries = HashMap::new(); |
| /// libraries.insert("Bodleian Library".to_string(), 1602); |
| /// libraries.insert("Athenæum".to_string(), 1807); |
| /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); |
| /// libraries.insert("Library of Congress".to_string(), 1800); |
| /// |
| /// let got = libraries.get_many_mut([ |
| /// "Athenæum", |
| /// "Library of Congress", |
| /// ]); |
| /// assert_eq!( |
| /// got, |
| /// Some([ |
| /// &mut 1807, |
| /// &mut 1800, |
| /// ]), |
| /// ); |
| /// |
| /// // Missing keys result in None |
| /// let got = libraries.get_many_mut([ |
| /// "Athenæum", |
| /// "New York Public Library", |
| /// ]); |
| /// assert_eq!(got, None); |
| /// ``` |
| pub unsafe fn get_many_unchecked_mut<Q: ?Sized, const N: usize>( |
| &mut self, |
| ks: [&Q; N], |
| ) -> Option<[&'_ mut V; N]> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.get_many_unchecked_mut_inner(ks) |
| .map(|res| res.map(|(_, v)| v)) |
| } |
| |
| /// Attempts to get mutable references to `N` values in the map at once, with immutable |
| /// references to the corresponding keys. |
| /// |
| /// Returns an array of length `N` with the results of each query. For soundness, at most one |
| /// mutable reference will be returned to any value. `None` will be returned if any of the keys |
| /// are duplicates or missing. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut libraries = HashMap::new(); |
| /// libraries.insert("Bodleian Library".to_string(), 1602); |
| /// libraries.insert("Athenæum".to_string(), 1807); |
| /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); |
| /// libraries.insert("Library of Congress".to_string(), 1800); |
| /// |
| /// let got = libraries.get_many_key_value_mut([ |
| /// "Bodleian Library", |
| /// "Herzogin-Anna-Amalia-Bibliothek", |
| /// ]); |
| /// assert_eq!( |
| /// got, |
| /// Some([ |
| /// (&"Bodleian Library".to_string(), &mut 1602), |
| /// (&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691), |
| /// ]), |
| /// ); |
| /// // Missing keys result in None |
| /// let got = libraries.get_many_key_value_mut([ |
| /// "Bodleian Library", |
| /// "Gewandhaus", |
| /// ]); |
| /// assert_eq!(got, None); |
| /// |
| /// // Duplicate keys result in None |
| /// let got = libraries.get_many_key_value_mut([ |
| /// "Bodleian Library", |
| /// "Herzogin-Anna-Amalia-Bibliothek", |
| /// "Herzogin-Anna-Amalia-Bibliothek", |
| /// ]); |
| /// assert_eq!(got, None); |
| /// ``` |
| pub fn get_many_key_value_mut<Q: ?Sized, const N: usize>( |
| &mut self, |
| ks: [&Q; N], |
| ) -> Option<[(&'_ K, &'_ mut V); N]> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.get_many_mut_inner(ks) |
| .map(|res| res.map(|(k, v)| (&*k, v))) |
| } |
| |
| /// Attempts to get mutable references to `N` values in the map at once, with immutable |
| /// references to the corresponding keys, without validating that the values are unique. |
| /// |
| /// Returns an array of length `N` with the results of each query. `None` will be returned if |
| /// any of the keys are missing. |
| /// |
| /// For a safe alternative see [`get_many_key_value_mut`](`HashMap::get_many_key_value_mut`). |
| /// |
| /// # Safety |
| /// |
| /// Calling this method with overlapping keys is *[undefined behavior]* even if the resulting |
| /// references are not used. |
| /// |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut libraries = HashMap::new(); |
| /// libraries.insert("Bodleian Library".to_string(), 1602); |
| /// libraries.insert("Athenæum".to_string(), 1807); |
| /// libraries.insert("Herzogin-Anna-Amalia-Bibliothek".to_string(), 1691); |
| /// libraries.insert("Library of Congress".to_string(), 1800); |
| /// |
| /// let got = libraries.get_many_key_value_mut([ |
| /// "Bodleian Library", |
| /// "Herzogin-Anna-Amalia-Bibliothek", |
| /// ]); |
| /// assert_eq!( |
| /// got, |
| /// Some([ |
| /// (&"Bodleian Library".to_string(), &mut 1602), |
| /// (&"Herzogin-Anna-Amalia-Bibliothek".to_string(), &mut 1691), |
| /// ]), |
| /// ); |
| /// // Missing keys result in None |
| /// let got = libraries.get_many_key_value_mut([ |
| /// "Bodleian Library", |
| /// "Gewandhaus", |
| /// ]); |
| /// assert_eq!(got, None); |
| /// ``` |
| pub unsafe fn get_many_key_value_unchecked_mut<Q: ?Sized, const N: usize>( |
| &mut self, |
| ks: [&Q; N], |
| ) -> Option<[(&'_ K, &'_ mut V); N]> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.get_many_unchecked_mut_inner(ks) |
| .map(|res| res.map(|(k, v)| (&*k, v))) |
| } |
| |
| fn get_many_mut_inner<Q: ?Sized, const N: usize>( |
| &mut self, |
| ks: [&Q; N], |
| ) -> Option<[&'_ mut (K, V); N]> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| let hashes = self.build_hashes_inner(ks); |
| self.table |
| .get_many_mut(hashes, |i, (k, _)| ks[i].equivalent(k)) |
| } |
| |
| unsafe fn get_many_unchecked_mut_inner<Q: ?Sized, const N: usize>( |
| &mut self, |
| ks: [&Q; N], |
| ) -> Option<[&'_ mut (K, V); N]> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| let hashes = self.build_hashes_inner(ks); |
| self.table |
| .get_many_unchecked_mut(hashes, |i, (k, _)| ks[i].equivalent(k)) |
| } |
| |
| fn build_hashes_inner<Q: ?Sized, const N: usize>(&self, ks: [&Q; N]) -> [u64; N] |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| let mut hashes = [0_u64; N]; |
| for i in 0..N { |
| hashes[i] = make_hash::<Q, S>(&self.hash_builder, ks[i]); |
| } |
| hashes |
| } |
| |
| /// Inserts a key-value pair into the map. |
| /// |
| /// If the map did not have this key present, [`None`] is returned. |
| /// |
| /// If the map did have this key present, the value is updated, and the old |
| /// value is returned. The key is not updated, though; this matters for |
| /// types that can be `==` without being identical. See the [`std::collections`] |
| /// [module-level documentation] for more. |
| /// |
| /// [`None`]: https://doc.rust-lang.org/std/option/enum.Option.html#variant.None |
| /// [`std::collections`]: https://doc.rust-lang.org/std/collections/index.html |
| /// [module-level documentation]: https://doc.rust-lang.org/std/collections/index.html#insert-and-complex-keys |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// assert_eq!(map.insert(37, "a"), None); |
| /// assert_eq!(map.is_empty(), false); |
| /// |
| /// map.insert(37, "b"); |
| /// assert_eq!(map.insert(37, "c"), Some("b")); |
| /// assert_eq!(map[&37], "c"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(&mut self, k: K, v: V) -> Option<V> { |
| let hash = make_hash::<K, S>(&self.hash_builder, &k); |
| let hasher = make_hasher::<_, V, S>(&self.hash_builder); |
| match self |
| .table |
| .find_or_find_insert_slot(hash, equivalent_key(&k), hasher) |
| { |
| Ok(bucket) => Some(mem::replace(unsafe { &mut bucket.as_mut().1 }, v)), |
| Err(slot) => { |
| unsafe { |
| self.table.insert_in_slot(hash, slot, (k, v)); |
| } |
| None |
| } |
| } |
| } |
| |
| /// Insert a key-value pair into the map without checking |
| /// if the key already exists in the map. |
| /// |
| /// Returns a reference to the key and value just inserted. |
| /// |
| /// This operation is safe if a key does not exist in the map. |
| /// |
| /// However, if a key exists in the map already, the behavior is unspecified: |
| /// this operation may panic, loop forever, or any following operation with the map |
| /// may panic, loop forever or return arbitrary result. |
| /// |
| /// That said, this operation (and following operations) are guaranteed to |
| /// not violate memory safety. |
| /// |
| /// This operation is faster than regular insert, because it does not perform |
| /// lookup before insertion. |
| /// |
| /// This operation is useful during initial population of the map. |
| /// For example, when constructing a map from another map, we know |
| /// that keys are unique. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map1 = HashMap::new(); |
| /// assert_eq!(map1.insert(1, "a"), None); |
| /// assert_eq!(map1.insert(2, "b"), None); |
| /// assert_eq!(map1.insert(3, "c"), None); |
| /// assert_eq!(map1.len(), 3); |
| /// |
| /// let mut map2 = HashMap::new(); |
| /// |
| /// for (key, value) in map1.into_iter() { |
| /// map2.insert_unique_unchecked(key, value); |
| /// } |
| /// |
| /// let (key, value) = map2.insert_unique_unchecked(4, "d"); |
| /// assert_eq!(key, &4); |
| /// assert_eq!(value, &mut "d"); |
| /// *value = "e"; |
| /// |
| /// assert_eq!(map2[&1], "a"); |
| /// assert_eq!(map2[&2], "b"); |
| /// assert_eq!(map2[&3], "c"); |
| /// assert_eq!(map2[&4], "e"); |
| /// assert_eq!(map2.len(), 4); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert_unique_unchecked(&mut self, k: K, v: V) -> (&K, &mut V) { |
| let hash = make_hash::<K, S>(&self.hash_builder, &k); |
| let bucket = self |
| .table |
| .insert(hash, (k, v), make_hasher::<_, V, S>(&self.hash_builder)); |
| let (k_ref, v_ref) = unsafe { bucket.as_mut() }; |
| (k_ref, v_ref) |
| } |
| |
| /// Tries to insert a key-value pair into the map, and returns |
| /// a mutable reference to the value in the entry. |
| /// |
| /// # Errors |
| /// |
| /// If the map already had this key present, nothing is updated, and |
| /// an error containing the occupied entry and the value is returned. |
| /// |
| /// # Examples |
| /// |
| /// Basic usage: |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::OccupiedError; |
| /// |
| /// let mut map = HashMap::new(); |
| /// assert_eq!(map.try_insert(37, "a").unwrap(), &"a"); |
| /// |
| /// match map.try_insert(37, "b") { |
| /// Err(OccupiedError { entry, value }) => { |
| /// assert_eq!(entry.key(), &37); |
| /// assert_eq!(entry.get(), &"a"); |
| /// assert_eq!(value, "b"); |
| /// } |
| /// _ => panic!() |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn try_insert( |
| &mut self, |
| key: K, |
| value: V, |
| ) -> Result<&mut V, OccupiedError<'_, K, V, S, A>> { |
| match self.entry(key) { |
| Entry::Occupied(entry) => Err(OccupiedError { entry, value }), |
| Entry::Vacant(entry) => Ok(entry.insert(value)), |
| } |
| } |
| |
| /// Removes a key from the map, returning the value at the key if the key |
| /// was previously in the map. Keeps the allocated memory for reuse. |
| /// |
| /// The key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// // The map is empty |
| /// assert!(map.is_empty() && map.capacity() == 0); |
| /// |
| /// map.insert(1, "a"); |
| /// |
| /// assert_eq!(map.remove(&1), Some("a")); |
| /// assert_eq!(map.remove(&1), None); |
| /// |
| /// // Now map holds none elements |
| /// assert!(map.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove<Q: ?Sized>(&mut self, k: &Q) -> Option<V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.remove_entry(k) { |
| Some((_, v)) => Some(v), |
| None => None, |
| } |
| } |
| |
| /// Removes a key from the map, returning the stored key and value if the |
| /// key was previously in the map. Keeps the allocated memory for reuse. |
| /// |
| /// The key may be any borrowed form of the map's key type, but |
| /// [`Hash`] and [`Eq`] on the borrowed form *must* match those for |
| /// the key type. |
| /// |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// // The map is empty |
| /// assert!(map.is_empty() && map.capacity() == 0); |
| /// |
| /// map.insert(1, "a"); |
| /// |
| /// assert_eq!(map.remove_entry(&1), Some((1, "a"))); |
| /// assert_eq!(map.remove(&1), None); |
| /// |
| /// // Now map hold none elements |
| /// assert!(map.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove_entry<Q: ?Sized>(&mut self, k: &Q) -> Option<(K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| let hash = make_hash::<Q, S>(&self.hash_builder, k); |
| self.table.remove_entry(hash, equivalent_key(k)) |
| } |
| } |
| |
| impl<K, V, S, A: Allocator> HashMap<K, V, S, A> { |
| /// Creates a raw entry builder for the HashMap. |
| /// |
| /// Raw entries provide the lowest level of control for searching and |
| /// manipulating a map. They must be manually initialized with a hash and |
| /// then manually searched. After this, insertions into a vacant entry |
| /// still require an owned key to be provided. |
| /// |
| /// Raw entries are useful for such exotic situations as: |
| /// |
| /// * Hash memoization |
| /// * Deferring the creation of an owned key until it is known to be required |
| /// * Using a search key that doesn't work with the Borrow trait |
| /// * Using custom comparison logic without newtype wrappers |
| /// |
| /// Because raw entries provide much more low-level control, it's much easier |
| /// to put the HashMap into an inconsistent state which, while memory-safe, |
| /// will cause the map to produce seemingly random results. Higher-level and |
| /// more foolproof APIs like `entry` should be preferred when possible. |
| /// |
| /// In particular, the hash used to initialized the raw entry must still be |
| /// consistent with the hash of the key that is ultimately stored in the entry. |
| /// This is because implementations of HashMap may need to recompute hashes |
| /// when resizing, at which point only the keys are available. |
| /// |
| /// Raw entries give mutable access to the keys. This must not be used |
| /// to modify how the key would compare or hash, as the map will not re-evaluate |
| /// where the key should go, meaning the keys may become "lost" if their |
| /// location does not reflect their state. For instance, if you change a key |
| /// so that the map now contains keys which compare equal, search may start |
| /// acting erratically, with two keys randomly masking each other. Implementations |
| /// are free to assume this doesn't happen (within the limits of memory-safety). |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a", 100), ("b", 200), ("c", 300)]); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// // Existing key (insert and update) |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(mut view) => { |
| /// assert_eq!(view.get(), &100); |
| /// let v = view.get_mut(); |
| /// let new_v = (*v) * 10; |
| /// *v = new_v; |
| /// assert_eq!(view.insert(1111), 1000); |
| /// } |
| /// } |
| /// |
| /// assert_eq!(map[&"a"], 1111); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (take) |
| /// let hash = compute_hash(map.hasher(), &"c"); |
| /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"c") { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(view) => { |
| /// assert_eq!(view.remove_entry(), ("c", 300)); |
| /// } |
| /// } |
| /// assert_eq!(map.raw_entry().from_key(&"c"), None); |
| /// assert_eq!(map.len(), 2); |
| /// |
| /// // Nonexistent key (insert and update) |
| /// let key = "d"; |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// match map.raw_entry_mut().from_hash(hash, |q| *q == key) { |
| /// RawEntryMut::Occupied(_) => unreachable!(), |
| /// RawEntryMut::Vacant(view) => { |
| /// let (k, value) = view.insert("d", 4000); |
| /// assert_eq!((*k, *value), ("d", 4000)); |
| /// *value = 40000; |
| /// } |
| /// } |
| /// assert_eq!(map[&"d"], 40000); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// match map.raw_entry_mut().from_hash(hash, |q| *q == key) { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(view) => { |
| /// assert_eq!(view.remove_entry(), ("d", 40000)); |
| /// } |
| /// } |
| /// assert_eq!(map.get(&"d"), None); |
| /// assert_eq!(map.len(), 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn raw_entry_mut(&mut self) -> RawEntryBuilderMut<'_, K, V, S, A> { |
| RawEntryBuilderMut { map: self } |
| } |
| |
| /// Creates a raw immutable entry builder for the HashMap. |
| /// |
| /// Raw entries provide the lowest level of control for searching and |
| /// manipulating a map. They must be manually initialized with a hash and |
| /// then manually searched. |
| /// |
| /// This is useful for |
| /// * Hash memoization |
| /// * Using a search key that doesn't work with the Borrow trait |
| /// * Using custom comparison logic without newtype wrappers |
| /// |
| /// Unless you are in such a situation, higher-level and more foolproof APIs like |
| /// `get` should be preferred. |
| /// |
| /// Immutable raw entries have very limited use; you might instead want `raw_entry_mut`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a", 100), ("b", 200), ("c", 300)]); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// for k in ["a", "b", "c", "d", "e", "f"] { |
| /// let hash = compute_hash(map.hasher(), k); |
| /// let v = map.get(&k).cloned(); |
| /// let kv = v.as_ref().map(|v| (&k, v)); |
| /// |
| /// println!("Key: {} and value: {:?}", k, v); |
| /// |
| /// assert_eq!(map.raw_entry().from_key(&k), kv); |
| /// assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); |
| /// assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn raw_entry(&self) -> RawEntryBuilder<'_, K, V, S, A> { |
| RawEntryBuilder { map: self } |
| } |
| |
| /// Returns a reference to the [`RawTable`] used underneath [`HashMap`]. |
| /// This function is only available if the `raw` feature of the crate is enabled. |
| /// |
| /// See [`raw_table_mut`] for more. |
| /// |
| /// [`raw_table_mut`]: Self::raw_table_mut |
| #[cfg(feature = "raw")] |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn raw_table(&self) -> &RawTable<(K, V), A> { |
| &self.table |
| } |
| |
| /// Returns a mutable reference to the [`RawTable`] used underneath [`HashMap`]. |
| /// This function is only available if the `raw` feature of the crate is enabled. |
| /// |
| /// # Note |
| /// |
| /// Calling this function is safe, but using the raw hash table API may require |
| /// unsafe functions or blocks. |
| /// |
| /// `RawTable` API gives the lowest level of control under the map that can be useful |
| /// for extending the HashMap's API, but may lead to *[undefined behavior]*. |
| /// |
| /// [`HashMap`]: struct.HashMap.html |
| /// [`RawTable`]: crate::raw::RawTable |
| /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a", 10), ("b", 20), ("c", 30)]); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Let's imagine that we have a value and a hash of the key, but not the key itself. |
| /// // However, if you want to remove the value from the map by hash and value, and you |
| /// // know exactly that the value is unique, then you can create a function like this: |
| /// fn remove_by_hash<K, V, S, F>( |
| /// map: &mut HashMap<K, V, S>, |
| /// hash: u64, |
| /// is_match: F, |
| /// ) -> Option<(K, V)> |
| /// where |
| /// F: Fn(&(K, V)) -> bool, |
| /// { |
| /// let raw_table = map.raw_table_mut(); |
| /// match raw_table.find(hash, is_match) { |
| /// Some(bucket) => Some(unsafe { raw_table.remove(bucket).0 }), |
| /// None => None, |
| /// } |
| /// } |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let hash = compute_hash(map.hasher(), "a"); |
| /// assert_eq!(remove_by_hash(&mut map, hash, |(_, v)| *v == 10), Some(("a", 10))); |
| /// assert_eq!(map.get(&"a"), None); |
| /// assert_eq!(map.len(), 2); |
| /// ``` |
| #[cfg(feature = "raw")] |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn raw_table_mut(&mut self) -> &mut RawTable<(K, V), A> { |
| &mut self.table |
| } |
| } |
| |
| impl<K, V, S, A> PartialEq for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash, |
| V: PartialEq, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| fn eq(&self, other: &Self) -> bool { |
| if self.len() != other.len() { |
| return false; |
| } |
| |
| self.iter() |
| .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) |
| } |
| } |
| |
| impl<K, V, S, A> Eq for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash, |
| V: Eq, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| } |
| |
| impl<K, V, S, A> Debug for HashMap<K, V, S, A> |
| where |
| K: Debug, |
| V: Debug, |
| A: Allocator, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_map().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<K, V, S, A> Default for HashMap<K, V, S, A> |
| where |
| S: Default, |
| A: Default + Allocator, |
| { |
| /// Creates an empty `HashMap<K, V, S, A>`, with the `Default` value for the hasher and allocator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use std::collections::hash_map::RandomState; |
| /// |
| /// // You can specify all types of HashMap, including hasher and allocator. |
| /// // Created map is empty and don't allocate memory |
| /// let map: HashMap<u32, String> = Default::default(); |
| /// assert_eq!(map.capacity(), 0); |
| /// let map: HashMap<u32, String, RandomState> = HashMap::default(); |
| /// assert_eq!(map.capacity(), 0); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn default() -> Self { |
| Self::with_hasher_in(Default::default(), Default::default()) |
| } |
| } |
| |
| impl<K, Q: ?Sized, V, S, A> Index<&Q> for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash, |
| Q: Hash + Equivalent<K>, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| type Output = V; |
| |
| /// Returns a reference to the value corresponding to the supplied key. |
| /// |
| /// # Panics |
| /// |
| /// Panics if the key is not present in the `HashMap`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [("a", "One"), ("b", "Two")].into(); |
| /// |
| /// assert_eq!(map[&"a"], "One"); |
| /// assert_eq!(map[&"b"], "Two"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn index(&self, key: &Q) -> &V { |
| self.get(key).expect("no entry found for key") |
| } |
| } |
| |
| // The default hasher is used to match the std implementation signature |
| #[cfg(feature = "ahash")] |
| impl<K, V, A, const N: usize> From<[(K, V); N]> for HashMap<K, V, DefaultHashBuilder, A> |
| where |
| K: Eq + Hash, |
| A: Default + Allocator, |
| { |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map1 = HashMap::from([(1, 2), (3, 4)]); |
| /// let map2: HashMap<_, _> = [(1, 2), (3, 4)].into(); |
| /// assert_eq!(map1, map2); |
| /// ``` |
| fn from(arr: [(K, V); N]) -> Self { |
| arr.into_iter().collect() |
| } |
| } |
| |
| /// An iterator over the entries of a `HashMap` in arbitrary order. |
| /// The iterator element type is `(&'a K, &'a V)`. |
| /// |
| /// This `struct` is created by the [`iter`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`iter`]: struct.HashMap.html#method.iter |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut iter = map.iter(); |
| /// let mut vec = vec![iter.next(), iter.next(), iter.next()]; |
| /// |
| /// // The `Iter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some((&1, &"a")), Some((&2, &"b")), Some((&3, &"c"))]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(iter.next(), None); |
| /// assert_eq!(iter.next(), None); |
| /// ``` |
| pub struct Iter<'a, K, V> { |
| inner: RawIter<(K, V)>, |
| marker: PhantomData<(&'a K, &'a V)>, |
| } |
| |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` |
| impl<K, V> Clone for Iter<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn clone(&self) -> Self { |
| Iter { |
| inner: self.inner.clone(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| impl<K: Debug, V: Debug> fmt::Debug for Iter<'_, K, V> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// A mutable iterator over the entries of a `HashMap` in arbitrary order. |
| /// The iterator element type is `(&'a K, &'a mut V)`. |
| /// |
| /// This `struct` is created by the [`iter_mut`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`iter_mut`]: struct.HashMap.html#method.iter_mut |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<_, _> = [(1, "One".to_owned()), (2, "Two".into())].into(); |
| /// |
| /// let mut iter = map.iter_mut(); |
| /// iter.next().map(|(_, v)| v.push_str(" Mississippi")); |
| /// iter.next().map(|(_, v)| v.push_str(" Mississippi")); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(iter.next(), None); |
| /// assert_eq!(iter.next(), None); |
| /// |
| /// assert_eq!(map.get(&1).unwrap(), &"One Mississippi".to_owned()); |
| /// assert_eq!(map.get(&2).unwrap(), &"Two Mississippi".to_owned()); |
| /// ``` |
| pub struct IterMut<'a, K, V> { |
| inner: RawIter<(K, V)>, |
| // To ensure invariance with respect to V |
| marker: PhantomData<(&'a K, &'a mut V)>, |
| } |
| |
| // We override the default Send impl which has K: Sync instead of K: Send. Both |
| // are correct, but this one is more general since it allows keys which |
| // implement Send but not Sync. |
| unsafe impl<K: Send, V: Send> Send for IterMut<'_, K, V> {} |
| |
| impl<K, V> IterMut<'_, K, V> { |
| /// Returns a iterator of references over the remaining items. |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(super) fn iter(&self) -> Iter<'_, K, V> { |
| Iter { |
| inner: self.inner.clone(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| /// An owning iterator over the entries of a `HashMap` in arbitrary order. |
| /// The iterator element type is `(K, V)`. |
| /// |
| /// This `struct` is created by the [`into_iter`] method on [`HashMap`] |
| /// (provided by the [`IntoIterator`] trait). See its documentation for more. |
| /// The map cannot be used after calling that method. |
| /// |
| /// [`into_iter`]: struct.HashMap.html#method.into_iter |
| /// [`HashMap`]: struct.HashMap.html |
| /// [`IntoIterator`]: https://doc.rust-lang.org/core/iter/trait.IntoIterator.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut iter = map.into_iter(); |
| /// let mut vec = vec![iter.next(), iter.next(), iter.next()]; |
| /// |
| /// // The `IntoIter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some((1, "a")), Some((2, "b")), Some((3, "c"))]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(iter.next(), None); |
| /// assert_eq!(iter.next(), None); |
| /// ``` |
| pub struct IntoIter<K, V, A: Allocator = Global> { |
| inner: RawIntoIter<(K, V), A>, |
| } |
| |
| impl<K, V, A: Allocator> IntoIter<K, V, A> { |
| /// Returns a iterator of references over the remaining items. |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(super) fn iter(&self) -> Iter<'_, K, V> { |
| Iter { |
| inner: self.inner.iter(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| /// An owning iterator over the keys of a `HashMap` in arbitrary order. |
| /// The iterator element type is `K`. |
| /// |
| /// This `struct` is created by the [`into_keys`] method on [`HashMap`]. |
| /// See its documentation for more. |
| /// The map cannot be used after calling that method. |
| /// |
| /// [`into_keys`]: struct.HashMap.html#method.into_keys |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut keys = map.into_keys(); |
| /// let mut vec = vec![keys.next(), keys.next(), keys.next()]; |
| /// |
| /// // The `IntoKeys` iterator produces keys in arbitrary order, so the |
| /// // keys must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some(1), Some(2), Some(3)]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(keys.next(), None); |
| /// assert_eq!(keys.next(), None); |
| /// ``` |
| pub struct IntoKeys<K, V, A: Allocator = Global> { |
| inner: IntoIter<K, V, A>, |
| } |
| |
| impl<K, V, A: Allocator> Iterator for IntoKeys<K, V, A> { |
| type Item = K; |
| |
| #[inline] |
| fn next(&mut self) -> Option<K> { |
| self.inner.next().map(|(k, _)| k) |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[inline] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, (k, _)| f(acc, k)) |
| } |
| } |
| |
| impl<K, V, A: Allocator> ExactSizeIterator for IntoKeys<K, V, A> { |
| #[inline] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| |
| impl<K, V, A: Allocator> FusedIterator for IntoKeys<K, V, A> {} |
| |
| impl<K: Debug, V: Debug, A: Allocator> fmt::Debug for IntoKeys<K, V, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list() |
| .entries(self.inner.iter().map(|(k, _)| k)) |
| .finish() |
| } |
| } |
| |
| /// An owning iterator over the values of a `HashMap` in arbitrary order. |
| /// The iterator element type is `V`. |
| /// |
| /// This `struct` is created by the [`into_values`] method on [`HashMap`]. |
| /// See its documentation for more. The map cannot be used after calling that method. |
| /// |
| /// [`into_values`]: struct.HashMap.html#method.into_values |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut values = map.into_values(); |
| /// let mut vec = vec![values.next(), values.next(), values.next()]; |
| /// |
| /// // The `IntoValues` iterator produces values in arbitrary order, so |
| /// // the values must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some("a"), Some("b"), Some("c")]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(values.next(), None); |
| /// assert_eq!(values.next(), None); |
| /// ``` |
| pub struct IntoValues<K, V, A: Allocator = Global> { |
| inner: IntoIter<K, V, A>, |
| } |
| |
| impl<K, V, A: Allocator> Iterator for IntoValues<K, V, A> { |
| type Item = V; |
| |
| #[inline] |
| fn next(&mut self) -> Option<V> { |
| self.inner.next().map(|(_, v)| v) |
| } |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[inline] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, (_, v)| f(acc, v)) |
| } |
| } |
| |
| impl<K, V, A: Allocator> ExactSizeIterator for IntoValues<K, V, A> { |
| #[inline] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| |
| impl<K, V, A: Allocator> FusedIterator for IntoValues<K, V, A> {} |
| |
| impl<K, V: Debug, A: Allocator> fmt::Debug for IntoValues<K, V, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list() |
| .entries(self.inner.iter().map(|(_, v)| v)) |
| .finish() |
| } |
| } |
| |
| /// An iterator over the keys of a `HashMap` in arbitrary order. |
| /// The iterator element type is `&'a K`. |
| /// |
| /// This `struct` is created by the [`keys`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`keys`]: struct.HashMap.html#method.keys |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut keys = map.keys(); |
| /// let mut vec = vec![keys.next(), keys.next(), keys.next()]; |
| /// |
| /// // The `Keys` iterator produces keys in arbitrary order, so the |
| /// // keys must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some(&1), Some(&2), Some(&3)]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(keys.next(), None); |
| /// assert_eq!(keys.next(), None); |
| /// ``` |
| pub struct Keys<'a, K, V> { |
| inner: Iter<'a, K, V>, |
| } |
| |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` |
| impl<K, V> Clone for Keys<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn clone(&self) -> Self { |
| Keys { |
| inner: self.inner.clone(), |
| } |
| } |
| } |
| |
| impl<K: Debug, V> fmt::Debug for Keys<'_, K, V> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// An iterator over the values of a `HashMap` in arbitrary order. |
| /// The iterator element type is `&'a V`. |
| /// |
| /// This `struct` is created by the [`values`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`values`]: struct.HashMap.html#method.values |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut values = map.values(); |
| /// let mut vec = vec![values.next(), values.next(), values.next()]; |
| /// |
| /// // The `Values` iterator produces values in arbitrary order, so the |
| /// // values must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some(&"a"), Some(&"b"), Some(&"c")]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(values.next(), None); |
| /// assert_eq!(values.next(), None); |
| /// ``` |
| pub struct Values<'a, K, V> { |
| inner: Iter<'a, K, V>, |
| } |
| |
| // FIXME(#26925) Remove in favor of `#[derive(Clone)]` |
| impl<K, V> Clone for Values<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn clone(&self) -> Self { |
| Values { |
| inner: self.inner.clone(), |
| } |
| } |
| } |
| |
| impl<K, V: Debug> fmt::Debug for Values<'_, K, V> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// A draining iterator over the entries of a `HashMap` in arbitrary |
| /// order. The iterator element type is `(K, V)`. |
| /// |
| /// This `struct` is created by the [`drain`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`drain`]: struct.HashMap.html#method.drain |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut drain_iter = map.drain(); |
| /// let mut vec = vec![drain_iter.next(), drain_iter.next(), drain_iter.next()]; |
| /// |
| /// // The `Drain` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some((1, "a")), Some((2, "b")), Some((3, "c"))]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(drain_iter.next(), None); |
| /// assert_eq!(drain_iter.next(), None); |
| /// ``` |
| pub struct Drain<'a, K, V, A: Allocator = Global> { |
| inner: RawDrain<'a, (K, V), A>, |
| } |
| |
| impl<K, V, A: Allocator> Drain<'_, K, V, A> { |
| /// Returns a iterator of references over the remaining items. |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(super) fn iter(&self) -> Iter<'_, K, V> { |
| Iter { |
| inner: self.inner.iter(), |
| marker: PhantomData, |
| } |
| } |
| } |
| |
| /// A draining iterator over entries of a `HashMap` which don't satisfy the predicate |
| /// `f(&k, &mut v)` in arbitrary order. The iterator element type is `(K, V)`. |
| /// |
| /// This `struct` is created by the [`extract_if`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`extract_if`]: struct.HashMap.html#method.extract_if |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<i32, &str> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// |
| /// let mut extract_if = map.extract_if(|k, _v| k % 2 != 0); |
| /// let mut vec = vec![extract_if.next(), extract_if.next()]; |
| /// |
| /// // The `ExtractIf` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [Some((1, "a")),Some((3, "c"))]); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(extract_if.next(), None); |
| /// assert_eq!(extract_if.next(), None); |
| /// drop(extract_if); |
| /// |
| /// assert_eq!(map.len(), 1); |
| /// ``` |
| #[must_use = "Iterators are lazy unless consumed"] |
| pub struct ExtractIf<'a, K, V, F, A: Allocator = Global> |
| where |
| F: FnMut(&K, &mut V) -> bool, |
| { |
| f: F, |
| inner: RawExtractIf<'a, (K, V), A>, |
| } |
| |
| impl<K, V, F, A> Iterator for ExtractIf<'_, K, V, F, A> |
| where |
| F: FnMut(&K, &mut V) -> bool, |
| A: Allocator, |
| { |
| type Item = (K, V); |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<Self::Item> { |
| self.inner.next(|&mut (ref k, ref mut v)| (self.f)(k, v)) |
| } |
| |
| #[inline] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (0, self.inner.iter.size_hint().1) |
| } |
| } |
| |
| impl<K, V, F> FusedIterator for ExtractIf<'_, K, V, F> where F: FnMut(&K, &mut V) -> bool {} |
| |
| /// A mutable iterator over the values of a `HashMap` in arbitrary order. |
| /// The iterator element type is `&'a mut V`. |
| /// |
| /// This `struct` is created by the [`values_mut`] method on [`HashMap`]. See its |
| /// documentation for more. |
| /// |
| /// [`values_mut`]: struct.HashMap.html#method.values_mut |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<_, _> = [(1, "One".to_owned()), (2, "Two".into())].into(); |
| /// |
| /// let mut values = map.values_mut(); |
| /// values.next().map(|v| v.push_str(" Mississippi")); |
| /// values.next().map(|v| v.push_str(" Mississippi")); |
| /// |
| /// // It is fused iterator |
| /// assert_eq!(values.next(), None); |
| /// assert_eq!(values.next(), None); |
| /// |
| /// assert_eq!(map.get(&1).unwrap(), &"One Mississippi".to_owned()); |
| /// assert_eq!(map.get(&2).unwrap(), &"Two Mississippi".to_owned()); |
| /// ``` |
| pub struct ValuesMut<'a, K, V> { |
| inner: IterMut<'a, K, V>, |
| } |
| |
| /// A builder for computing where in a [`HashMap`] a key-value pair would be stored. |
| /// |
| /// See the [`HashMap::raw_entry_mut`] docs for usage examples. |
| /// |
| /// [`HashMap::raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{RawEntryBuilderMut, RawEntryMut::Vacant, RawEntryMut::Occupied}; |
| /// use hashbrown::HashMap; |
| /// use core::hash::{BuildHasher, Hash}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([(1, 11), (2, 12), (3, 13), (4, 14), (5, 15), (6, 16)]); |
| /// assert_eq!(map.len(), 6); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let builder: RawEntryBuilderMut<_, _, _> = map.raw_entry_mut(); |
| /// |
| /// // Existing key |
| /// match builder.from_key(&6) { |
| /// Vacant(_) => unreachable!(), |
| /// Occupied(view) => assert_eq!(view.get(), &16), |
| /// } |
| /// |
| /// for key in 0..12 { |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// let value = map.get(&key).cloned(); |
| /// let key_value = value.as_ref().map(|v| (&key, v)); |
| /// |
| /// println!("Key: {} and value: {:?}", key, value); |
| /// |
| /// match map.raw_entry_mut().from_key(&key) { |
| /// Occupied(mut o) => assert_eq!(Some(o.get_key_value()), key_value), |
| /// Vacant(_) => assert_eq!(value, None), |
| /// } |
| /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &key) { |
| /// Occupied(mut o) => assert_eq!(Some(o.get_key_value()), key_value), |
| /// Vacant(_) => assert_eq!(value, None), |
| /// } |
| /// match map.raw_entry_mut().from_hash(hash, |q| *q == key) { |
| /// Occupied(mut o) => assert_eq!(Some(o.get_key_value()), key_value), |
| /// Vacant(_) => assert_eq!(value, None), |
| /// } |
| /// } |
| /// |
| /// assert_eq!(map.len(), 6); |
| /// ``` |
| pub struct RawEntryBuilderMut<'a, K, V, S, A: Allocator = Global> { |
| map: &'a mut HashMap<K, V, S, A>, |
| } |
| |
| /// A view into a single entry in a map, which may either be vacant or occupied. |
| /// |
| /// This is a lower-level version of [`Entry`]. |
| /// |
| /// This `enum` is constructed through the [`raw_entry_mut`] method on [`HashMap`], |
| /// then calling one of the methods of that [`RawEntryBuilderMut`]. |
| /// |
| /// [`HashMap`]: struct.HashMap.html |
| /// [`Entry`]: enum.Entry.html |
| /// [`raw_entry_mut`]: struct.HashMap.html#method.raw_entry_mut |
| /// [`RawEntryBuilderMut`]: struct.RawEntryBuilderMut.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut, RawOccupiedEntryMut}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([('a', 1), ('b', 2), ('c', 3)]); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// // Existing key (insert) |
| /// let raw: RawEntryMut<_, _, _> = map.raw_entry_mut().from_key(&'a'); |
| /// let _raw_o: RawOccupiedEntryMut<_, _, _> = raw.insert('a', 10); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Nonexistent key (insert) |
| /// map.raw_entry_mut().from_key(&'d').insert('d', 40); |
| /// assert_eq!(map.len(), 4); |
| /// |
| /// // Existing key (or_insert) |
| /// let hash = compute_hash(map.hasher(), &'b'); |
| /// let kv = map |
| /// .raw_entry_mut() |
| /// .from_key_hashed_nocheck(hash, &'b') |
| /// .or_insert('b', 20); |
| /// assert_eq!(kv, (&mut 'b', &mut 2)); |
| /// *kv.1 = 20; |
| /// assert_eq!(map.len(), 4); |
| /// |
| /// // Nonexistent key (or_insert) |
| /// let hash = compute_hash(map.hasher(), &'e'); |
| /// let kv = map |
| /// .raw_entry_mut() |
| /// .from_key_hashed_nocheck(hash, &'e') |
| /// .or_insert('e', 50); |
| /// assert_eq!(kv, (&mut 'e', &mut 50)); |
| /// assert_eq!(map.len(), 5); |
| /// |
| /// // Existing key (or_insert_with) |
| /// let hash = compute_hash(map.hasher(), &'c'); |
| /// let kv = map |
| /// .raw_entry_mut() |
| /// .from_hash(hash, |q| q == &'c') |
| /// .or_insert_with(|| ('c', 30)); |
| /// assert_eq!(kv, (&mut 'c', &mut 3)); |
| /// *kv.1 = 30; |
| /// assert_eq!(map.len(), 5); |
| /// |
| /// // Nonexistent key (or_insert_with) |
| /// let hash = compute_hash(map.hasher(), &'f'); |
| /// let kv = map |
| /// .raw_entry_mut() |
| /// .from_hash(hash, |q| q == &'f') |
| /// .or_insert_with(|| ('f', 60)); |
| /// assert_eq!(kv, (&mut 'f', &mut 60)); |
| /// assert_eq!(map.len(), 6); |
| /// |
| /// println!("Our HashMap: {:?}", map); |
| /// |
| /// let mut vec: Vec<_> = map.iter().map(|(&k, &v)| (k, v)).collect(); |
| /// // The `Iter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [('a', 10), ('b', 20), ('c', 30), ('d', 40), ('e', 50), ('f', 60)]); |
| /// ``` |
| pub enum RawEntryMut<'a, K, V, S, A: Allocator = Global> { |
| /// An occupied entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::{hash_map::RawEntryMut, HashMap}; |
| /// let mut map: HashMap<_, _> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(_) => { } |
| /// } |
| /// ``` |
| Occupied(RawOccupiedEntryMut<'a, K, V, S, A>), |
| /// A vacant entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::{hash_map::RawEntryMut, HashMap}; |
| /// let mut map: HashMap<&str, i32> = HashMap::new(); |
| /// |
| /// match map.raw_entry_mut().from_key("a") { |
| /// RawEntryMut::Occupied(_) => unreachable!(), |
| /// RawEntryMut::Vacant(_) => { } |
| /// } |
| /// ``` |
| Vacant(RawVacantEntryMut<'a, K, V, S, A>), |
| } |
| |
| /// A view into an occupied entry in a `HashMap`. |
| /// It is part of the [`RawEntryMut`] enum. |
| /// |
| /// [`RawEntryMut`]: enum.RawEntryMut.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut, RawOccupiedEntryMut}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a", 10), ("b", 20), ("c", 30)]); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let _raw_o: RawOccupiedEntryMut<_, _, _> = map.raw_entry_mut().from_key(&"a").insert("a", 100); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (insert and update) |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(mut view) => { |
| /// assert_eq!(view.get(), &100); |
| /// let v = view.get_mut(); |
| /// let new_v = (*v) * 10; |
| /// *v = new_v; |
| /// assert_eq!(view.insert(1111), 1000); |
| /// } |
| /// } |
| /// |
| /// assert_eq!(map[&"a"], 1111); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (take) |
| /// let hash = compute_hash(map.hasher(), &"c"); |
| /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"c") { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(view) => { |
| /// assert_eq!(view.remove_entry(), ("c", 30)); |
| /// } |
| /// } |
| /// assert_eq!(map.raw_entry().from_key(&"c"), None); |
| /// assert_eq!(map.len(), 2); |
| /// |
| /// let hash = compute_hash(map.hasher(), &"b"); |
| /// match map.raw_entry_mut().from_hash(hash, |q| *q == "b") { |
| /// RawEntryMut::Vacant(_) => unreachable!(), |
| /// RawEntryMut::Occupied(view) => { |
| /// assert_eq!(view.remove_entry(), ("b", 20)); |
| /// } |
| /// } |
| /// assert_eq!(map.get(&"b"), None); |
| /// assert_eq!(map.len(), 1); |
| /// ``` |
| pub struct RawOccupiedEntryMut<'a, K, V, S, A: Allocator = Global> { |
| elem: Bucket<(K, V)>, |
| table: &'a mut RawTable<(K, V), A>, |
| hash_builder: &'a S, |
| } |
| |
| unsafe impl<K, V, S, A> Send for RawOccupiedEntryMut<'_, K, V, S, A> |
| where |
| K: Send, |
| V: Send, |
| S: Send, |
| A: Send + Allocator, |
| { |
| } |
| unsafe impl<K, V, S, A> Sync for RawOccupiedEntryMut<'_, K, V, S, A> |
| where |
| K: Sync, |
| V: Sync, |
| S: Sync, |
| A: Sync + Allocator, |
| { |
| } |
| |
| /// A view into a vacant entry in a `HashMap`. |
| /// It is part of the [`RawEntryMut`] enum. |
| /// |
| /// [`RawEntryMut`]: enum.RawEntryMut.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut, RawVacantEntryMut}; |
| /// |
| /// let mut map = HashMap::<&str, i32>::new(); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let raw_v: RawVacantEntryMut<_, _, _> = match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(view) => view, |
| /// RawEntryMut::Occupied(_) => unreachable!(), |
| /// }; |
| /// raw_v.insert("a", 10); |
| /// assert!(map[&"a"] == 10 && map.len() == 1); |
| /// |
| /// // Nonexistent key (insert and update) |
| /// let hash = compute_hash(map.hasher(), &"b"); |
| /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &"b") { |
| /// RawEntryMut::Occupied(_) => unreachable!(), |
| /// RawEntryMut::Vacant(view) => { |
| /// let (k, value) = view.insert("b", 2); |
| /// assert_eq!((*k, *value), ("b", 2)); |
| /// *value = 20; |
| /// } |
| /// } |
| /// assert!(map[&"b"] == 20 && map.len() == 2); |
| /// |
| /// let hash = compute_hash(map.hasher(), &"c"); |
| /// match map.raw_entry_mut().from_hash(hash, |q| *q == "c") { |
| /// RawEntryMut::Occupied(_) => unreachable!(), |
| /// RawEntryMut::Vacant(view) => { |
| /// assert_eq!(view.insert("c", 30), (&mut "c", &mut 30)); |
| /// } |
| /// } |
| /// assert!(map[&"c"] == 30 && map.len() == 3); |
| /// ``` |
| pub struct RawVacantEntryMut<'a, K, V, S, A: Allocator = Global> { |
| table: &'a mut RawTable<(K, V), A>, |
| hash_builder: &'a S, |
| } |
| |
| /// A builder for computing where in a [`HashMap`] a key-value pair would be stored. |
| /// |
| /// See the [`HashMap::raw_entry`] docs for usage examples. |
| /// |
| /// [`HashMap::raw_entry`]: struct.HashMap.html#method.raw_entry |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryBuilder}; |
| /// use core::hash::{BuildHasher, Hash}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([(1, 10), (2, 20), (3, 30)]); |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// for k in 0..6 { |
| /// let hash = compute_hash(map.hasher(), &k); |
| /// let v = map.get(&k).cloned(); |
| /// let kv = v.as_ref().map(|v| (&k, v)); |
| /// |
| /// println!("Key: {} and value: {:?}", k, v); |
| /// let builder: RawEntryBuilder<_, _, _> = map.raw_entry(); |
| /// assert_eq!(builder.from_key(&k), kv); |
| /// assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); |
| /// assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); |
| /// } |
| /// ``` |
| pub struct RawEntryBuilder<'a, K, V, S, A: Allocator = Global> { |
| map: &'a HashMap<K, V, S, A>, |
| } |
| |
| impl<'a, K, V, S, A: Allocator> RawEntryBuilderMut<'a, K, V, S, A> { |
| /// Creates a `RawEntryMut` from the given key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// let key = "a"; |
| /// let entry: RawEntryMut<&str, u32, _> = map.raw_entry_mut().from_key(&key); |
| /// entry.insert(key, 100); |
| /// assert_eq!(map[&"a"], 100); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| #[allow(clippy::wrong_self_convention)] |
| pub fn from_key<Q: ?Sized>(self, k: &Q) -> RawEntryMut<'a, K, V, S, A> |
| where |
| S: BuildHasher, |
| Q: Hash + Equivalent<K>, |
| { |
| let hash = make_hash::<Q, S>(&self.map.hash_builder, k); |
| self.from_key_hashed_nocheck(hash, k) |
| } |
| |
| /// Creates a `RawEntryMut` from the given key and its hash. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// let key = "a"; |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// let entry: RawEntryMut<&str, u32, _> = map.raw_entry_mut().from_key_hashed_nocheck(hash, &key); |
| /// entry.insert(key, 100); |
| /// assert_eq!(map[&"a"], 100); |
| /// ``` |
| #[inline] |
| #[allow(clippy::wrong_self_convention)] |
| pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> RawEntryMut<'a, K, V, S, A> |
| where |
| Q: Equivalent<K>, |
| { |
| self.from_hash(hash, equivalent(k)) |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> RawEntryBuilderMut<'a, K, V, S, A> { |
| /// Creates a `RawEntryMut` from the given hash and matching function. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// let key = "a"; |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// let entry: RawEntryMut<&str, u32, _> = map.raw_entry_mut().from_hash(hash, |k| k == &key); |
| /// entry.insert(key, 100); |
| /// assert_eq!(map[&"a"], 100); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| #[allow(clippy::wrong_self_convention)] |
| pub fn from_hash<F>(self, hash: u64, is_match: F) -> RawEntryMut<'a, K, V, S, A> |
| where |
| for<'b> F: FnMut(&'b K) -> bool, |
| { |
| self.search(hash, is_match) |
| } |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn search<F>(self, hash: u64, mut is_match: F) -> RawEntryMut<'a, K, V, S, A> |
| where |
| for<'b> F: FnMut(&'b K) -> bool, |
| { |
| match self.map.table.find(hash, |(k, _)| is_match(k)) { |
| Some(elem) => RawEntryMut::Occupied(RawOccupiedEntryMut { |
| elem, |
| table: &mut self.map.table, |
| hash_builder: &self.map.hash_builder, |
| }), |
| None => RawEntryMut::Vacant(RawVacantEntryMut { |
| table: &mut self.map.table, |
| hash_builder: &self.map.hash_builder, |
| }), |
| } |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> RawEntryBuilder<'a, K, V, S, A> { |
| /// Access an immutable entry by key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// let key = "a"; |
| /// assert_eq!(map.raw_entry().from_key(&key), Some((&"a", &100))); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| #[allow(clippy::wrong_self_convention)] |
| pub fn from_key<Q: ?Sized>(self, k: &Q) -> Option<(&'a K, &'a V)> |
| where |
| S: BuildHasher, |
| Q: Hash + Equivalent<K>, |
| { |
| let hash = make_hash::<Q, S>(&self.map.hash_builder, k); |
| self.from_key_hashed_nocheck(hash, k) |
| } |
| |
| /// Access an immutable entry by a key and its hash. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::HashMap; |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// let key = "a"; |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &key), Some((&"a", &100))); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| #[allow(clippy::wrong_self_convention)] |
| pub fn from_key_hashed_nocheck<Q: ?Sized>(self, hash: u64, k: &Q) -> Option<(&'a K, &'a V)> |
| where |
| Q: Equivalent<K>, |
| { |
| self.from_hash(hash, equivalent(k)) |
| } |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn search<F>(self, hash: u64, mut is_match: F) -> Option<(&'a K, &'a V)> |
| where |
| F: FnMut(&K) -> bool, |
| { |
| match self.map.table.get(hash, |(k, _)| is_match(k)) { |
| Some((key, value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| /// Access an immutable entry by hash and matching function. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::HashMap; |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// let key = "a"; |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// assert_eq!(map.raw_entry().from_hash(hash, |k| k == &key), Some((&"a", &100))); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| #[allow(clippy::wrong_self_convention)] |
| pub fn from_hash<F>(self, hash: u64, is_match: F) -> Option<(&'a K, &'a V)> |
| where |
| F: FnMut(&K) -> bool, |
| { |
| self.search(hash, is_match) |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> RawEntryMut<'a, K, V, S, A> { |
| /// Sets the value of the entry, and returns a RawOccupiedEntryMut. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// let entry = map.raw_entry_mut().from_key("horseyland").insert("horseyland", 37); |
| /// |
| /// assert_eq!(entry.remove_entry(), ("horseyland", 37)); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(self, key: K, value: V) -> RawOccupiedEntryMut<'a, K, V, S, A> |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| RawEntryMut::Occupied(mut entry) => { |
| entry.insert(value); |
| entry |
| } |
| RawEntryMut::Vacant(entry) => entry.insert_entry(key, value), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting the default if empty, and returns |
| /// mutable references to the key and value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 3); |
| /// assert_eq!(map["poneyland"], 3); |
| /// |
| /// *map.raw_entry_mut().from_key("poneyland").or_insert("poneyland", 10).1 *= 2; |
| /// assert_eq!(map["poneyland"], 6); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert(self, default_key: K, default_val: V) -> (&'a mut K, &'a mut V) |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| RawEntryMut::Occupied(entry) => entry.into_key_value(), |
| RawEntryMut::Vacant(entry) => entry.insert(default_key, default_val), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting the result of the default function if empty, |
| /// and returns mutable references to the key and value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, String> = HashMap::new(); |
| /// |
| /// map.raw_entry_mut().from_key("poneyland").or_insert_with(|| { |
| /// ("poneyland", "hoho".to_string()) |
| /// }); |
| /// |
| /// assert_eq!(map["poneyland"], "hoho".to_string()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert_with<F>(self, default: F) -> (&'a mut K, &'a mut V) |
| where |
| F: FnOnce() -> (K, V), |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| RawEntryMut::Occupied(entry) => entry.into_key_value(), |
| RawEntryMut::Vacant(entry) => { |
| let (k, v) = default(); |
| entry.insert(k, v) |
| } |
| } |
| } |
| |
| /// Provides in-place mutable access to an occupied entry before any |
| /// potential inserts into the map. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// map.raw_entry_mut() |
| /// .from_key("poneyland") |
| /// .and_modify(|_k, v| { *v += 1 }) |
| /// .or_insert("poneyland", 42); |
| /// assert_eq!(map["poneyland"], 42); |
| /// |
| /// map.raw_entry_mut() |
| /// .from_key("poneyland") |
| /// .and_modify(|_k, v| { *v += 1 }) |
| /// .or_insert("poneyland", 0); |
| /// assert_eq!(map["poneyland"], 43); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn and_modify<F>(self, f: F) -> Self |
| where |
| F: FnOnce(&mut K, &mut V), |
| { |
| match self { |
| RawEntryMut::Occupied(mut entry) => { |
| { |
| let (k, v) = entry.get_key_value_mut(); |
| f(k, v); |
| } |
| RawEntryMut::Occupied(entry) |
| } |
| RawEntryMut::Vacant(entry) => RawEntryMut::Vacant(entry), |
| } |
| } |
| |
| /// Provides shared access to the key and owned access to the value of |
| /// an occupied entry and allows to replace or remove it based on the |
| /// value of the returned option. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::RawEntryMut; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// let entry = map |
| /// .raw_entry_mut() |
| /// .from_key("poneyland") |
| /// .and_replace_entry_with(|_k, _v| panic!()); |
| /// |
| /// match entry { |
| /// RawEntryMut::Vacant(_) => {}, |
| /// RawEntryMut::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// map.insert("poneyland", 42); |
| /// |
| /// let entry = map |
| /// .raw_entry_mut() |
| /// .from_key("poneyland") |
| /// .and_replace_entry_with(|k, v| { |
| /// assert_eq!(k, &"poneyland"); |
| /// assert_eq!(v, 42); |
| /// Some(v + 1) |
| /// }); |
| /// |
| /// match entry { |
| /// RawEntryMut::Occupied(e) => { |
| /// assert_eq!(e.key(), &"poneyland"); |
| /// assert_eq!(e.get(), &43); |
| /// }, |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 43); |
| /// |
| /// let entry = map |
| /// .raw_entry_mut() |
| /// .from_key("poneyland") |
| /// .and_replace_entry_with(|_k, _v| None); |
| /// |
| /// match entry { |
| /// RawEntryMut::Vacant(_) => {}, |
| /// RawEntryMut::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// assert!(!map.contains_key("poneyland")); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn and_replace_entry_with<F>(self, f: F) -> Self |
| where |
| F: FnOnce(&K, V) -> Option<V>, |
| { |
| match self { |
| RawEntryMut::Occupied(entry) => entry.replace_entry_with(f), |
| RawEntryMut::Vacant(_) => self, |
| } |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> RawOccupiedEntryMut<'a, K, V, S, A> { |
| /// Gets a reference to the key in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => assert_eq!(o.key(), &"a") |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &K { |
| unsafe { &self.elem.as_ref().0 } |
| } |
| |
| /// Gets a mutable reference to the key in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// use std::rc::Rc; |
| /// |
| /// let key_one = Rc::new("a"); |
| /// let key_two = Rc::new("a"); |
| /// |
| /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); |
| /// map.insert(key_one.clone(), 10); |
| /// |
| /// assert_eq!(map[&key_one], 10); |
| /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); |
| /// |
| /// match map.raw_entry_mut().from_key(&key_one) { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(mut o) => { |
| /// *o.key_mut() = key_two.clone(); |
| /// } |
| /// } |
| /// assert_eq!(map[&key_two], 10); |
| /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key_mut(&mut self) -> &mut K { |
| unsafe { &mut self.elem.as_mut().0 } |
| } |
| |
| /// Converts the entry into a mutable reference to the key in the entry |
| /// with a lifetime bound to the map itself. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// use std::rc::Rc; |
| /// |
| /// let key_one = Rc::new("a"); |
| /// let key_two = Rc::new("a"); |
| /// |
| /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); |
| /// map.insert(key_one.clone(), 10); |
| /// |
| /// assert_eq!(map[&key_one], 10); |
| /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); |
| /// |
| /// let inside_key: &mut Rc<&str>; |
| /// |
| /// match map.raw_entry_mut().from_key(&key_one) { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => inside_key = o.into_key(), |
| /// } |
| /// *inside_key = key_two.clone(); |
| /// |
| /// assert_eq!(map[&key_two], 10); |
| /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_key(self) -> &'a mut K { |
| unsafe { &mut self.elem.as_mut().0 } |
| } |
| |
| /// Gets a reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => assert_eq!(o.get(), &100), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get(&self) -> &V { |
| unsafe { &self.elem.as_ref().1 } |
| } |
| |
| /// Converts the OccupiedEntry into a mutable reference to the value in the entry |
| /// with a lifetime bound to the map itself. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// let value: &mut u32; |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => value = o.into_mut(), |
| /// } |
| /// *value += 900; |
| /// |
| /// assert_eq!(map[&"a"], 1000); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_mut(self) -> &'a mut V { |
| unsafe { &mut self.elem.as_mut().1 } |
| } |
| |
| /// Gets a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(mut o) => *o.get_mut() += 900, |
| /// } |
| /// |
| /// assert_eq!(map[&"a"], 1000); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get_mut(&mut self) -> &mut V { |
| unsafe { &mut self.elem.as_mut().1 } |
| } |
| |
| /// Gets a reference to the key and value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => assert_eq!(o.get_key_value(), (&"a", &100)), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get_key_value(&self) -> (&K, &V) { |
| unsafe { |
| let (key, value) = self.elem.as_ref(); |
| (key, value) |
| } |
| } |
| |
| /// Gets a mutable reference to the key and value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// use std::rc::Rc; |
| /// |
| /// let key_one = Rc::new("a"); |
| /// let key_two = Rc::new("a"); |
| /// |
| /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); |
| /// map.insert(key_one.clone(), 10); |
| /// |
| /// assert_eq!(map[&key_one], 10); |
| /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); |
| /// |
| /// match map.raw_entry_mut().from_key(&key_one) { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(mut o) => { |
| /// let (inside_key, inside_value) = o.get_key_value_mut(); |
| /// *inside_key = key_two.clone(); |
| /// *inside_value = 100; |
| /// } |
| /// } |
| /// assert_eq!(map[&key_two], 100); |
| /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get_key_value_mut(&mut self) -> (&mut K, &mut V) { |
| unsafe { |
| let &mut (ref mut key, ref mut value) = self.elem.as_mut(); |
| (key, value) |
| } |
| } |
| |
| /// Converts the OccupiedEntry into a mutable reference to the key and value in the entry |
| /// with a lifetime bound to the map itself. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// use std::rc::Rc; |
| /// |
| /// let key_one = Rc::new("a"); |
| /// let key_two = Rc::new("a"); |
| /// |
| /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); |
| /// map.insert(key_one.clone(), 10); |
| /// |
| /// assert_eq!(map[&key_one], 10); |
| /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); |
| /// |
| /// let inside_key: &mut Rc<&str>; |
| /// let inside_value: &mut u32; |
| /// match map.raw_entry_mut().from_key(&key_one) { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => { |
| /// let tuple = o.into_key_value(); |
| /// inside_key = tuple.0; |
| /// inside_value = tuple.1; |
| /// } |
| /// } |
| /// *inside_key = key_two.clone(); |
| /// *inside_value = 100; |
| /// assert_eq!(map[&key_two], 100); |
| /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_key_value(self) -> (&'a mut K, &'a mut V) { |
| unsafe { |
| let &mut (ref mut key, ref mut value) = self.elem.as_mut(); |
| (key, value) |
| } |
| } |
| |
| /// Sets the value of the entry, and returns the entry's old value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(mut o) => assert_eq!(o.insert(1000), 100), |
| /// } |
| /// |
| /// assert_eq!(map[&"a"], 1000); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(&mut self, value: V) -> V { |
| mem::replace(self.get_mut(), value) |
| } |
| |
| /// Sets the value of the entry, and returns the entry's old value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// use std::rc::Rc; |
| /// |
| /// let key_one = Rc::new("a"); |
| /// let key_two = Rc::new("a"); |
| /// |
| /// let mut map: HashMap<Rc<&str>, u32> = HashMap::new(); |
| /// map.insert(key_one.clone(), 10); |
| /// |
| /// assert_eq!(map[&key_one], 10); |
| /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); |
| /// |
| /// match map.raw_entry_mut().from_key(&key_one) { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(mut o) => { |
| /// let old_key = o.insert_key(key_two.clone()); |
| /// assert!(Rc::ptr_eq(&old_key, &key_one)); |
| /// } |
| /// } |
| /// assert_eq!(map[&key_two], 10); |
| /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert_key(&mut self, key: K) -> K { |
| mem::replace(self.key_mut(), key) |
| } |
| |
| /// Takes the value out of the entry, and returns it. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => assert_eq!(o.remove(), 100), |
| /// } |
| /// assert_eq!(map.get(&"a"), None); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove(self) -> V { |
| self.remove_entry().1 |
| } |
| |
| /// Take the ownership of the key and value from the map. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => assert_eq!(o.remove_entry(), ("a", 100)), |
| /// } |
| /// assert_eq!(map.get(&"a"), None); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove_entry(self) -> (K, V) { |
| unsafe { self.table.remove(self.elem).0 } |
| } |
| |
| /// Provides shared access to the key and owned access to the value of |
| /// the entry and allows to replace or remove it based on the |
| /// value of the returned option. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// let raw_entry = match map.raw_entry_mut().from_key(&"a") { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => o.replace_entry_with(|k, v| { |
| /// assert_eq!(k, &"a"); |
| /// assert_eq!(v, 100); |
| /// Some(v + 900) |
| /// }), |
| /// }; |
| /// let raw_entry = match raw_entry { |
| /// RawEntryMut::Vacant(_) => panic!(), |
| /// RawEntryMut::Occupied(o) => o.replace_entry_with(|k, v| { |
| /// assert_eq!(k, &"a"); |
| /// assert_eq!(v, 1000); |
| /// None |
| /// }), |
| /// }; |
| /// match raw_entry { |
| /// RawEntryMut::Vacant(_) => { }, |
| /// RawEntryMut::Occupied(_) => panic!(), |
| /// }; |
| /// assert_eq!(map.get(&"a"), None); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_entry_with<F>(self, f: F) -> RawEntryMut<'a, K, V, S, A> |
| where |
| F: FnOnce(&K, V) -> Option<V>, |
| { |
| unsafe { |
| let still_occupied = self |
| .table |
| .replace_bucket_with(self.elem.clone(), |(key, value)| { |
| f(&key, value).map(|new_value| (key, new_value)) |
| }); |
| |
| if still_occupied { |
| RawEntryMut::Occupied(self) |
| } else { |
| RawEntryMut::Vacant(RawVacantEntryMut { |
| table: self.table, |
| hash_builder: self.hash_builder, |
| }) |
| } |
| } |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> RawVacantEntryMut<'a, K, V, S, A> { |
| /// Sets the value of the entry with the VacantEntry's key, |
| /// and returns a mutable reference to it. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.raw_entry_mut().from_key(&"c") { |
| /// RawEntryMut::Occupied(_) => panic!(), |
| /// RawEntryMut::Vacant(v) => assert_eq!(v.insert("c", 300), (&mut "c", &mut 300)), |
| /// } |
| /// |
| /// assert_eq!(map[&"c"], 300); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(self, key: K, value: V) -> (&'a mut K, &'a mut V) |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| let hash = make_hash::<K, S>(self.hash_builder, &key); |
| self.insert_hashed_nocheck(hash, key, value) |
| } |
| |
| /// Sets the value of the entry with the VacantEntry's key, |
| /// and returns a mutable reference to it. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// fn compute_hash<K: Hash + ?Sized, S: BuildHasher>(hash_builder: &S, key: &K) -> u64 { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// |
| /// let mut map: HashMap<&str, u32> = [("a", 100), ("b", 200)].into(); |
| /// let key = "c"; |
| /// let hash = compute_hash(map.hasher(), &key); |
| /// |
| /// match map.raw_entry_mut().from_key_hashed_nocheck(hash, &key) { |
| /// RawEntryMut::Occupied(_) => panic!(), |
| /// RawEntryMut::Vacant(v) => assert_eq!( |
| /// v.insert_hashed_nocheck(hash, key, 300), |
| /// (&mut "c", &mut 300) |
| /// ), |
| /// } |
| /// |
| /// assert_eq!(map[&"c"], 300); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| #[allow(clippy::shadow_unrelated)] |
| pub fn insert_hashed_nocheck(self, hash: u64, key: K, value: V) -> (&'a mut K, &'a mut V) |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| let &mut (ref mut k, ref mut v) = self.table.insert_entry( |
| hash, |
| (key, value), |
| make_hasher::<_, V, S>(self.hash_builder), |
| ); |
| (k, v) |
| } |
| |
| /// Set the value of an entry with a custom hasher function. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use core::hash::{BuildHasher, Hash}; |
| /// use hashbrown::hash_map::{HashMap, RawEntryMut}; |
| /// |
| /// fn make_hasher<K, S>(hash_builder: &S) -> impl Fn(&K) -> u64 + '_ |
| /// where |
| /// K: Hash + ?Sized, |
| /// S: BuildHasher, |
| /// { |
| /// move |key: &K| { |
| /// use core::hash::Hasher; |
| /// let mut state = hash_builder.build_hasher(); |
| /// key.hash(&mut state); |
| /// state.finish() |
| /// } |
| /// } |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// let key = "a"; |
| /// let hash_builder = map.hasher().clone(); |
| /// let hash = make_hasher(&hash_builder)(&key); |
| /// |
| /// match map.raw_entry_mut().from_hash(hash, |q| q == &key) { |
| /// RawEntryMut::Occupied(_) => panic!(), |
| /// RawEntryMut::Vacant(v) => assert_eq!( |
| /// v.insert_with_hasher(hash, key, 100, make_hasher(&hash_builder)), |
| /// (&mut "a", &mut 100) |
| /// ), |
| /// } |
| /// map.extend([("b", 200), ("c", 300), ("d", 400), ("e", 500), ("f", 600)]); |
| /// assert_eq!(map[&"a"], 100); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert_with_hasher<H>( |
| self, |
| hash: u64, |
| key: K, |
| value: V, |
| hasher: H, |
| ) -> (&'a mut K, &'a mut V) |
| where |
| H: Fn(&K) -> u64, |
| { |
| let &mut (ref mut k, ref mut v) = self |
| .table |
| .insert_entry(hash, (key, value), |x| hasher(&x.0)); |
| (k, v) |
| } |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn insert_entry(self, key: K, value: V) -> RawOccupiedEntryMut<'a, K, V, S, A> |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| let hash = make_hash::<K, S>(self.hash_builder, &key); |
| let elem = self.table.insert( |
| hash, |
| (key, value), |
| make_hasher::<_, V, S>(self.hash_builder), |
| ); |
| RawOccupiedEntryMut { |
| elem, |
| table: self.table, |
| hash_builder: self.hash_builder, |
| } |
| } |
| } |
| |
| impl<K, V, S, A: Allocator> Debug for RawEntryBuilderMut<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("RawEntryBuilder").finish() |
| } |
| } |
| |
| impl<K: Debug, V: Debug, S, A: Allocator> Debug for RawEntryMut<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match *self { |
| RawEntryMut::Vacant(ref v) => f.debug_tuple("RawEntry").field(v).finish(), |
| RawEntryMut::Occupied(ref o) => f.debug_tuple("RawEntry").field(o).finish(), |
| } |
| } |
| } |
| |
| impl<K: Debug, V: Debug, S, A: Allocator> Debug for RawOccupiedEntryMut<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("RawOccupiedEntryMut") |
| .field("key", self.key()) |
| .field("value", self.get()) |
| .finish() |
| } |
| } |
| |
| impl<K, V, S, A: Allocator> Debug for RawVacantEntryMut<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("RawVacantEntryMut").finish() |
| } |
| } |
| |
| impl<K, V, S, A: Allocator> Debug for RawEntryBuilder<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("RawEntryBuilder").finish() |
| } |
| } |
| |
| /// A view into a single entry in a map, which may either be vacant or occupied. |
| /// |
| /// This `enum` is constructed from the [`entry`] method on [`HashMap`]. |
| /// |
| /// [`HashMap`]: struct.HashMap.html |
| /// [`entry`]: struct.HashMap.html#method.entry |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap, OccupiedEntry}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a", 10), ("b", 20), ("c", 30)]); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (insert) |
| /// let entry: Entry<_, _, _> = map.entry("a"); |
| /// let _raw_o: OccupiedEntry<_, _, _> = entry.insert(1); |
| /// assert_eq!(map.len(), 3); |
| /// // Nonexistent key (insert) |
| /// map.entry("d").insert(4); |
| /// |
| /// // Existing key (or_insert) |
| /// let v = map.entry("b").or_insert(2); |
| /// assert_eq!(std::mem::replace(v, 2), 20); |
| /// // Nonexistent key (or_insert) |
| /// map.entry("e").or_insert(5); |
| /// |
| /// // Existing key (or_insert_with) |
| /// let v = map.entry("c").or_insert_with(|| 3); |
| /// assert_eq!(std::mem::replace(v, 3), 30); |
| /// // Nonexistent key (or_insert_with) |
| /// map.entry("f").or_insert_with(|| 6); |
| /// |
| /// println!("Our HashMap: {:?}", map); |
| /// |
| /// let mut vec: Vec<_> = map.iter().map(|(&k, &v)| (k, v)).collect(); |
| /// // The `Iter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3), ("d", 4), ("e", 5), ("f", 6)]); |
| /// ``` |
| pub enum Entry<'a, K, V, S, A = Global> |
| where |
| A: Allocator, |
| { |
| /// An occupied entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// let mut map: HashMap<_, _> = [("a", 100), ("b", 200)].into(); |
| /// |
| /// match map.entry("a") { |
| /// Entry::Vacant(_) => unreachable!(), |
| /// Entry::Occupied(_) => { } |
| /// } |
| /// ``` |
| Occupied(OccupiedEntry<'a, K, V, S, A>), |
| |
| /// A vacant entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// let mut map: HashMap<&str, i32> = HashMap::new(); |
| /// |
| /// match map.entry("a") { |
| /// Entry::Occupied(_) => unreachable!(), |
| /// Entry::Vacant(_) => { } |
| /// } |
| /// ``` |
| Vacant(VacantEntry<'a, K, V, S, A>), |
| } |
| |
| impl<K: Debug, V: Debug, S, A: Allocator> Debug for Entry<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match *self { |
| Entry::Vacant(ref v) => f.debug_tuple("Entry").field(v).finish(), |
| Entry::Occupied(ref o) => f.debug_tuple("Entry").field(o).finish(), |
| } |
| } |
| } |
| |
| /// A view into an occupied entry in a `HashMap`. |
| /// It is part of the [`Entry`] enum. |
| /// |
| /// [`Entry`]: enum.Entry.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap, OccupiedEntry}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a", 10), ("b", 20), ("c", 30)]); |
| /// |
| /// let _entry_o: OccupiedEntry<_, _, _> = map.entry("a").insert(100); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (insert and update) |
| /// match map.entry("a") { |
| /// Entry::Vacant(_) => unreachable!(), |
| /// Entry::Occupied(mut view) => { |
| /// assert_eq!(view.get(), &100); |
| /// let v = view.get_mut(); |
| /// *v *= 10; |
| /// assert_eq!(view.insert(1111), 1000); |
| /// } |
| /// } |
| /// |
| /// assert_eq!(map[&"a"], 1111); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (take) |
| /// match map.entry("c") { |
| /// Entry::Vacant(_) => unreachable!(), |
| /// Entry::Occupied(view) => { |
| /// assert_eq!(view.remove_entry(), ("c", 30)); |
| /// } |
| /// } |
| /// assert_eq!(map.get(&"c"), None); |
| /// assert_eq!(map.len(), 2); |
| /// ``` |
| pub struct OccupiedEntry<'a, K, V, S = DefaultHashBuilder, A: Allocator = Global> { |
| hash: u64, |
| key: Option<K>, |
| elem: Bucket<(K, V)>, |
| table: &'a mut HashMap<K, V, S, A>, |
| } |
| |
| unsafe impl<K, V, S, A> Send for OccupiedEntry<'_, K, V, S, A> |
| where |
| K: Send, |
| V: Send, |
| S: Send, |
| A: Send + Allocator, |
| { |
| } |
| unsafe impl<K, V, S, A> Sync for OccupiedEntry<'_, K, V, S, A> |
| where |
| K: Sync, |
| V: Sync, |
| S: Sync, |
| A: Sync + Allocator, |
| { |
| } |
| |
| impl<K: Debug, V: Debug, S, A: Allocator> Debug for OccupiedEntry<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("OccupiedEntry") |
| .field("key", self.key()) |
| .field("value", self.get()) |
| .finish() |
| } |
| } |
| |
| /// A view into a vacant entry in a `HashMap`. |
| /// It is part of the [`Entry`] enum. |
| /// |
| /// [`Entry`]: enum.Entry.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap, VacantEntry}; |
| /// |
| /// let mut map = HashMap::<&str, i32>::new(); |
| /// |
| /// let entry_v: VacantEntry<_, _, _> = match map.entry("a") { |
| /// Entry::Vacant(view) => view, |
| /// Entry::Occupied(_) => unreachable!(), |
| /// }; |
| /// entry_v.insert(10); |
| /// assert!(map[&"a"] == 10 && map.len() == 1); |
| /// |
| /// // Nonexistent key (insert and update) |
| /// match map.entry("b") { |
| /// Entry::Occupied(_) => unreachable!(), |
| /// Entry::Vacant(view) => { |
| /// let value = view.insert(2); |
| /// assert_eq!(*value, 2); |
| /// *value = 20; |
| /// } |
| /// } |
| /// assert!(map[&"b"] == 20 && map.len() == 2); |
| /// ``` |
| pub struct VacantEntry<'a, K, V, S = DefaultHashBuilder, A: Allocator = Global> { |
| hash: u64, |
| key: K, |
| table: &'a mut HashMap<K, V, S, A>, |
| } |
| |
| impl<K: Debug, V, S, A: Allocator> Debug for VacantEntry<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_tuple("VacantEntry").field(self.key()).finish() |
| } |
| } |
| |
| /// A view into a single entry in a map, which may either be vacant or occupied, |
| /// with any borrowed form of the map's key type. |
| /// |
| /// |
| /// This `enum` is constructed from the [`entry_ref`] method on [`HashMap`]. |
| /// |
| /// [`Hash`] and [`Eq`] on the borrowed form of the map's key type *must* match those |
| /// for the key type. It also require that key may be constructed from the borrowed |
| /// form through the [`From`] trait. |
| /// |
| /// [`HashMap`]: struct.HashMap.html |
| /// [`entry_ref`]: struct.HashMap.html#method.entry_ref |
| /// [`Eq`]: https://doc.rust-lang.org/std/cmp/trait.Eq.html |
| /// [`Hash`]: https://doc.rust-lang.org/std/hash/trait.Hash.html |
| /// [`From`]: https://doc.rust-lang.org/std/convert/trait.From.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap, OccupiedEntryRef}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a".to_owned(), 10), ("b".into(), 20), ("c".into(), 30)]); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (insert) |
| /// let key = String::from("a"); |
| /// let entry: EntryRef<_, _, _, _> = map.entry_ref(&key); |
| /// let _raw_o: OccupiedEntryRef<_, _, _, _> = entry.insert(1); |
| /// assert_eq!(map.len(), 3); |
| /// // Nonexistent key (insert) |
| /// map.entry_ref("d").insert(4); |
| /// |
| /// // Existing key (or_insert) |
| /// let v = map.entry_ref("b").or_insert(2); |
| /// assert_eq!(std::mem::replace(v, 2), 20); |
| /// // Nonexistent key (or_insert) |
| /// map.entry_ref("e").or_insert(5); |
| /// |
| /// // Existing key (or_insert_with) |
| /// let v = map.entry_ref("c").or_insert_with(|| 3); |
| /// assert_eq!(std::mem::replace(v, 3), 30); |
| /// // Nonexistent key (or_insert_with) |
| /// map.entry_ref("f").or_insert_with(|| 6); |
| /// |
| /// println!("Our HashMap: {:?}", map); |
| /// |
| /// for (key, value) in ["a", "b", "c", "d", "e", "f"].into_iter().zip(1..=6) { |
| /// assert_eq!(map[key], value) |
| /// } |
| /// assert_eq!(map.len(), 6); |
| /// ``` |
| pub enum EntryRef<'a, 'b, K, Q: ?Sized, V, S, A = Global> |
| where |
| A: Allocator, |
| { |
| /// An occupied entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// let mut map: HashMap<_, _> = [("a".to_owned(), 100), ("b".into(), 200)].into(); |
| /// |
| /// match map.entry_ref("a") { |
| /// EntryRef::Vacant(_) => unreachable!(), |
| /// EntryRef::Occupied(_) => { } |
| /// } |
| /// ``` |
| Occupied(OccupiedEntryRef<'a, 'b, K, Q, V, S, A>), |
| |
| /// A vacant entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// let mut map: HashMap<String, i32> = HashMap::new(); |
| /// |
| /// match map.entry_ref("a") { |
| /// EntryRef::Occupied(_) => unreachable!(), |
| /// EntryRef::Vacant(_) => { } |
| /// } |
| /// ``` |
| Vacant(VacantEntryRef<'a, 'b, K, Q, V, S, A>), |
| } |
| |
| impl<K: Borrow<Q>, Q: ?Sized + Debug, V: Debug, S, A: Allocator> Debug |
| for EntryRef<'_, '_, K, Q, V, S, A> |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match *self { |
| EntryRef::Vacant(ref v) => f.debug_tuple("EntryRef").field(v).finish(), |
| EntryRef::Occupied(ref o) => f.debug_tuple("EntryRef").field(o).finish(), |
| } |
| } |
| } |
| |
| enum KeyOrRef<'a, K, Q: ?Sized> { |
| Borrowed(&'a Q), |
| Owned(K), |
| } |
| |
| impl<'a, K, Q: ?Sized> KeyOrRef<'a, K, Q> { |
| fn into_owned(self) -> K |
| where |
| K: From<&'a Q>, |
| { |
| match self { |
| Self::Borrowed(borrowed) => borrowed.into(), |
| Self::Owned(owned) => owned, |
| } |
| } |
| } |
| |
| impl<'a, K: Borrow<Q>, Q: ?Sized> AsRef<Q> for KeyOrRef<'a, K, Q> { |
| fn as_ref(&self) -> &Q { |
| match self { |
| Self::Borrowed(borrowed) => borrowed, |
| Self::Owned(owned) => owned.borrow(), |
| } |
| } |
| } |
| |
| /// A view into an occupied entry in a `HashMap`. |
| /// It is part of the [`EntryRef`] enum. |
| /// |
| /// [`EntryRef`]: enum.EntryRef.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap, OccupiedEntryRef}; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.extend([("a".to_owned(), 10), ("b".into(), 20), ("c".into(), 30)]); |
| /// |
| /// let key = String::from("a"); |
| /// let _entry_o: OccupiedEntryRef<_, _, _, _> = map.entry_ref(&key).insert(100); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (insert and update) |
| /// match map.entry_ref("a") { |
| /// EntryRef::Vacant(_) => unreachable!(), |
| /// EntryRef::Occupied(mut view) => { |
| /// assert_eq!(view.get(), &100); |
| /// let v = view.get_mut(); |
| /// *v *= 10; |
| /// assert_eq!(view.insert(1111), 1000); |
| /// } |
| /// } |
| /// |
| /// assert_eq!(map["a"], 1111); |
| /// assert_eq!(map.len(), 3); |
| /// |
| /// // Existing key (take) |
| /// match map.entry_ref("c") { |
| /// EntryRef::Vacant(_) => unreachable!(), |
| /// EntryRef::Occupied(view) => { |
| /// assert_eq!(view.remove_entry(), ("c".to_owned(), 30)); |
| /// } |
| /// } |
| /// assert_eq!(map.get("c"), None); |
| /// assert_eq!(map.len(), 2); |
| /// ``` |
| pub struct OccupiedEntryRef<'a, 'b, K, Q: ?Sized, V, S, A: Allocator = Global> { |
| hash: u64, |
| key: Option<KeyOrRef<'b, K, Q>>, |
| elem: Bucket<(K, V)>, |
| table: &'a mut HashMap<K, V, S, A>, |
| } |
| |
| unsafe impl<'a, 'b, K, Q, V, S, A> Send for OccupiedEntryRef<'a, 'b, K, Q, V, S, A> |
| where |
| K: Send, |
| Q: Sync + ?Sized, |
| V: Send, |
| S: Send, |
| A: Send + Allocator, |
| { |
| } |
| unsafe impl<'a, 'b, K, Q, V, S, A> Sync for OccupiedEntryRef<'a, 'b, K, Q, V, S, A> |
| where |
| K: Sync, |
| Q: Sync + ?Sized, |
| V: Sync, |
| S: Sync, |
| A: Sync + Allocator, |
| { |
| } |
| |
| impl<K: Borrow<Q>, Q: ?Sized + Debug, V: Debug, S, A: Allocator> Debug |
| for OccupiedEntryRef<'_, '_, K, Q, V, S, A> |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("OccupiedEntryRef") |
| .field("key", &self.key().borrow()) |
| .field("value", &self.get()) |
| .finish() |
| } |
| } |
| |
| /// A view into a vacant entry in a `HashMap`. |
| /// It is part of the [`EntryRef`] enum. |
| /// |
| /// [`EntryRef`]: enum.EntryRef.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap, VacantEntryRef}; |
| /// |
| /// let mut map = HashMap::<String, i32>::new(); |
| /// |
| /// let entry_v: VacantEntryRef<_, _, _, _> = match map.entry_ref("a") { |
| /// EntryRef::Vacant(view) => view, |
| /// EntryRef::Occupied(_) => unreachable!(), |
| /// }; |
| /// entry_v.insert(10); |
| /// assert!(map["a"] == 10 && map.len() == 1); |
| /// |
| /// // Nonexistent key (insert and update) |
| /// match map.entry_ref("b") { |
| /// EntryRef::Occupied(_) => unreachable!(), |
| /// EntryRef::Vacant(view) => { |
| /// let value = view.insert(2); |
| /// assert_eq!(*value, 2); |
| /// *value = 20; |
| /// } |
| /// } |
| /// assert!(map["b"] == 20 && map.len() == 2); |
| /// ``` |
| pub struct VacantEntryRef<'a, 'b, K, Q: ?Sized, V, S, A: Allocator = Global> { |
| hash: u64, |
| key: KeyOrRef<'b, K, Q>, |
| table: &'a mut HashMap<K, V, S, A>, |
| } |
| |
| impl<K: Borrow<Q>, Q: ?Sized + Debug, V, S, A: Allocator> Debug |
| for VacantEntryRef<'_, '_, K, Q, V, S, A> |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_tuple("VacantEntryRef").field(&self.key()).finish() |
| } |
| } |
| |
| /// The error returned by [`try_insert`](HashMap::try_insert) when the key already exists. |
| /// |
| /// Contains the occupied entry, and the value that was not inserted. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{HashMap, OccupiedError}; |
| /// |
| /// let mut map: HashMap<_, _> = [("a", 10), ("b", 20)].into(); |
| /// |
| /// // try_insert method returns mutable reference to the value if keys are vacant, |
| /// // but if the map did have key present, nothing is updated, and the provided |
| /// // value is returned inside `Err(_)` variant |
| /// match map.try_insert("a", 100) { |
| /// Err(OccupiedError { mut entry, value }) => { |
| /// assert_eq!(entry.key(), &"a"); |
| /// assert_eq!(value, 100); |
| /// assert_eq!(entry.insert(100), 10) |
| /// } |
| /// _ => unreachable!(), |
| /// } |
| /// assert_eq!(map[&"a"], 100); |
| /// ``` |
| pub struct OccupiedError<'a, K, V, S, A: Allocator = Global> { |
| /// The entry in the map that was already occupied. |
| pub entry: OccupiedEntry<'a, K, V, S, A>, |
| /// The value which was not inserted, because the entry was already occupied. |
| pub value: V, |
| } |
| |
| impl<K: Debug, V: Debug, S, A: Allocator> Debug for OccupiedError<'_, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_struct("OccupiedError") |
| .field("key", self.entry.key()) |
| .field("old_value", self.entry.get()) |
| .field("new_value", &self.value) |
| .finish() |
| } |
| } |
| |
| impl<'a, K: Debug, V: Debug, S, A: Allocator> fmt::Display for OccupiedError<'a, K, V, S, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write!( |
| f, |
| "failed to insert {:?}, key {:?} already exists with value {:?}", |
| self.value, |
| self.entry.key(), |
| self.entry.get(), |
| ) |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> IntoIterator for &'a HashMap<K, V, S, A> { |
| type Item = (&'a K, &'a V); |
| type IntoIter = Iter<'a, K, V>; |
| |
| /// Creates an iterator over the entries of a `HashMap` in arbitrary order. |
| /// The iterator element type is `(&'a K, &'a V)`. |
| /// |
| /// Return the same `Iter` struct as by the [`iter`] method on [`HashMap`]. |
| /// |
| /// [`iter`]: struct.HashMap.html#method.iter |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// let map_one: HashMap<_, _> = [(1, "a"), (2, "b"), (3, "c")].into(); |
| /// let mut map_two = HashMap::new(); |
| /// |
| /// for (key, value) in &map_one { |
| /// println!("Key: {}, Value: {}", key, value); |
| /// map_two.insert_unique_unchecked(*key, *value); |
| /// } |
| /// |
| /// assert_eq!(map_one, map_two); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn into_iter(self) -> Iter<'a, K, V> { |
| self.iter() |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> IntoIterator for &'a mut HashMap<K, V, S, A> { |
| type Item = (&'a K, &'a mut V); |
| type IntoIter = IterMut<'a, K, V>; |
| |
| /// Creates an iterator over the entries of a `HashMap` in arbitrary order |
| /// with mutable references to the values. The iterator element type is |
| /// `(&'a K, &'a mut V)`. |
| /// |
| /// Return the same `IterMut` struct as by the [`iter_mut`] method on |
| /// [`HashMap`]. |
| /// |
| /// [`iter_mut`]: struct.HashMap.html#method.iter_mut |
| /// [`HashMap`]: struct.HashMap.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// let mut map: HashMap<_, _> = [("a", 1), ("b", 2), ("c", 3)].into(); |
| /// |
| /// for (key, value) in &mut map { |
| /// println!("Key: {}, Value: {}", key, value); |
| /// *value *= 2; |
| /// } |
| /// |
| /// let mut vec = map.iter().collect::<Vec<_>>(); |
| /// // The `Iter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [(&"a", &2), (&"b", &4), (&"c", &6)]); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn into_iter(self) -> IterMut<'a, K, V> { |
| self.iter_mut() |
| } |
| } |
| |
| impl<K, V, S, A: Allocator> IntoIterator for HashMap<K, V, S, A> { |
| type Item = (K, V); |
| type IntoIter = IntoIter<K, V, A>; |
| |
| /// Creates a consuming iterator, that is, one that moves each key-value |
| /// pair out of the map in arbitrary order. The map cannot be used after |
| /// calling this. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let map: HashMap<_, _> = [("a", 1), ("b", 2), ("c", 3)].into(); |
| /// |
| /// // Not possible with .iter() |
| /// let mut vec: Vec<(&str, i32)> = map.into_iter().collect(); |
| /// // The `IntoIter` iterator produces items in arbitrary order, so |
| /// // the items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [("a", 1), ("b", 2), ("c", 3)]); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn into_iter(self) -> IntoIter<K, V, A> { |
| IntoIter { |
| inner: self.table.into_iter(), |
| } |
| } |
| } |
| |
| impl<'a, K, V> Iterator for Iter<'a, K, V> { |
| type Item = (&'a K, &'a V); |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<(&'a K, &'a V)> { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.inner.next() { |
| Some(x) => unsafe { |
| let r = x.as_ref(); |
| Some((&r.0, &r.1)) |
| }, |
| None => None, |
| } |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, x| unsafe { |
| let (k, v) = x.as_ref(); |
| f(acc, (k, v)) |
| }) |
| } |
| } |
| impl<K, V> ExactSizeIterator for Iter<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| |
| impl<K, V> FusedIterator for Iter<'_, K, V> {} |
| |
| impl<'a, K, V> Iterator for IterMut<'a, K, V> { |
| type Item = (&'a K, &'a mut V); |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<(&'a K, &'a mut V)> { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.inner.next() { |
| Some(x) => unsafe { |
| let r = x.as_mut(); |
| Some((&r.0, &mut r.1)) |
| }, |
| None => None, |
| } |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, x| unsafe { |
| let (k, v) = x.as_mut(); |
| f(acc, (k, v)) |
| }) |
| } |
| } |
| impl<K, V> ExactSizeIterator for IterMut<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| impl<K, V> FusedIterator for IterMut<'_, K, V> {} |
| |
| impl<K, V> fmt::Debug for IterMut<'_, K, V> |
| where |
| K: fmt::Debug, |
| V: fmt::Debug, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<K, V, A: Allocator> Iterator for IntoIter<K, V, A> { |
| type Item = (K, V); |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<(K, V)> { |
| self.inner.next() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, f) |
| } |
| } |
| impl<K, V, A: Allocator> ExactSizeIterator for IntoIter<K, V, A> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| impl<K, V, A: Allocator> FusedIterator for IntoIter<K, V, A> {} |
| |
| impl<K: Debug, V: Debug, A: Allocator> fmt::Debug for IntoIter<K, V, A> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<'a, K, V> Iterator for Keys<'a, K, V> { |
| type Item = &'a K; |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<&'a K> { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.inner.next() { |
| Some((k, _)) => Some(k), |
| None => None, |
| } |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, (k, _)| f(acc, k)) |
| } |
| } |
| impl<K, V> ExactSizeIterator for Keys<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| impl<K, V> FusedIterator for Keys<'_, K, V> {} |
| |
| impl<'a, K, V> Iterator for Values<'a, K, V> { |
| type Item = &'a V; |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<&'a V> { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.inner.next() { |
| Some((_, v)) => Some(v), |
| None => None, |
| } |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, (_, v)| f(acc, v)) |
| } |
| } |
| impl<K, V> ExactSizeIterator for Values<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| impl<K, V> FusedIterator for Values<'_, K, V> {} |
| |
| impl<'a, K, V> Iterator for ValuesMut<'a, K, V> { |
| type Item = &'a mut V; |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<&'a mut V> { |
| // Avoid `Option::map` because it bloats LLVM IR. |
| match self.inner.next() { |
| Some((_, v)) => Some(v), |
| None => None, |
| } |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, mut f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, |acc, (_, v)| f(acc, v)) |
| } |
| } |
| impl<K, V> ExactSizeIterator for ValuesMut<'_, K, V> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| impl<K, V> FusedIterator for ValuesMut<'_, K, V> {} |
| |
| impl<K, V: Debug> fmt::Debug for ValuesMut<'_, K, V> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list() |
| .entries(self.inner.iter().map(|(_, val)| val)) |
| .finish() |
| } |
| } |
| |
| impl<'a, K, V, A: Allocator> Iterator for Drain<'a, K, V, A> { |
| type Item = (K, V); |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn next(&mut self) -> Option<(K, V)> { |
| self.inner.next() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.inner.size_hint() |
| } |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn fold<B, F>(self, init: B, f: F) -> B |
| where |
| Self: Sized, |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.inner.fold(init, f) |
| } |
| } |
| impl<K, V, A: Allocator> ExactSizeIterator for Drain<'_, K, V, A> { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn len(&self) -> usize { |
| self.inner.len() |
| } |
| } |
| impl<K, V, A: Allocator> FusedIterator for Drain<'_, K, V, A> {} |
| |
| impl<K, V, A> fmt::Debug for Drain<'_, K, V, A> |
| where |
| K: fmt::Debug, |
| V: fmt::Debug, |
| A: Allocator, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.iter()).finish() |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> Entry<'a, K, V, S, A> { |
| /// Sets the value of the entry, and returns an OccupiedEntry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// let entry = map.entry("horseyland").insert(37); |
| /// |
| /// assert_eq!(entry.key(), &"horseyland"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(self, value: V) -> OccupiedEntry<'a, K, V, S, A> |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| Entry::Occupied(mut entry) => { |
| entry.insert(value); |
| entry |
| } |
| Entry::Vacant(entry) => entry.insert_entry(value), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting the default if empty, and returns |
| /// a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry("poneyland").or_insert(3); |
| /// assert_eq!(map["poneyland"], 3); |
| /// |
| /// // existing key |
| /// *map.entry("poneyland").or_insert(10) *= 2; |
| /// assert_eq!(map["poneyland"], 6); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert(self, default: V) -> &'a mut V |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| Entry::Occupied(entry) => entry.into_mut(), |
| Entry::Vacant(entry) => entry.insert(default), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting the result of the default function if empty, |
| /// and returns a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry("poneyland").or_insert_with(|| 3); |
| /// assert_eq!(map["poneyland"], 3); |
| /// |
| /// // existing key |
| /// *map.entry("poneyland").or_insert_with(|| 10) *= 2; |
| /// assert_eq!(map["poneyland"], 6); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| Entry::Occupied(entry) => entry.into_mut(), |
| Entry::Vacant(entry) => entry.insert(default()), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting, if empty, the result of the default function. |
| /// This method allows for generating key-derived values for insertion by providing the default |
| /// function a reference to the key that was moved during the `.entry(key)` method call. |
| /// |
| /// The reference to the moved key is provided so that cloning or copying the key is |
| /// unnecessary, unlike with `.or_insert_with(|| ... )`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, usize> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry("poneyland").or_insert_with_key(|key| key.chars().count()); |
| /// assert_eq!(map["poneyland"], 9); |
| /// |
| /// // existing key |
| /// *map.entry("poneyland").or_insert_with_key(|key| key.chars().count() * 10) *= 2; |
| /// assert_eq!(map["poneyland"], 18); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert_with_key<F: FnOnce(&K) -> V>(self, default: F) -> &'a mut V |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| Entry::Occupied(entry) => entry.into_mut(), |
| Entry::Vacant(entry) => { |
| let value = default(entry.key()); |
| entry.insert(value) |
| } |
| } |
| } |
| |
| /// Returns a reference to this entry's key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.entry("poneyland").or_insert(3); |
| /// // existing key |
| /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); |
| /// // nonexistent key |
| /// assert_eq!(map.entry("horseland").key(), &"horseland"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &K { |
| match *self { |
| Entry::Occupied(ref entry) => entry.key(), |
| Entry::Vacant(ref entry) => entry.key(), |
| } |
| } |
| |
| /// Provides in-place mutable access to an occupied entry before any |
| /// potential inserts into the map. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// map.entry("poneyland") |
| /// .and_modify(|e| { *e += 1 }) |
| /// .or_insert(42); |
| /// assert_eq!(map["poneyland"], 42); |
| /// |
| /// map.entry("poneyland") |
| /// .and_modify(|e| { *e += 1 }) |
| /// .or_insert(42); |
| /// assert_eq!(map["poneyland"], 43); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn and_modify<F>(self, f: F) -> Self |
| where |
| F: FnOnce(&mut V), |
| { |
| match self { |
| Entry::Occupied(mut entry) => { |
| f(entry.get_mut()); |
| Entry::Occupied(entry) |
| } |
| Entry::Vacant(entry) => Entry::Vacant(entry), |
| } |
| } |
| |
| /// Provides shared access to the key and owned access to the value of |
| /// an occupied entry and allows to replace or remove it based on the |
| /// value of the returned option. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// let entry = map |
| /// .entry("poneyland") |
| /// .and_replace_entry_with(|_k, _v| panic!()); |
| /// |
| /// match entry { |
| /// Entry::Vacant(e) => { |
| /// assert_eq!(e.key(), &"poneyland"); |
| /// } |
| /// Entry::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// map.insert("poneyland", 42); |
| /// |
| /// let entry = map |
| /// .entry("poneyland") |
| /// .and_replace_entry_with(|k, v| { |
| /// assert_eq!(k, &"poneyland"); |
| /// assert_eq!(v, 42); |
| /// Some(v + 1) |
| /// }); |
| /// |
| /// match entry { |
| /// Entry::Occupied(e) => { |
| /// assert_eq!(e.key(), &"poneyland"); |
| /// assert_eq!(e.get(), &43); |
| /// } |
| /// Entry::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 43); |
| /// |
| /// let entry = map |
| /// .entry("poneyland") |
| /// .and_replace_entry_with(|_k, _v| None); |
| /// |
| /// match entry { |
| /// Entry::Vacant(e) => assert_eq!(e.key(), &"poneyland"), |
| /// Entry::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// assert!(!map.contains_key("poneyland")); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn and_replace_entry_with<F>(self, f: F) -> Self |
| where |
| F: FnOnce(&K, V) -> Option<V>, |
| { |
| match self { |
| Entry::Occupied(entry) => entry.replace_entry_with(f), |
| Entry::Vacant(_) => self, |
| } |
| } |
| } |
| |
| impl<'a, K, V: Default, S, A: Allocator> Entry<'a, K, V, S, A> { |
| /// Ensures a value is in the entry by inserting the default value if empty, |
| /// and returns a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, Option<u32>> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry("poneyland").or_default(); |
| /// assert_eq!(map["poneyland"], None); |
| /// |
| /// map.insert("horseland", Some(3)); |
| /// |
| /// // existing key |
| /// assert_eq!(map.entry("horseland").or_default(), &mut Some(3)); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_default(self) -> &'a mut V |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| match self { |
| Entry::Occupied(entry) => entry.into_mut(), |
| Entry::Vacant(entry) => entry.insert(Default::default()), |
| } |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> OccupiedEntry<'a, K, V, S, A> { |
| /// Gets a reference to the key in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// match map.entry("poneyland") { |
| /// Entry::Vacant(_) => panic!(), |
| /// Entry::Occupied(entry) => assert_eq!(entry.key(), &"poneyland"), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &K { |
| unsafe { &self.elem.as_ref().0 } |
| } |
| |
| /// Take the ownership of the key and value from the map. |
| /// Keeps the allocated memory for reuse. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// // The map is empty |
| /// assert!(map.is_empty() && map.capacity() == 0); |
| /// |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// if let Entry::Occupied(o) = map.entry("poneyland") { |
| /// // We delete the entry from the map. |
| /// assert_eq!(o.remove_entry(), ("poneyland", 12)); |
| /// } |
| /// |
| /// assert_eq!(map.contains_key("poneyland"), false); |
| /// // Now map hold none elements |
| /// assert!(map.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove_entry(self) -> (K, V) { |
| unsafe { self.table.table.remove(self.elem).0 } |
| } |
| |
| /// Gets a reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// match map.entry("poneyland") { |
| /// Entry::Vacant(_) => panic!(), |
| /// Entry::Occupied(entry) => assert_eq!(entry.get(), &12), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get(&self) -> &V { |
| unsafe { &self.elem.as_ref().1 } |
| } |
| |
| /// Gets a mutable reference to the value in the entry. |
| /// |
| /// If you need a reference to the `OccupiedEntry` which may outlive the |
| /// destruction of the `Entry` value, see [`into_mut`]. |
| /// |
| /// [`into_mut`]: #method.into_mut |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// assert_eq!(map["poneyland"], 12); |
| /// if let Entry::Occupied(mut o) = map.entry("poneyland") { |
| /// *o.get_mut() += 10; |
| /// assert_eq!(*o.get(), 22); |
| /// |
| /// // We can use the same Entry multiple times. |
| /// *o.get_mut() += 2; |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 24); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get_mut(&mut self) -> &mut V { |
| unsafe { &mut self.elem.as_mut().1 } |
| } |
| |
| /// Converts the OccupiedEntry into a mutable reference to the value in the entry |
| /// with a lifetime bound to the map itself. |
| /// |
| /// If you need multiple references to the `OccupiedEntry`, see [`get_mut`]. |
| /// |
| /// [`get_mut`]: #method.get_mut |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// assert_eq!(map["poneyland"], 12); |
| /// |
| /// let value: &mut u32; |
| /// match map.entry("poneyland") { |
| /// Entry::Occupied(entry) => value = entry.into_mut(), |
| /// Entry::Vacant(_) => panic!(), |
| /// } |
| /// *value += 10; |
| /// |
| /// assert_eq!(map["poneyland"], 22); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_mut(self) -> &'a mut V { |
| unsafe { &mut self.elem.as_mut().1 } |
| } |
| |
| /// Sets the value of the entry, and returns the entry's old value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// if let Entry::Occupied(mut o) = map.entry("poneyland") { |
| /// assert_eq!(o.insert(15), 12); |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 15); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(&mut self, value: V) -> V { |
| mem::replace(self.get_mut(), value) |
| } |
| |
| /// Takes the value out of the entry, and returns it. |
| /// Keeps the allocated memory for reuse. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// // The map is empty |
| /// assert!(map.is_empty() && map.capacity() == 0); |
| /// |
| /// map.entry("poneyland").or_insert(12); |
| /// |
| /// if let Entry::Occupied(o) = map.entry("poneyland") { |
| /// assert_eq!(o.remove(), 12); |
| /// } |
| /// |
| /// assert_eq!(map.contains_key("poneyland"), false); |
| /// // Now map hold none elements |
| /// assert!(map.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove(self) -> V { |
| self.remove_entry().1 |
| } |
| |
| /// Replaces the entry, returning the old key and value. The new key in the hash map will be |
| /// the key used to create this entry. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if this OccupiedEntry was created through [`Entry::insert`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// use std::rc::Rc; |
| /// |
| /// let mut map: HashMap<Rc<String>, u32> = HashMap::new(); |
| /// let key_one = Rc::new("Stringthing".to_string()); |
| /// let key_two = Rc::new("Stringthing".to_string()); |
| /// |
| /// map.insert(key_one.clone(), 15); |
| /// assert!(Rc::strong_count(&key_one) == 2 && Rc::strong_count(&key_two) == 1); |
| /// |
| /// match map.entry(key_two.clone()) { |
| /// Entry::Occupied(entry) => { |
| /// let (old_key, old_value): (Rc<String>, u32) = entry.replace_entry(16); |
| /// assert!(Rc::ptr_eq(&key_one, &old_key) && old_value == 15); |
| /// } |
| /// Entry::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert!(Rc::strong_count(&key_one) == 1 && Rc::strong_count(&key_two) == 2); |
| /// assert_eq!(map[&"Stringthing".to_owned()], 16); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_entry(self, value: V) -> (K, V) { |
| let entry = unsafe { self.elem.as_mut() }; |
| |
| let old_key = mem::replace(&mut entry.0, self.key.unwrap()); |
| let old_value = mem::replace(&mut entry.1, value); |
| |
| (old_key, old_value) |
| } |
| |
| /// Replaces the key in the hash map with the key used to create this entry. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if this OccupiedEntry was created through [`Entry::insert`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// use std::rc::Rc; |
| /// |
| /// let mut map: HashMap<Rc<String>, usize> = HashMap::with_capacity(6); |
| /// let mut keys_one: Vec<Rc<String>> = Vec::with_capacity(6); |
| /// let mut keys_two: Vec<Rc<String>> = Vec::with_capacity(6); |
| /// |
| /// for (value, key) in ["a", "b", "c", "d", "e", "f"].into_iter().enumerate() { |
| /// let rc_key = Rc::new(key.to_owned()); |
| /// keys_one.push(rc_key.clone()); |
| /// map.insert(rc_key.clone(), value); |
| /// keys_two.push(Rc::new(key.to_owned())); |
| /// } |
| /// |
| /// assert!( |
| /// keys_one.iter().all(|key| Rc::strong_count(key) == 2) |
| /// && keys_two.iter().all(|key| Rc::strong_count(key) == 1) |
| /// ); |
| /// |
| /// reclaim_memory(&mut map, &keys_two); |
| /// |
| /// assert!( |
| /// keys_one.iter().all(|key| Rc::strong_count(key) == 1) |
| /// && keys_two.iter().all(|key| Rc::strong_count(key) == 2) |
| /// ); |
| /// |
| /// fn reclaim_memory(map: &mut HashMap<Rc<String>, usize>, keys: &[Rc<String>]) { |
| /// for key in keys { |
| /// if let Entry::Occupied(entry) = map.entry(key.clone()) { |
| /// // Replaces the entry's key with our version of it in `keys`. |
| /// entry.replace_key(); |
| /// } |
| /// } |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_key(self) -> K { |
| let entry = unsafe { self.elem.as_mut() }; |
| mem::replace(&mut entry.0, self.key.unwrap()) |
| } |
| |
| /// Provides shared access to the key and owned access to the value of |
| /// the entry and allows to replace or remove it based on the |
| /// value of the returned option. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// map.insert("poneyland", 42); |
| /// |
| /// let entry = match map.entry("poneyland") { |
| /// Entry::Occupied(e) => { |
| /// e.replace_entry_with(|k, v| { |
| /// assert_eq!(k, &"poneyland"); |
| /// assert_eq!(v, 42); |
| /// Some(v + 1) |
| /// }) |
| /// } |
| /// Entry::Vacant(_) => panic!(), |
| /// }; |
| /// |
| /// match entry { |
| /// Entry::Occupied(e) => { |
| /// assert_eq!(e.key(), &"poneyland"); |
| /// assert_eq!(e.get(), &43); |
| /// } |
| /// Entry::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 43); |
| /// |
| /// let entry = match map.entry("poneyland") { |
| /// Entry::Occupied(e) => e.replace_entry_with(|_k, _v| None), |
| /// Entry::Vacant(_) => panic!(), |
| /// }; |
| /// |
| /// match entry { |
| /// Entry::Vacant(e) => { |
| /// assert_eq!(e.key(), &"poneyland"); |
| /// } |
| /// Entry::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// assert!(!map.contains_key("poneyland")); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_entry_with<F>(self, f: F) -> Entry<'a, K, V, S, A> |
| where |
| F: FnOnce(&K, V) -> Option<V>, |
| { |
| unsafe { |
| let mut spare_key = None; |
| |
| self.table |
| .table |
| .replace_bucket_with(self.elem.clone(), |(key, value)| { |
| if let Some(new_value) = f(&key, value) { |
| Some((key, new_value)) |
| } else { |
| spare_key = Some(key); |
| None |
| } |
| }); |
| |
| if let Some(key) = spare_key { |
| Entry::Vacant(VacantEntry { |
| hash: self.hash, |
| key, |
| table: self.table, |
| }) |
| } else { |
| Entry::Occupied(self) |
| } |
| } |
| } |
| } |
| |
| impl<'a, K, V, S, A: Allocator> VacantEntry<'a, K, V, S, A> { |
| /// Gets a reference to the key that would be used when inserting a value |
| /// through the `VacantEntry`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// assert_eq!(map.entry("poneyland").key(), &"poneyland"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &K { |
| &self.key |
| } |
| |
| /// Take ownership of the key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{Entry, HashMap}; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// match map.entry("poneyland") { |
| /// Entry::Occupied(_) => panic!(), |
| /// Entry::Vacant(v) => assert_eq!(v.into_key(), "poneyland"), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_key(self) -> K { |
| self.key |
| } |
| |
| /// Sets the value of the entry with the VacantEntry's key, |
| /// and returns a mutable reference to it. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::Entry; |
| /// |
| /// let mut map: HashMap<&str, u32> = HashMap::new(); |
| /// |
| /// if let Entry::Vacant(o) = map.entry("poneyland") { |
| /// o.insert(37); |
| /// } |
| /// assert_eq!(map["poneyland"], 37); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(self, value: V) -> &'a mut V |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| let table = &mut self.table.table; |
| let entry = table.insert_entry( |
| self.hash, |
| (self.key, value), |
| make_hasher::<_, V, S>(&self.table.hash_builder), |
| ); |
| &mut entry.1 |
| } |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub(crate) fn insert_entry(self, value: V) -> OccupiedEntry<'a, K, V, S, A> |
| where |
| K: Hash, |
| S: BuildHasher, |
| { |
| let elem = self.table.table.insert( |
| self.hash, |
| (self.key, value), |
| make_hasher::<_, V, S>(&self.table.hash_builder), |
| ); |
| OccupiedEntry { |
| hash: self.hash, |
| key: None, |
| elem, |
| table: self.table, |
| } |
| } |
| } |
| |
| impl<'a, 'b, K, Q: ?Sized, V, S, A: Allocator> EntryRef<'a, 'b, K, Q, V, S, A> { |
| /// Sets the value of the entry, and returns an OccupiedEntryRef. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// let entry = map.entry_ref("horseyland").insert(37); |
| /// |
| /// assert_eq!(entry.key(), "horseyland"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(self, value: V) -> OccupiedEntryRef<'a, 'b, K, Q, V, S, A> |
| where |
| K: Hash + From<&'b Q>, |
| S: BuildHasher, |
| { |
| match self { |
| EntryRef::Occupied(mut entry) => { |
| entry.insert(value); |
| entry |
| } |
| EntryRef::Vacant(entry) => entry.insert_entry(value), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting the default if empty, and returns |
| /// a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry_ref("poneyland").or_insert(3); |
| /// assert_eq!(map["poneyland"], 3); |
| /// |
| /// // existing key |
| /// *map.entry_ref("poneyland").or_insert(10) *= 2; |
| /// assert_eq!(map["poneyland"], 6); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert(self, default: V) -> &'a mut V |
| where |
| K: Hash + From<&'b Q>, |
| S: BuildHasher, |
| { |
| match self { |
| EntryRef::Occupied(entry) => entry.into_mut(), |
| EntryRef::Vacant(entry) => entry.insert(default), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting the result of the default function if empty, |
| /// and returns a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry_ref("poneyland").or_insert_with(|| 3); |
| /// assert_eq!(map["poneyland"], 3); |
| /// |
| /// // existing key |
| /// *map.entry_ref("poneyland").or_insert_with(|| 10) *= 2; |
| /// assert_eq!(map["poneyland"], 6); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert_with<F: FnOnce() -> V>(self, default: F) -> &'a mut V |
| where |
| K: Hash + From<&'b Q>, |
| S: BuildHasher, |
| { |
| match self { |
| EntryRef::Occupied(entry) => entry.into_mut(), |
| EntryRef::Vacant(entry) => entry.insert(default()), |
| } |
| } |
| |
| /// Ensures a value is in the entry by inserting, if empty, the result of the default function. |
| /// This method allows for generating key-derived values for insertion by providing the default |
| /// function an access to the borrower form of the key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, usize> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry_ref("poneyland").or_insert_with_key(|key| key.chars().count()); |
| /// assert_eq!(map["poneyland"], 9); |
| /// |
| /// // existing key |
| /// *map.entry_ref("poneyland").or_insert_with_key(|key| key.chars().count() * 10) *= 2; |
| /// assert_eq!(map["poneyland"], 18); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_insert_with_key<F: FnOnce(&Q) -> V>(self, default: F) -> &'a mut V |
| where |
| K: Hash + Borrow<Q> + From<&'b Q>, |
| S: BuildHasher, |
| { |
| match self { |
| EntryRef::Occupied(entry) => entry.into_mut(), |
| EntryRef::Vacant(entry) => { |
| let value = default(entry.key.as_ref()); |
| entry.insert(value) |
| } |
| } |
| } |
| |
| /// Returns a reference to this entry's key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.entry_ref("poneyland").or_insert(3); |
| /// // existing key |
| /// assert_eq!(map.entry_ref("poneyland").key(), "poneyland"); |
| /// // nonexistent key |
| /// assert_eq!(map.entry_ref("horseland").key(), "horseland"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &Q |
| where |
| K: Borrow<Q>, |
| { |
| match *self { |
| EntryRef::Occupied(ref entry) => entry.key().borrow(), |
| EntryRef::Vacant(ref entry) => entry.key(), |
| } |
| } |
| |
| /// Provides in-place mutable access to an occupied entry before any |
| /// potential inserts into the map. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// |
| /// map.entry_ref("poneyland") |
| /// .and_modify(|e| { *e += 1 }) |
| /// .or_insert(42); |
| /// assert_eq!(map["poneyland"], 42); |
| /// |
| /// map.entry_ref("poneyland") |
| /// .and_modify(|e| { *e += 1 }) |
| /// .or_insert(42); |
| /// assert_eq!(map["poneyland"], 43); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn and_modify<F>(self, f: F) -> Self |
| where |
| F: FnOnce(&mut V), |
| { |
| match self { |
| EntryRef::Occupied(mut entry) => { |
| f(entry.get_mut()); |
| EntryRef::Occupied(entry) |
| } |
| EntryRef::Vacant(entry) => EntryRef::Vacant(entry), |
| } |
| } |
| |
| /// Provides shared access to the key and owned access to the value of |
| /// an occupied entry and allows to replace or remove it based on the |
| /// value of the returned option. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// |
| /// let entry = map |
| /// .entry_ref("poneyland") |
| /// .and_replace_entry_with(|_k, _v| panic!()); |
| /// |
| /// match entry { |
| /// EntryRef::Vacant(e) => { |
| /// assert_eq!(e.key(), "poneyland"); |
| /// } |
| /// EntryRef::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// map.insert("poneyland".to_string(), 42); |
| /// |
| /// let entry = map |
| /// .entry_ref("poneyland") |
| /// .and_replace_entry_with(|k, v| { |
| /// assert_eq!(k, "poneyland"); |
| /// assert_eq!(v, 42); |
| /// Some(v + 1) |
| /// }); |
| /// |
| /// match entry { |
| /// EntryRef::Occupied(e) => { |
| /// assert_eq!(e.key(), "poneyland"); |
| /// assert_eq!(e.get(), &43); |
| /// } |
| /// EntryRef::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 43); |
| /// |
| /// let entry = map |
| /// .entry_ref("poneyland") |
| /// .and_replace_entry_with(|_k, _v| None); |
| /// |
| /// match entry { |
| /// EntryRef::Vacant(e) => assert_eq!(e.key(), "poneyland"), |
| /// EntryRef::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// assert!(!map.contains_key("poneyland")); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn and_replace_entry_with<F>(self, f: F) -> Self |
| where |
| F: FnOnce(&K, V) -> Option<V>, |
| { |
| match self { |
| EntryRef::Occupied(entry) => entry.replace_entry_with(f), |
| EntryRef::Vacant(_) => self, |
| } |
| } |
| } |
| |
| impl<'a, 'b, K, Q: ?Sized, V: Default, S, A: Allocator> EntryRef<'a, 'b, K, Q, V, S, A> { |
| /// Ensures a value is in the entry by inserting the default value if empty, |
| /// and returns a mutable reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, Option<u32>> = HashMap::new(); |
| /// |
| /// // nonexistent key |
| /// map.entry_ref("poneyland").or_default(); |
| /// assert_eq!(map["poneyland"], None); |
| /// |
| /// map.insert("horseland".to_string(), Some(3)); |
| /// |
| /// // existing key |
| /// assert_eq!(map.entry_ref("horseland").or_default(), &mut Some(3)); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn or_default(self) -> &'a mut V |
| where |
| K: Hash + From<&'b Q>, |
| S: BuildHasher, |
| { |
| match self { |
| EntryRef::Occupied(entry) => entry.into_mut(), |
| EntryRef::Vacant(entry) => entry.insert(Default::default()), |
| } |
| } |
| } |
| |
| impl<'a, 'b, K, Q: ?Sized, V, S, A: Allocator> OccupiedEntryRef<'a, 'b, K, Q, V, S, A> { |
| /// Gets a reference to the key in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// match map.entry_ref("poneyland") { |
| /// EntryRef::Vacant(_) => panic!(), |
| /// EntryRef::Occupied(entry) => assert_eq!(entry.key(), "poneyland"), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &K { |
| unsafe { &self.elem.as_ref().0 } |
| } |
| |
| /// Take the ownership of the key and value from the map. |
| /// Keeps the allocated memory for reuse. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// // The map is empty |
| /// assert!(map.is_empty() && map.capacity() == 0); |
| /// |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// if let EntryRef::Occupied(o) = map.entry_ref("poneyland") { |
| /// // We delete the entry from the map. |
| /// assert_eq!(o.remove_entry(), ("poneyland".to_owned(), 12)); |
| /// } |
| /// |
| /// assert_eq!(map.contains_key("poneyland"), false); |
| /// // Now map hold none elements but capacity is equal to the old one |
| /// assert!(map.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove_entry(self) -> (K, V) { |
| unsafe { self.table.table.remove(self.elem).0 } |
| } |
| |
| /// Gets a reference to the value in the entry. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// match map.entry_ref("poneyland") { |
| /// EntryRef::Vacant(_) => panic!(), |
| /// EntryRef::Occupied(entry) => assert_eq!(entry.get(), &12), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get(&self) -> &V { |
| unsafe { &self.elem.as_ref().1 } |
| } |
| |
| /// Gets a mutable reference to the value in the entry. |
| /// |
| /// If you need a reference to the `OccupiedEntryRef` which may outlive the |
| /// destruction of the `EntryRef` value, see [`into_mut`]. |
| /// |
| /// [`into_mut`]: #method.into_mut |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// assert_eq!(map["poneyland"], 12); |
| /// if let EntryRef::Occupied(mut o) = map.entry_ref("poneyland") { |
| /// *o.get_mut() += 10; |
| /// assert_eq!(*o.get(), 22); |
| /// |
| /// // We can use the same Entry multiple times. |
| /// *o.get_mut() += 2; |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 24); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn get_mut(&mut self) -> &mut V { |
| unsafe { &mut self.elem.as_mut().1 } |
| } |
| |
| /// Converts the OccupiedEntryRef into a mutable reference to the value in the entry |
| /// with a lifetime bound to the map itself. |
| /// |
| /// If you need multiple references to the `OccupiedEntryRef`, see [`get_mut`]. |
| /// |
| /// [`get_mut`]: #method.get_mut |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// let value: &mut u32; |
| /// match map.entry_ref("poneyland") { |
| /// EntryRef::Occupied(entry) => value = entry.into_mut(), |
| /// EntryRef::Vacant(_) => panic!(), |
| /// } |
| /// *value += 10; |
| /// |
| /// assert_eq!(map["poneyland"], 22); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_mut(self) -> &'a mut V { |
| unsafe { &mut self.elem.as_mut().1 } |
| } |
| |
| /// Sets the value of the entry, and returns the entry's old value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// if let EntryRef::Occupied(mut o) = map.entry_ref("poneyland") { |
| /// assert_eq!(o.insert(15), 12); |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 15); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(&mut self, value: V) -> V { |
| mem::replace(self.get_mut(), value) |
| } |
| |
| /// Takes the value out of the entry, and returns it. |
| /// Keeps the allocated memory for reuse. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// // The map is empty |
| /// assert!(map.is_empty() && map.capacity() == 0); |
| /// |
| /// map.entry_ref("poneyland").or_insert(12); |
| /// |
| /// if let EntryRef::Occupied(o) = map.entry_ref("poneyland") { |
| /// assert_eq!(o.remove(), 12); |
| /// } |
| /// |
| /// assert_eq!(map.contains_key("poneyland"), false); |
| /// // Now map hold none elements but capacity is equal to the old one |
| /// assert!(map.is_empty()); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn remove(self) -> V { |
| self.remove_entry().1 |
| } |
| |
| /// Replaces the entry, returning the old key and value. The new key in the hash map will be |
| /// the key used to create this entry. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if this OccupiedEntryRef was created through [`EntryRef::insert`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// use std::rc::Rc; |
| /// |
| /// let mut map: HashMap<Rc<str>, u32> = HashMap::new(); |
| /// let key: Rc<str> = Rc::from("Stringthing"); |
| /// |
| /// map.insert(key.clone(), 15); |
| /// assert_eq!(Rc::strong_count(&key), 2); |
| /// |
| /// match map.entry_ref("Stringthing") { |
| /// EntryRef::Occupied(entry) => { |
| /// let (old_key, old_value): (Rc<str>, u32) = entry.replace_entry(16); |
| /// assert!(Rc::ptr_eq(&key, &old_key) && old_value == 15); |
| /// } |
| /// EntryRef::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert_eq!(Rc::strong_count(&key), 1); |
| /// assert_eq!(map["Stringthing"], 16); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_entry(self, value: V) -> (K, V) |
| where |
| K: From<&'b Q>, |
| { |
| let entry = unsafe { self.elem.as_mut() }; |
| |
| let old_key = mem::replace(&mut entry.0, self.key.unwrap().into_owned()); |
| let old_value = mem::replace(&mut entry.1, value); |
| |
| (old_key, old_value) |
| } |
| |
| /// Replaces the key in the hash map with the key used to create this entry. |
| /// |
| /// # Panics |
| /// |
| /// Will panic if this OccupiedEntryRef was created through [`EntryRef::insert`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// use std::rc::Rc; |
| /// |
| /// let mut map: HashMap<Rc<str>, usize> = HashMap::with_capacity(6); |
| /// let mut keys: Vec<Rc<str>> = Vec::with_capacity(6); |
| /// |
| /// for (value, key) in ["a", "b", "c", "d", "e", "f"].into_iter().enumerate() { |
| /// let rc_key: Rc<str> = Rc::from(key); |
| /// keys.push(rc_key.clone()); |
| /// map.insert(rc_key.clone(), value); |
| /// } |
| /// |
| /// assert!(keys.iter().all(|key| Rc::strong_count(key) == 2)); |
| /// |
| /// // It doesn't matter that we kind of use a vector with the same keys, |
| /// // because all keys will be newly created from the references |
| /// reclaim_memory(&mut map, &keys); |
| /// |
| /// assert!(keys.iter().all(|key| Rc::strong_count(key) == 1)); |
| /// |
| /// fn reclaim_memory(map: &mut HashMap<Rc<str>, usize>, keys: &[Rc<str>]) { |
| /// for key in keys { |
| /// if let EntryRef::Occupied(entry) = map.entry_ref(key.as_ref()) { |
| /// // Replaces the entry's key with our version of it in `keys`. |
| /// entry.replace_key(); |
| /// } |
| /// } |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_key(self) -> K |
| where |
| K: From<&'b Q>, |
| { |
| let entry = unsafe { self.elem.as_mut() }; |
| mem::replace(&mut entry.0, self.key.unwrap().into_owned()) |
| } |
| |
| /// Provides shared access to the key and owned access to the value of |
| /// the entry and allows to replace or remove it based on the |
| /// value of the returned option. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// map.insert("poneyland".to_string(), 42); |
| /// |
| /// let entry = match map.entry_ref("poneyland") { |
| /// EntryRef::Occupied(e) => { |
| /// e.replace_entry_with(|k, v| { |
| /// assert_eq!(k, "poneyland"); |
| /// assert_eq!(v, 42); |
| /// Some(v + 1) |
| /// }) |
| /// } |
| /// EntryRef::Vacant(_) => panic!(), |
| /// }; |
| /// |
| /// match entry { |
| /// EntryRef::Occupied(e) => { |
| /// assert_eq!(e.key(), "poneyland"); |
| /// assert_eq!(e.get(), &43); |
| /// } |
| /// EntryRef::Vacant(_) => panic!(), |
| /// } |
| /// |
| /// assert_eq!(map["poneyland"], 43); |
| /// |
| /// let entry = match map.entry_ref("poneyland") { |
| /// EntryRef::Occupied(e) => e.replace_entry_with(|_k, _v| None), |
| /// EntryRef::Vacant(_) => panic!(), |
| /// }; |
| /// |
| /// match entry { |
| /// EntryRef::Vacant(e) => { |
| /// assert_eq!(e.key(), "poneyland"); |
| /// } |
| /// EntryRef::Occupied(_) => panic!(), |
| /// } |
| /// |
| /// assert!(!map.contains_key("poneyland")); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn replace_entry_with<F>(self, f: F) -> EntryRef<'a, 'b, K, Q, V, S, A> |
| where |
| F: FnOnce(&K, V) -> Option<V>, |
| { |
| unsafe { |
| let mut spare_key = None; |
| |
| self.table |
| .table |
| .replace_bucket_with(self.elem.clone(), |(key, value)| { |
| if let Some(new_value) = f(&key, value) { |
| Some((key, new_value)) |
| } else { |
| spare_key = Some(KeyOrRef::Owned(key)); |
| None |
| } |
| }); |
| |
| if let Some(key) = spare_key { |
| EntryRef::Vacant(VacantEntryRef { |
| hash: self.hash, |
| key, |
| table: self.table, |
| }) |
| } else { |
| EntryRef::Occupied(self) |
| } |
| } |
| } |
| } |
| |
| impl<'a, 'b, K, Q: ?Sized, V, S, A: Allocator> VacantEntryRef<'a, 'b, K, Q, V, S, A> { |
| /// Gets a reference to the key that would be used when inserting a value |
| /// through the `VacantEntryRef`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// let key: &str = "poneyland"; |
| /// assert_eq!(map.entry_ref(key).key(), "poneyland"); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn key(&self) -> &Q |
| where |
| K: Borrow<Q>, |
| { |
| self.key.as_ref() |
| } |
| |
| /// Take ownership of the key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::{EntryRef, HashMap}; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// let key: &str = "poneyland"; |
| /// |
| /// match map.entry_ref(key) { |
| /// EntryRef::Occupied(_) => panic!(), |
| /// EntryRef::Vacant(v) => assert_eq!(v.into_key(), "poneyland".to_owned()), |
| /// } |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn into_key(self) -> K |
| where |
| K: From<&'b Q>, |
| { |
| self.key.into_owned() |
| } |
| |
| /// Sets the value of the entry with the VacantEntryRef's key, |
| /// and returns a mutable reference to it. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::HashMap; |
| /// use hashbrown::hash_map::EntryRef; |
| /// |
| /// let mut map: HashMap<String, u32> = HashMap::new(); |
| /// let key: &str = "poneyland"; |
| /// |
| /// if let EntryRef::Vacant(o) = map.entry_ref(key) { |
| /// o.insert(37); |
| /// } |
| /// assert_eq!(map["poneyland"], 37); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| pub fn insert(self, value: V) -> &'a mut V |
| where |
| K: Hash + From<&'b Q>, |
| S: BuildHasher, |
| { |
| let table = &mut self.table.table; |
| let entry = table.insert_entry( |
| self.hash, |
| (self.key.into_owned(), value), |
| make_hasher::<_, V, S>(&self.table.hash_builder), |
| ); |
| &mut entry.1 |
| } |
| |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn insert_entry(self, value: V) -> OccupiedEntryRef<'a, 'b, K, Q, V, S, A> |
| where |
| K: Hash + From<&'b Q>, |
| S: BuildHasher, |
| { |
| let elem = self.table.table.insert( |
| self.hash, |
| (self.key.into_owned(), value), |
| make_hasher::<_, V, S>(&self.table.hash_builder), |
| ); |
| OccupiedEntryRef { |
| hash: self.hash, |
| key: None, |
| elem, |
| table: self.table, |
| } |
| } |
| } |
| |
| impl<K, V, S, A> FromIterator<(K, V)> for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash, |
| S: BuildHasher + Default, |
| A: Default + Allocator, |
| { |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn from_iter<T: IntoIterator<Item = (K, V)>>(iter: T) -> Self { |
| let iter = iter.into_iter(); |
| let mut map = |
| Self::with_capacity_and_hasher_in(iter.size_hint().0, S::default(), A::default()); |
| iter.for_each(|(k, v)| { |
| map.insert(k, v); |
| }); |
| map |
| } |
| } |
| |
| /// Inserts all new key-values from the iterator and replaces values with existing |
| /// keys with new values returned from the iterator. |
| impl<K, V, S, A> Extend<(K, V)> for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| /// Inserts all new key-values from the iterator to existing `HashMap<K, V, S, A>`. |
| /// Replace values with existing keys with new values returned from the iterator. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, 100); |
| /// |
| /// let some_iter = [(1, 1), (2, 2)].into_iter(); |
| /// map.extend(some_iter); |
| /// // Replace values with existing keys with new values returned from the iterator. |
| /// // So that the map.get(&1) doesn't return Some(&100). |
| /// assert_eq!(map.get(&1), Some(&1)); |
| /// |
| /// let some_vec: Vec<_> = vec![(3, 3), (4, 4)]; |
| /// map.extend(some_vec); |
| /// |
| /// let some_arr = [(5, 5), (6, 6)]; |
| /// map.extend(some_arr); |
| /// let old_map_len = map.len(); |
| /// |
| /// // You can also extend from another HashMap |
| /// let mut new_map = HashMap::new(); |
| /// new_map.extend(map); |
| /// assert_eq!(new_map.len(), old_map_len); |
| /// |
| /// let mut vec: Vec<_> = new_map.into_iter().collect(); |
| /// // The `IntoIter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn extend<T: IntoIterator<Item = (K, V)>>(&mut self, iter: T) { |
| // Keys may be already present or show multiple times in the iterator. |
| // Reserve the entire hint lower bound if the map is empty. |
| // Otherwise reserve half the hint (rounded up), so the map |
| // will only resize twice in the worst case. |
| let iter = iter.into_iter(); |
| let reserve = if self.is_empty() { |
| iter.size_hint().0 |
| } else { |
| (iter.size_hint().0 + 1) / 2 |
| }; |
| self.reserve(reserve); |
| iter.for_each(move |(k, v)| { |
| self.insert(k, v); |
| }); |
| } |
| |
| #[inline] |
| #[cfg(feature = "nightly")] |
| fn extend_one(&mut self, (k, v): (K, V)) { |
| self.insert(k, v); |
| } |
| |
| #[inline] |
| #[cfg(feature = "nightly")] |
| fn extend_reserve(&mut self, additional: usize) { |
| // Keys may be already present or show multiple times in the iterator. |
| // Reserve the entire hint lower bound if the map is empty. |
| // Otherwise reserve half the hint (rounded up), so the map |
| // will only resize twice in the worst case. |
| let reserve = if self.is_empty() { |
| additional |
| } else { |
| (additional + 1) / 2 |
| }; |
| self.reserve(reserve); |
| } |
| } |
| |
| /// Inserts all new key-values from the iterator and replaces values with existing |
| /// keys with new values returned from the iterator. |
| impl<'a, K, V, S, A> Extend<(&'a K, &'a V)> for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash + Copy, |
| V: Copy, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| /// Inserts all new key-values from the iterator to existing `HashMap<K, V, S, A>`. |
| /// Replace values with existing keys with new values returned from the iterator. |
| /// The keys and values must implement [`Copy`] trait. |
| /// |
| /// [`Copy`]: https://doc.rust-lang.org/core/marker/trait.Copy.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, 100); |
| /// |
| /// let arr = [(1, 1), (2, 2)]; |
| /// let some_iter = arr.iter().map(|(k, v)| (k, v)); |
| /// map.extend(some_iter); |
| /// // Replace values with existing keys with new values returned from the iterator. |
| /// // So that the map.get(&1) doesn't return Some(&100). |
| /// assert_eq!(map.get(&1), Some(&1)); |
| /// |
| /// let some_vec: Vec<_> = vec![(3, 3), (4, 4)]; |
| /// map.extend(some_vec.iter().map(|(k, v)| (k, v))); |
| /// |
| /// let some_arr = [(5, 5), (6, 6)]; |
| /// map.extend(some_arr.iter().map(|(k, v)| (k, v))); |
| /// |
| /// // You can also extend from another HashMap |
| /// let mut new_map = HashMap::new(); |
| /// new_map.extend(&map); |
| /// assert_eq!(new_map, map); |
| /// |
| /// let mut vec: Vec<_> = new_map.into_iter().collect(); |
| /// // The `IntoIter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn extend<T: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iter: T) { |
| self.extend(iter.into_iter().map(|(&key, &value)| (key, value))); |
| } |
| |
| #[inline] |
| #[cfg(feature = "nightly")] |
| fn extend_one(&mut self, (k, v): (&'a K, &'a V)) { |
| self.insert(*k, *v); |
| } |
| |
| #[inline] |
| #[cfg(feature = "nightly")] |
| fn extend_reserve(&mut self, additional: usize) { |
| Extend::<(K, V)>::extend_reserve(self, additional); |
| } |
| } |
| |
| /// Inserts all new key-values from the iterator and replaces values with existing |
| /// keys with new values returned from the iterator. |
| impl<'a, K, V, S, A> Extend<&'a (K, V)> for HashMap<K, V, S, A> |
| where |
| K: Eq + Hash + Copy, |
| V: Copy, |
| S: BuildHasher, |
| A: Allocator, |
| { |
| /// Inserts all new key-values from the iterator to existing `HashMap<K, V, S, A>`. |
| /// Replace values with existing keys with new values returned from the iterator. |
| /// The keys and values must implement [`Copy`] trait. |
| /// |
| /// [`Copy`]: https://doc.rust-lang.org/core/marker/trait.Copy.html |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use hashbrown::hash_map::HashMap; |
| /// |
| /// let mut map = HashMap::new(); |
| /// map.insert(1, 100); |
| /// |
| /// let arr = [(1, 1), (2, 2)]; |
| /// let some_iter = arr.iter(); |
| /// map.extend(some_iter); |
| /// // Replace values with existing keys with new values returned from the iterator. |
| /// // So that the map.get(&1) doesn't return Some(&100). |
| /// assert_eq!(map.get(&1), Some(&1)); |
| /// |
| /// let some_vec: Vec<_> = vec![(3, 3), (4, 4)]; |
| /// map.extend(&some_vec); |
| /// |
| /// let some_arr = [(5, 5), (6, 6)]; |
| /// map.extend(&some_arr); |
| /// |
| /// let mut vec: Vec<_> = map.into_iter().collect(); |
| /// // The `IntoIter` iterator produces items in arbitrary order, so the |
| /// // items must be sorted to test them against a sorted array. |
| /// vec.sort_unstable(); |
| /// assert_eq!(vec, [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]); |
| /// ``` |
| #[cfg_attr(feature = "inline-more", inline)] |
| fn extend<T: IntoIterator<Item = &'a (K, V)>>(&mut self, iter: T) { |
| self.extend(iter.into_iter().map(|&(key, value)| (key, value))); |
| } |
| |
| #[inline] |
| #[cfg(feature = "nightly")] |
| fn extend_one(&mut self, &(k, v): &'a (K, V)) { |
| self.insert(k, v); |
| } |
| |
| #[inline] |
| #[cfg(feature = "nightly")] |
| fn extend_reserve(&mut self, additional: usize) { |
| Extend::<(K, V)>::extend_reserve(self, additional); |
| } |
| } |
| |
| #[allow(dead_code)] |
| fn assert_covariance() { |
| fn map_key<'new>(v: HashMap<&'static str, u8>) -> HashMap<&'new str, u8> { |
| v |
| } |
| fn map_val<'new>(v: HashMap<u8, &'static str>) -> HashMap<u8, &'new str> { |
| v |
| } |
| fn iter_key<'a, 'new>(v: Iter<'a, &'static str, u8>) -> Iter<'a, &'new str, u8> { |
| v |
| } |
| fn iter_val<'a, 'new>(v: Iter<'a, u8, &'static str>) -> Iter<'a, u8, &'new str> { |
| v |
| } |
| fn into_iter_key<'new, A: Allocator>( |
| v: IntoIter<&'static str, u8, A>, |
| ) -> IntoIter<&'new str, u8, A> { |
| v |
| } |
| fn into_iter_val<'new, A: Allocator>( |
| v: IntoIter<u8, &'static str, A>, |
| ) -> IntoIter<u8, &'new str, A> { |
| v |
| } |
| fn keys_key<'a, 'new>(v: Keys<'a, &'static str, u8>) -> Keys<'a, &'new str, u8> { |
| v |
| } |
| fn keys_val<'a, 'new>(v: Keys<'a, u8, &'static str>) -> Keys<'a, u8, &'new str> { |
| v |
| } |
| fn values_key<'a, 'new>(v: Values<'a, &'static str, u8>) -> Values<'a, &'new str, u8> { |
| v |
| } |
| fn values_val<'a, 'new>(v: Values<'a, u8, &'static str>) -> Values<'a, u8, &'new str> { |
| v |
| } |
| fn drain<'new>( |
| d: Drain<'static, &'static str, &'static str>, |
| ) -> Drain<'new, &'new str, &'new str> { |
| d |
| } |
| } |
| |
| #[cfg(test)] |
| mod test_map { |
| use super::DefaultHashBuilder; |
| use super::Entry::{Occupied, Vacant}; |
| use super::EntryRef; |
| use super::{HashMap, RawEntryMut}; |
| use alloc::string::{String, ToString}; |
| use alloc::sync::Arc; |
| use allocator_api2::alloc::{AllocError, Allocator, Global}; |
| use core::alloc::Layout; |
| use core::ptr::NonNull; |
| use core::sync::atomic::{AtomicI8, Ordering}; |
| use rand::{rngs::SmallRng, Rng, SeedableRng}; |
| use std::borrow::ToOwned; |
| use std::cell::RefCell; |
| use std::usize; |
| use std::vec::Vec; |
| |
| #[test] |
| fn test_zero_capacities() { |
| type HM = HashMap<i32, i32>; |
| |
| let m = HM::new(); |
| assert_eq!(m.capacity(), 0); |
| |
| let m = HM::default(); |
| assert_eq!(m.capacity(), 0); |
| |
| let m = HM::with_hasher(DefaultHashBuilder::default()); |
| assert_eq!(m.capacity(), 0); |
| |
| let m = HM::with_capacity(0); |
| assert_eq!(m.capacity(), 0); |
| |
| let m = HM::with_capacity_and_hasher(0, DefaultHashBuilder::default()); |
| assert_eq!(m.capacity(), 0); |
| |
| let mut m = HM::new(); |
| m.insert(1, 1); |
| m.insert(2, 2); |
| m.remove(&1); |
| m.remove(&2); |
| m.shrink_to_fit(); |
| assert_eq!(m.capacity(), 0); |
| |
| let mut m = HM::new(); |
| m.reserve(0); |
| assert_eq!(m.capacity(), 0); |
| } |
| |
| #[test] |
| fn test_create_capacity_zero() { |
| let mut m = HashMap::with_capacity(0); |
| |
| assert!(m.insert(1, 1).is_none()); |
| |
| assert!(m.contains_key(&1)); |
| assert!(!m.contains_key(&0)); |
| } |
| |
| #[test] |
| fn test_insert() { |
| let mut m = HashMap::new(); |
| assert_eq!(m.len(), 0); |
| assert!(m.insert(1, 2).is_none()); |
| assert_eq!(m.len(), 1); |
| assert!(m.insert(2, 4).is_none()); |
| assert_eq!(m.len(), 2); |
| assert_eq!(*m.get(&1).unwrap(), 2); |
| assert_eq!(*m.get(&2).unwrap(), 4); |
| } |
| |
| #[test] |
| fn test_clone() { |
| let mut m = HashMap::new(); |
| assert_eq!(m.len(), 0); |
| assert!(m.insert(1, 2).is_none()); |
| assert_eq!(m.len(), 1); |
| assert!(m.insert(2, 4).is_none()); |
| assert_eq!(m.len(), 2); |
| #[allow(clippy::redundant_clone)] |
| let m2 = m.clone(); |
| assert_eq!(*m2.get(&1).unwrap(), 2); |
| assert_eq!(*m2.get(&2).unwrap(), 4); |
| assert_eq!(m2.len(), 2); |
| } |
| |
| #[test] |
| fn test_clone_from() { |
| let mut m = HashMap::new(); |
| let mut m2 = HashMap::new(); |
| assert_eq!(m.len(), 0); |
| assert!(m.insert(1, 2).is_none()); |
| assert_eq!(m.len(), 1); |
| assert!(m.insert(2, 4).is_none()); |
| assert_eq!(m.len(), 2); |
| m2.clone_from(&m); |
| assert_eq!(*m2.get(&1).unwrap(), 2); |
| assert_eq!(*m2.get(&2).unwrap(), 4); |
| assert_eq!(m2.len(), 2); |
| } |
| |
| thread_local! { static DROP_VECTOR: RefCell<Vec<i32>> = RefCell::new(Vec::new()) } |
| |
| #[derive(Hash, PartialEq, Eq)] |
| struct Droppable { |
| k: usize, |
| } |
| |
| impl Droppable { |
| fn new(k: usize) -> Droppable { |
| DROP_VECTOR.with(|slot| { |
| slot.borrow_mut()[k] += 1; |
| }); |
| |
| Droppable { k } |
| } |
| } |
| |
| impl Drop for Droppable { |
| fn drop(&mut self) { |
| DROP_VECTOR.with(|slot| { |
| slot.borrow_mut()[self.k] -= 1; |
| }); |
| } |
| } |
| |
| impl Clone for Droppable { |
| fn clone(&self) -> Self { |
| Droppable::new(self.k) |
| } |
| } |
| |
| #[test] |
| fn test_drops() { |
| DROP_VECTOR.with(|slot| { |
| *slot.borrow_mut() = vec![0; 200]; |
| }); |
| |
| { |
| let mut m = HashMap::new(); |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 0); |
| } |
| }); |
| |
| for i in 0..100 { |
| let d1 = Droppable::new(i); |
| let d2 = Droppable::new(i + 100); |
| m.insert(d1, d2); |
| } |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 1); |
| } |
| }); |
| |
| for i in 0..50 { |
| let k = Droppable::new(i); |
| let v = m.remove(&k); |
| |
| assert!(v.is_some()); |
| |
| DROP_VECTOR.with(|v| { |
| assert_eq!(v.borrow()[i], 1); |
| assert_eq!(v.borrow()[i + 100], 1); |
| }); |
| } |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..50 { |
| assert_eq!(v.borrow()[i], 0); |
| assert_eq!(v.borrow()[i + 100], 0); |
| } |
| |
| for i in 50..100 { |
| assert_eq!(v.borrow()[i], 1); |
| assert_eq!(v.borrow()[i + 100], 1); |
| } |
| }); |
| } |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 0); |
| } |
| }); |
| } |
| |
| #[test] |
| fn test_into_iter_drops() { |
| DROP_VECTOR.with(|v| { |
| *v.borrow_mut() = vec![0; 200]; |
| }); |
| |
| let hm = { |
| let mut hm = HashMap::new(); |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 0); |
| } |
| }); |
| |
| for i in 0..100 { |
| let d1 = Droppable::new(i); |
| let d2 = Droppable::new(i + 100); |
| hm.insert(d1, d2); |
| } |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 1); |
| } |
| }); |
| |
| hm |
| }; |
| |
| // By the way, ensure that cloning doesn't screw up the dropping. |
| drop(hm.clone()); |
| |
| { |
| let mut half = hm.into_iter().take(50); |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 1); |
| } |
| }); |
| |
| for _ in half.by_ref() {} |
| |
| DROP_VECTOR.with(|v| { |
| let nk = (0..100).filter(|&i| v.borrow()[i] == 1).count(); |
| |
| let nv = (0..100).filter(|&i| v.borrow()[i + 100] == 1).count(); |
| |
| assert_eq!(nk, 50); |
| assert_eq!(nv, 50); |
| }); |
| }; |
| |
| DROP_VECTOR.with(|v| { |
| for i in 0..200 { |
| assert_eq!(v.borrow()[i], 0); |
| } |
| }); |
| } |
| |
| #[test] |
| fn test_empty_remove() { |
| let mut m: HashMap<i32, bool> = HashMap::new(); |
| assert_eq!(m.remove(&0), None); |
| } |
| |
| #[test] |
| fn test_empty_entry() { |
| let mut m: HashMap<i32, bool> = HashMap::new(); |
| match m.entry(0) { |
| Occupied(_) => panic!(), |
| Vacant(_) => {} |
| } |
| assert!(*m.entry(0).or_insert(true)); |
| assert_eq!(m.len(), 1); |
| } |
| |
| #[test] |
| fn test_empty_entry_ref() { |
| let mut m: HashMap<std::string::String, bool> = HashMap::new(); |
| match m.entry_ref("poneyland") { |
| EntryRef::Occupied(_) => panic!(), |
| EntryRef::Vacant(_) => {} |
| } |
| assert!(*m.entry_ref("poneyland").or_insert(true)); |
| assert_eq!(m.len(), 1); |
| } |
| |
| #[test] |
| fn test_empty_iter() { |
| let mut m: HashMap<i32, bool> = HashMap::new(); |
| assert_eq!(m.drain().next(), None); |
| assert_eq!(m.keys().next(), None); |
| assert_eq!(m.values().next(), None); |
| assert_eq!(m.values_mut().next(), None); |
| assert_eq!(m.iter().next(), None); |
| assert_eq!(m.iter_mut().next(), None); |
| assert_eq!(m.len(), 0); |
| assert!(m.is_empty()); |
| assert_eq!(m.into_iter().next(), None); |
| } |
| |
| #[test] |
| #[cfg_attr(miri, ignore)] // FIXME: takes too long |
| fn test_lots_of_insertions() { |
| let mut m = HashMap::new(); |
| |
| // Try this a few times to make sure we never screw up the hashmap's |
| // internal state. |
| for _ in 0..10 { |
| assert!(m.is_empty()); |
| |
| for i in 1..1001 { |
| assert!(m.insert(i, i).is_none()); |
| |
| for j in 1..=i { |
| let r = m.get(&j); |
| assert_eq!(r, Some(&j)); |
| } |
| |
| for j in i + 1..1001 { |
| let r = m.get(&j); |
| assert_eq!(r, None); |
| } |
| } |
| |
| for i in 1001..2001 { |
| assert!(!m.contains_key(&i)); |
| } |
| |
| // remove forwards |
| for i in 1..1001 { |
| assert!(m.remove(&i).is_some()); |
| |
| for j in 1..=i { |
| assert!(!m.contains_key(&j)); |
| } |
| |
| for j in i + 1..1001 { |
| assert!(m.contains_key(&j)); |
| } |
| } |
| |
| for i in 1..1001 { |
| assert!(!m.contains_key(&i)); |
| } |
| |
| for i in 1..1001 { |
| assert!(m.insert(i, i).is_none()); |
| } |
| |
| // remove backwards |
| for i in (1..1001).rev() { |
| assert!(m.remove(&i).is_some()); |
| |
| for j in i..1001 { |
| assert!(!m.contains_key(&j)); |
| } |
| |
| for j in 1..i { |
| assert!(m.contains_key(&j)); |
| } |
| } |
| } |
| } |
| |
| #[test] |
| fn test_find_mut() { |
| let mut m = HashMap::new(); |
| assert!(m.insert(1, 12).is_none()); |
| assert!(m.insert(2, 8).is_none()); |
| assert!(m.insert(5, 14).is_none()); |
| let new = 100; |
| match m.get_mut(&5) { |
| None => panic!(), |
| Some(x) => *x = new, |
| } |
| assert_eq!(m.get(&5), Some(&new)); |
| } |
| |
| #[test] |
| fn test_insert_overwrite() { |
| let mut m = HashMap::new(); |
| assert!(m.insert(1, 2).is_none()); |
| assert_eq!(*m.get(&1).unwrap(), 2); |
| assert!(m.insert(1, 3).is_some()); |
| assert_eq!(*m.get(&1).unwrap(), 3); |
| } |
| |
| #[test] |
| fn test_insert_conflicts() { |
| let mut m = HashMap::with_capacity(4); |
| assert!(m.insert(1, 2).is_none()); |
| assert!(m.insert(5, 3).is_none()); |
| assert!(m.insert(9, 4).is_none()); |
| assert_eq!(*m.get(&9).unwrap(), 4); |
| assert_eq!(*m.get(&5).unwrap(), 3); |
| assert_eq!(*m.get(&1).unwrap(), 2); |
| } |
| |
| #[test] |
| fn test_conflict_remove() { |
| let mut m = HashMap::with_capacity(4); |
| assert!(m.insert(1, 2).is_none()); |
| assert_eq!(*m.get(&1).unwrap(), 2); |
| assert!(m.insert(5, 3).is_none()); |
| assert_eq!(*m.get(&1).unwrap(), 2); |
| assert_eq!(*m.get(&5).unwrap(), 3); |
| assert!(m.insert(9, 4).is_none()); |
| assert_eq!(*m.get(&1).unwrap(), 2); |
| assert_eq!(*m.get(&5).unwrap(), 3); |
| assert_eq!(*m.get(&9).unwrap(), 4); |
| assert!(m.remove(&1).is_some()); |
| assert_eq!(*m.get(&9).unwrap(), 4); |
| assert_eq!(*m.get(&5).unwrap(), 3); |
| } |
| |
| #[test] |
| fn test_insert_unique_unchecked() { |
| let mut map = HashMap::new(); |
| let (k1, v1) = map.insert_unique_unchecked(10, 11); |
| assert_eq!((&10, &mut 11), (k1, v1)); |
| let (k2, v2) = map.insert_unique_unchecked(20, 21); |
| assert_eq!((&20, &mut 21), (k2, v2)); |
| assert_eq!(Some(&11), map.get(&10)); |
| assert_eq!(Some(&21), map.get(&20)); |
| assert_eq!(None, map.get(&30)); |
| } |
| |
| #[test] |
| fn test_is_empty() { |
| let mut m = HashMap::with_capacity(4); |
| assert!(m.insert(1, 2).is_none()); |
| assert!(!m.is_empty()); |
| assert!(m.remove(&1).is_some()); |
| assert!(m.is_empty()); |
| } |
| |
| #[test] |
| fn test_remove() { |
| let mut m = HashMap::new(); |
| m.insert(1, 2); |
| assert_eq!(m.remove(&1), Some(2)); |
| assert_eq!(m.remove(&1), None); |
| } |
| |
| #[test] |
| fn test_remove_entry() { |
| let mut m = HashMap::new(); |
| m.insert(1, 2); |
| assert_eq!(m.remove_entry(&1), Some((1, 2))); |
| assert_eq!(m.remove(&1), None); |
| } |
| |
| #[test] |
| fn test_iterate() { |
| let mut m = HashMap::with_capacity(4); |
| for i in 0..32 { |
| assert!(m.insert(i, i * 2).is_none()); |
| } |
| assert_eq!(m.len(), 32); |
| |
| let mut observed: u32 = 0; |
| |
| for (k, v) in &m { |
| assert_eq!(*v, *k * 2); |
| observed |= 1 << *k; |
| } |
| assert_eq!(observed, 0xFFFF_FFFF); |
| } |
| |
| #[test] |
| fn test_keys() { |
| let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; |
| let map: HashMap<_, _> = vec.into_iter().collect(); |
| let keys: Vec<_> = map.keys().copied().collect(); |
| assert_eq!(keys.len(), 3); |
| assert!(keys.contains(&1)); |
| assert!(keys.contains(&2)); |
| assert!(keys.contains(&3)); |
| } |
| |
| #[test] |
| fn test_values() { |
| let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; |
| let map: HashMap<_, _> = vec.into_iter().collect(); |
| let values: Vec<_> = map.values().copied().collect(); |
| assert_eq!(values.len(), 3); |
| assert!(values.contains(&'a')); |
| assert!(values.contains(&'b')); |
| assert!(values.contains(&'c')); |
| } |
| |
| #[test] |
| fn test_values_mut() { |
| let vec = vec![(1, 1), (2, 2), (3, 3)]; |
| let mut map: HashMap<_, _> = vec.into_iter().collect(); |
| for value in map.values_mut() { |
| *value *= 2; |
| } |
| let values: Vec<_> = map.values().copied().collect(); |
| assert_eq!(values.len(), 3); |
| assert!(values.contains(&2)); |
| assert!(values.contains(&4)); |
| assert!(values.contains(&6)); |
| } |
| |
| #[test] |
| fn test_into_keys() { |
| let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; |
| let map: HashMap<_, _> = vec.into_iter().collect(); |
| let keys: Vec<_> = map.into_keys().collect(); |
| |
| assert_eq!(keys.len(), 3); |
| assert!(keys.contains(&1)); |
| assert!(keys.contains(&2)); |
| assert!(keys.contains(&3)); |
| } |
| |
| #[test] |
| fn test_into_values() { |
| let vec = vec![(1, 'a'), (2, 'b'), (3, 'c')]; |
| let map: HashMap<_, _> = vec.into_iter().collect(); |
| let values: Vec<_> = map.into_values().collect(); |
| |
| assert_eq!(values.len(), 3); |
| assert!(values.contains(&'a')); |
| assert!(values.contains(&'b')); |
| assert!(values.contains(&'c')); |
| } |
| |
| #[test] |
| fn test_find() { |
| let mut m = HashMap::new(); |
| assert!(m.get(&1).is_none()); |
| m.insert(1, 2); |
| match m.get(&1) { |
| None => panic!(), |
| Some(v) => assert_eq!(*v, 2), |
| } |
| } |
| |
| #[test] |
| fn test_eq() { |
| let mut m1 = HashMap::new(); |
| m1.insert(1, 2); |
| m1.insert(2, 3); |
| m1.insert(3, 4); |
| |
| let mut m2 = HashMap::new(); |
| m2.insert(1, 2); |
| m2.insert(2, 3); |
| |
| assert!(m1 != m2); |
| |
| m2.insert(3, 4); |
| |
| assert_eq!(m1, m2); |
| } |
| |
| #[test] |
| fn test_show() { |
| let mut map = HashMap::new(); |
| let empty: HashMap<i32, i32> = HashMap::new(); |
| |
| map.insert(1, 2); |
| map.insert(3, 4); |
| |
| let map_str = format!("{map:?}"); |
| |
| assert!(map_str == "{1: 2, 3: 4}" || map_str == "{3: 4, 1: 2}"); |
| assert_eq!(format!("{empty:?}"), "{}"); |
| } |
| |
| #[test] |
| fn test_expand() { |
| let mut m = HashMap::new(); |
| |
| assert_eq!(m.len(), 0); |
| assert!(m.is_empty()); |
| |
| let mut i = 0; |
| let old_raw_cap = m.raw_capacity(); |
| while old_raw_cap == m.raw_capacity() { |
| m.insert(i, i); |
| i += 1; |
| } |
| |
| assert_eq!(m.len(), i); |
| assert!(!m.is_empty()); |
| } |
| |
| #[test] |
| fn test_behavior_resize_policy() { |
| let mut m = HashMap::new(); |
| |
| assert_eq!(m.len(), 0); |
| assert_eq!(m.raw_capacity(), 1); |
| assert!(m.is_empty()); |
| |
| m.insert(0, 0); |
| m.remove(&0); |
| assert!(m.is_empty()); |
| let initial_raw_cap = m.raw_capacity(); |
| m.reserve(initial_raw_cap); |
| let raw_cap = m.raw_capacity(); |
| |
| assert_eq!(raw_cap, initial_raw_cap * 2); |
| |
| let mut i = 0; |
| for _ in 0..raw_cap * 3 / 4 { |
| m.insert(i, i); |
| i += 1; |
| } |
| // three quarters full |
| |
| assert_eq!(m.len(), i); |
| assert_eq!(m.raw_capacity(), raw_cap); |
| |
| for _ in 0..raw_cap / 4 { |
| m.insert(i, i); |
| i += 1; |
| } |
| // half full |
| |
| let new_raw_cap = m.raw_capacity(); |
| assert_eq!(new_raw_cap, raw_cap * 2); |
| |
| for _ in 0..raw_cap / 2 - 1 { |
| i -= 1; |
| m.remove(&i); |
| assert_eq!(m.raw_capacity(), new_raw_cap); |
| } |
| // A little more than one quarter full. |
| m.shrink_to_fit(); |
| assert_eq!(m.raw_capacity(), raw_cap); |
| // again, a little more than half full |
| for _ in 0..raw_cap / 2 { |
| i -= 1; |
| m.remove(&i); |
| } |
| m.shrink_to_fit(); |
| |
| assert_eq!(m.len(), i); |
| assert!(!m.is_empty()); |
| assert_eq!(m.raw_capacity(), initial_raw_cap); |
| } |
| |
| #[test] |
| fn test_reserve_shrink_to_fit() { |
| let mut m = HashMap::new(); |
| m.insert(0, 0); |
| m.remove(&0); |
| assert!(m.capacity() >= m.len()); |
| for i in 0..128 { |
| m.insert(i, i); |
| } |
| m.reserve(256); |
| |
| let usable_cap = m.capacity(); |
| for i in 128..(128 + 256) { |
| m.insert(i, i); |
| assert_eq!(m.capacity(), usable_cap); |
| } |
| |
| for i in 100..(128 + 256) { |
| assert_eq!(m.remove(&i), Some(i)); |
| } |
| m.shrink_to_fit(); |
| |
| assert_eq!(m.len(), 100); |
| assert!(!m.is_empty()); |
| assert!(m.capacity() >= m.len()); |
| |
| for i in 0..100 { |
| assert_eq!(m.remove(&i), Some(i)); |
| } |
| m.shrink_to_fit(); |
| m.insert(0, 0); |
| |
| assert_eq!(m.len(), 1); |
| assert!(m.capacity() >= m.len()); |
| assert_eq!(m.remove(&0), Some(0)); |
| } |
| |
| #[test] |
| fn test_from_iter() { |
| let xs = [(1, 1), (2, 2), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; |
| |
| let map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| for &(k, v) in &xs { |
| assert_eq!(map.get(&k), Some(&v)); |
| } |
| |
| assert_eq!(map.iter().len(), xs.len() - 1); |
| } |
| |
| #[test] |
| fn test_size_hint() { |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; |
| |
| let map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| let mut iter = map.iter(); |
| |
| for _ in iter.by_ref().take(3) {} |
| |
| assert_eq!(iter.size_hint(), (3, Some(3))); |
| } |
| |
| #[test] |
| fn test_iter_len() { |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; |
| |
| let map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| let mut iter = map.iter(); |
| |
| for _ in iter.by_ref().take(3) {} |
| |
| assert_eq!(iter.len(), 3); |
| } |
| |
| #[test] |
| fn test_mut_size_hint() { |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; |
| |
| let mut map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| let mut iter = map.iter_mut(); |
| |
| for _ in iter.by_ref().take(3) {} |
| |
| assert_eq!(iter.size_hint(), (3, Some(3))); |
| } |
| |
| #[test] |
| fn test_iter_mut_len() { |
| let xs = [(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)]; |
| |
| let mut map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| let mut iter = map.iter_mut(); |
| |
| for _ in iter.by_ref().take(3) {} |
| |
| assert_eq!(iter.len(), 3); |
| } |
| |
| #[test] |
| fn test_index() { |
| let mut map = HashMap::new(); |
| |
| map.insert(1, 2); |
| map.insert(2, 1); |
| map.insert(3, 4); |
| |
| assert_eq!(map[&2], 1); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_index_nonexistent() { |
| let mut map = HashMap::new(); |
| |
| map.insert(1, 2); |
| map.insert(2, 1); |
| map.insert(3, 4); |
| |
| #[allow(clippy::no_effect)] // false positive lint |
| map[&4]; |
| } |
| |
| #[test] |
| fn test_entry() { |
| let xs = [(1, 10), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; |
| |
| let mut map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| // Existing key (insert) |
| match map.entry(1) { |
| Vacant(_) => unreachable!(), |
| Occupied(mut view) => { |
| assert_eq!(view.get(), &10); |
| assert_eq!(view.insert(100), 10); |
| } |
| } |
| assert_eq!(map.get(&1).unwrap(), &100); |
| assert_eq!(map.len(), 6); |
| |
| // Existing key (update) |
| match map.entry(2) { |
| Vacant(_) => unreachable!(), |
| Occupied(mut view) => { |
| let v = view.get_mut(); |
| let new_v = (*v) * 10; |
| *v = new_v; |
| } |
| } |
| assert_eq!(map.get(&2).unwrap(), &200); |
| assert_eq!(map.len(), 6); |
| |
| // Existing key (take) |
| match map.entry(3) { |
| Vacant(_) => unreachable!(), |
| Occupied(view) => { |
| assert_eq!(view.remove(), 30); |
| } |
| } |
| assert_eq!(map.get(&3), None); |
| assert_eq!(map.len(), 5); |
| |
| // Inexistent key (insert) |
| match map.entry(10) { |
| Occupied(_) => unreachable!(), |
| Vacant(view) => { |
| assert_eq!(*view.insert(1000), 1000); |
| } |
| } |
| assert_eq!(map.get(&10).unwrap(), &1000); |
| assert_eq!(map.len(), 6); |
| } |
| |
| #[test] |
| fn test_entry_ref() { |
| let xs = [ |
| ("One".to_owned(), 10), |
| ("Two".to_owned(), 20), |
| ("Three".to_owned(), 30), |
| ("Four".to_owned(), 40), |
| ("Five".to_owned(), 50), |
| ("Six".to_owned(), 60), |
| ]; |
| |
| let mut map: HashMap<_, _> = xs.iter().cloned().collect(); |
| |
| // Existing key (insert) |
| match map.entry_ref("One") { |
| EntryRef::Vacant(_) => unreachable!(), |
| EntryRef::Occupied(mut view) => { |
| assert_eq!(view.get(), &10); |
| assert_eq!(view.insert(100), 10); |
| } |
| } |
| assert_eq!(map.get("One").unwrap(), &100); |
| assert_eq!(map.len(), 6); |
| |
| // Existing key (update) |
| match map.entry_ref("Two") { |
| EntryRef::Vacant(_) => unreachable!(), |
| EntryRef::Occupied(mut view) => { |
| let v = view.get_mut(); |
| let new_v = (*v) * 10; |
| *v = new_v; |
| } |
| } |
| assert_eq!(map.get("Two").unwrap(), &200); |
| assert_eq!(map.len(), 6); |
| |
| // Existing key (take) |
| match map.entry_ref("Three") { |
| EntryRef::Vacant(_) => unreachable!(), |
| EntryRef::Occupied(view) => { |
| assert_eq!(view.remove(), 30); |
| } |
| } |
| assert_eq!(map.get("Three"), None); |
| assert_eq!(map.len(), 5); |
| |
| // Inexistent key (insert) |
| match map.entry_ref("Ten") { |
| EntryRef::Occupied(_) => unreachable!(), |
| EntryRef::Vacant(view) => { |
| assert_eq!(*view.insert(1000), 1000); |
| } |
| } |
| assert_eq!(map.get("Ten").unwrap(), &1000); |
| assert_eq!(map.len(), 6); |
| } |
| |
| #[test] |
| fn test_entry_take_doesnt_corrupt() { |
| #![allow(deprecated)] //rand |
| // Test for #19292 |
| fn check(m: &HashMap<i32, ()>) { |
| for k in m.keys() { |
| assert!(m.contains_key(k), "{k} is in keys() but not in the map?"); |
| } |
| } |
| |
| let mut m = HashMap::new(); |
| |
| let mut rng = { |
| let seed = u64::from_le_bytes(*b"testseed"); |
| SmallRng::seed_from_u64(seed) |
| }; |
| |
| // Populate the map with some items. |
| for _ in 0..50 { |
| let x = rng.gen_range(-10..10); |
| m.insert(x, ()); |
| } |
| |
| for _ in 0..1000 { |
| let x = rng.gen_range(-10..10); |
| match m.entry(x) { |
| Vacant(_) => {} |
| Occupied(e) => { |
| e.remove(); |
| } |
| } |
| |
| check(&m); |
| } |
| } |
| |
| #[test] |
| fn test_entry_ref_take_doesnt_corrupt() { |
| #![allow(deprecated)] //rand |
| // Test for #19292 |
| fn check(m: &HashMap<std::string::String, ()>) { |
| for k in m.keys() { |
| assert!(m.contains_key(k), "{k} is in keys() but not in the map?"); |
| } |
| } |
| |
| let mut m = HashMap::new(); |
| |
| let mut rng = { |
| let seed = u64::from_le_bytes(*b"testseed"); |
| SmallRng::seed_from_u64(seed) |
| }; |
| |
| // Populate the map with some items. |
| for _ in 0..50 { |
| let mut x = std::string::String::with_capacity(1); |
| x.push(rng.gen_range('a'..='z')); |
| m.insert(x, ()); |
| } |
| |
| for _ in 0..1000 { |
| let mut x = std::string::String::with_capacity(1); |
| x.push(rng.gen_range('a'..='z')); |
| match m.entry_ref(x.as_str()) { |
| EntryRef::Vacant(_) => {} |
| EntryRef::Occupied(e) => { |
| e.remove(); |
| } |
| } |
| |
| check(&m); |
| } |
| } |
| |
| #[test] |
| fn test_extend_ref_k_ref_v() { |
| let mut a = HashMap::new(); |
| a.insert(1, "one"); |
| let mut b = HashMap::new(); |
| b.insert(2, "two"); |
| b.insert(3, "three"); |
| |
| a.extend(&b); |
| |
| assert_eq!(a.len(), 3); |
| assert_eq!(a[&1], "one"); |
| assert_eq!(a[&2], "two"); |
| assert_eq!(a[&3], "three"); |
| } |
| |
| #[test] |
| #[allow(clippy::needless_borrow)] |
| fn test_extend_ref_kv_tuple() { |
| use std::ops::AddAssign; |
| let mut a = HashMap::new(); |
| a.insert(0, 0); |
| |
| fn create_arr<T: AddAssign<T> + Copy, const N: usize>(start: T, step: T) -> [(T, T); N] { |
| let mut outs: [(T, T); N] = [(start, start); N]; |
| let mut element = step; |
| outs.iter_mut().skip(1).for_each(|(k, v)| { |
| *k += element; |
| *v += element; |
| element += step; |
| }); |
| outs |
| } |
| |
| let for_iter: Vec<_> = (0..100).map(|i| (i, i)).collect(); |
| let iter = for_iter.iter(); |
| let vec: Vec<_> = (100..200).map(|i| (i, i)).collect(); |
| a.extend(iter); |
| a.extend(&vec); |
| a.extend(create_arr::<i32, 100>(200, 1)); |
| |
| assert_eq!(a.len(), 300); |
| |
| for item in 0..300 { |
| assert_eq!(a[&item], item); |
| } |
| } |
| |
| #[test] |
| fn test_capacity_not_less_than_len() { |
| let mut a = HashMap::new(); |
| let mut item = 0; |
| |
| for _ in 0..116 { |
| a.insert(item, 0); |
| item += 1; |
| } |
| |
| assert!(a.capacity() > a.len()); |
| |
| let free = a.capacity() - a.len(); |
| for _ in 0..free { |
| a.insert(item, 0); |
| item += 1; |
| } |
| |
| assert_eq!(a.len(), a.capacity()); |
| |
| // Insert at capacity should cause allocation. |
| a.insert(item, 0); |
| assert!(a.capacity() > a.len()); |
| } |
| |
| #[test] |
| fn test_occupied_entry_key() { |
| let mut a = HashMap::new(); |
| let key = "hello there"; |
| let value = "value goes here"; |
| assert!(a.is_empty()); |
| a.insert(key, value); |
| assert_eq!(a.len(), 1); |
| assert_eq!(a[key], value); |
| |
| match a.entry(key) { |
| Vacant(_) => panic!(), |
| Occupied(e) => assert_eq!(key, *e.key()), |
| } |
| assert_eq!(a.len(), 1); |
| assert_eq!(a[key], value); |
| } |
| |
| #[test] |
| fn test_occupied_entry_ref_key() { |
| let mut a = HashMap::new(); |
| let key = "hello there"; |
| let value = "value goes here"; |
| assert!(a.is_empty()); |
| a.insert(key.to_owned(), value); |
| assert_eq!(a.len(), 1); |
| assert_eq!(a[key], value); |
| |
| match a.entry_ref(key) { |
| EntryRef::Vacant(_) => panic!(), |
| EntryRef::Occupied(e) => assert_eq!(key, e.key()), |
| } |
| assert_eq!(a.len(), 1); |
| assert_eq!(a[key], value); |
| } |
| |
| #[test] |
| fn test_vacant_entry_key() { |
| let mut a = HashMap::new(); |
| let key = "hello there"; |
| let value = "value goes here"; |
| |
| assert!(a.is_empty()); |
| match a.entry(key) { |
| Occupied(_) => panic!(), |
| Vacant(e) => { |
| assert_eq!(key, *e.key()); |
| e.insert(value); |
| } |
| } |
| assert_eq!(a.len(), 1); |
| assert_eq!(a[key], value); |
| } |
| |
| #[test] |
| fn test_vacant_entry_ref_key() { |
| let mut a: HashMap<std::string::String, &str> = HashMap::new(); |
| let key = "hello there"; |
| let value = "value goes here"; |
| |
| assert!(a.is_empty()); |
| match a.entry_ref(key) { |
| EntryRef::Occupied(_) => panic!(), |
| EntryRef::Vacant(e) => { |
| assert_eq!(key, e.key()); |
| e.insert(value); |
| } |
| } |
| assert_eq!(a.len(), 1); |
| assert_eq!(a[key], value); |
| } |
| |
| #[test] |
| fn test_occupied_entry_replace_entry_with() { |
| let mut a = HashMap::new(); |
| |
| let key = "a key"; |
| let value = "an initial value"; |
| let new_value = "a new value"; |
| |
| let entry = a.entry(key).insert(value).replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, value); |
| Some(new_value) |
| }); |
| |
| match entry { |
| Occupied(e) => { |
| assert_eq!(e.key(), &key); |
| assert_eq!(e.get(), &new_value); |
| } |
| Vacant(_) => panic!(), |
| } |
| |
| assert_eq!(a[key], new_value); |
| assert_eq!(a.len(), 1); |
| |
| let entry = match a.entry(key) { |
| Occupied(e) => e.replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, new_value); |
| None |
| }), |
| Vacant(_) => panic!(), |
| }; |
| |
| match entry { |
| Vacant(e) => assert_eq!(e.key(), &key), |
| Occupied(_) => panic!(), |
| } |
| |
| assert!(!a.contains_key(key)); |
| assert_eq!(a.len(), 0); |
| } |
| |
| #[test] |
| fn test_occupied_entry_ref_replace_entry_with() { |
| let mut a: HashMap<std::string::String, &str> = HashMap::new(); |
| |
| let key = "a key"; |
| let value = "an initial value"; |
| let new_value = "a new value"; |
| |
| let entry = a.entry_ref(key).insert(value).replace_entry_with(|k, v| { |
| assert_eq!(k, key); |
| assert_eq!(v, value); |
| Some(new_value) |
| }); |
| |
| match entry { |
| EntryRef::Occupied(e) => { |
| assert_eq!(e.key(), key); |
| assert_eq!(e.get(), &new_value); |
| } |
| EntryRef::Vacant(_) => panic!(), |
| } |
| |
| assert_eq!(a[key], new_value); |
| assert_eq!(a.len(), 1); |
| |
| let entry = match a.entry_ref(key) { |
| EntryRef::Occupied(e) => e.replace_entry_with(|k, v| { |
| assert_eq!(k, key); |
| assert_eq!(v, new_value); |
| None |
| }), |
| EntryRef::Vacant(_) => panic!(), |
| }; |
| |
| match entry { |
| EntryRef::Vacant(e) => assert_eq!(e.key(), key), |
| EntryRef::Occupied(_) => panic!(), |
| } |
| |
| assert!(!a.contains_key(key)); |
| assert_eq!(a.len(), 0); |
| } |
| |
| #[test] |
| fn test_entry_and_replace_entry_with() { |
| let mut a = HashMap::new(); |
| |
| let key = "a key"; |
| let value = "an initial value"; |
| let new_value = "a new value"; |
| |
| let entry = a.entry(key).and_replace_entry_with(|_, _| panic!()); |
| |
| match entry { |
| Vacant(e) => assert_eq!(e.key(), &key), |
| Occupied(_) => panic!(), |
| } |
| |
| a.insert(key, value); |
| |
| let entry = a.entry(key).and_replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, value); |
| Some(new_value) |
| }); |
| |
| match entry { |
| Occupied(e) => { |
| assert_eq!(e.key(), &key); |
| assert_eq!(e.get(), &new_value); |
| } |
| Vacant(_) => panic!(), |
| } |
| |
| assert_eq!(a[key], new_value); |
| assert_eq!(a.len(), 1); |
| |
| let entry = a.entry(key).and_replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, new_value); |
| None |
| }); |
| |
| match entry { |
| Vacant(e) => assert_eq!(e.key(), &key), |
| Occupied(_) => panic!(), |
| } |
| |
| assert!(!a.contains_key(key)); |
| assert_eq!(a.len(), 0); |
| } |
| |
| #[test] |
| fn test_entry_ref_and_replace_entry_with() { |
| let mut a = HashMap::new(); |
| |
| let key = "a key"; |
| let value = "an initial value"; |
| let new_value = "a new value"; |
| |
| let entry = a.entry_ref(key).and_replace_entry_with(|_, _| panic!()); |
| |
| match entry { |
| EntryRef::Vacant(e) => assert_eq!(e.key(), key), |
| EntryRef::Occupied(_) => panic!(), |
| } |
| |
| a.insert(key.to_owned(), value); |
| |
| let entry = a.entry_ref(key).and_replace_entry_with(|k, v| { |
| assert_eq!(k, key); |
| assert_eq!(v, value); |
| Some(new_value) |
| }); |
| |
| match entry { |
| EntryRef::Occupied(e) => { |
| assert_eq!(e.key(), key); |
| assert_eq!(e.get(), &new_value); |
| } |
| EntryRef::Vacant(_) => panic!(), |
| } |
| |
| assert_eq!(a[key], new_value); |
| assert_eq!(a.len(), 1); |
| |
| let entry = a.entry_ref(key).and_replace_entry_with(|k, v| { |
| assert_eq!(k, key); |
| assert_eq!(v, new_value); |
| None |
| }); |
| |
| match entry { |
| EntryRef::Vacant(e) => assert_eq!(e.key(), key), |
| EntryRef::Occupied(_) => panic!(), |
| } |
| |
| assert!(!a.contains_key(key)); |
| assert_eq!(a.len(), 0); |
| } |
| |
| #[test] |
| fn test_raw_occupied_entry_replace_entry_with() { |
| let mut a = HashMap::new(); |
| |
| let key = "a key"; |
| let value = "an initial value"; |
| let new_value = "a new value"; |
| |
| let entry = a |
| .raw_entry_mut() |
| .from_key(&key) |
| .insert(key, value) |
| .replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, value); |
| Some(new_value) |
| }); |
| |
| match entry { |
| RawEntryMut::Occupied(e) => { |
| assert_eq!(e.key(), &key); |
| assert_eq!(e.get(), &new_value); |
| } |
| RawEntryMut::Vacant(_) => panic!(), |
| } |
| |
| assert_eq!(a[key], new_value); |
| assert_eq!(a.len(), 1); |
| |
| let entry = match a.raw_entry_mut().from_key(&key) { |
| RawEntryMut::Occupied(e) => e.replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, new_value); |
| None |
| }), |
| RawEntryMut::Vacant(_) => panic!(), |
| }; |
| |
| match entry { |
| RawEntryMut::Vacant(_) => {} |
| RawEntryMut::Occupied(_) => panic!(), |
| } |
| |
| assert!(!a.contains_key(key)); |
| assert_eq!(a.len(), 0); |
| } |
| |
| #[test] |
| fn test_raw_entry_and_replace_entry_with() { |
| let mut a = HashMap::new(); |
| |
| let key = "a key"; |
| let value = "an initial value"; |
| let new_value = "a new value"; |
| |
| let entry = a |
| .raw_entry_mut() |
| .from_key(&key) |
| .and_replace_entry_with(|_, _| panic!()); |
| |
| match entry { |
| RawEntryMut::Vacant(_) => {} |
| RawEntryMut::Occupied(_) => panic!(), |
| } |
| |
| a.insert(key, value); |
| |
| let entry = a |
| .raw_entry_mut() |
| .from_key(&key) |
| .and_replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, value); |
| Some(new_value) |
| }); |
| |
| match entry { |
| RawEntryMut::Occupied(e) => { |
| assert_eq!(e.key(), &key); |
| assert_eq!(e.get(), &new_value); |
| } |
| RawEntryMut::Vacant(_) => panic!(), |
| } |
| |
| assert_eq!(a[key], new_value); |
| assert_eq!(a.len(), 1); |
| |
| let entry = a |
| .raw_entry_mut() |
| .from_key(&key) |
| .and_replace_entry_with(|k, v| { |
| assert_eq!(k, &key); |
| assert_eq!(v, new_value); |
| None |
| }); |
| |
| match entry { |
| RawEntryMut::Vacant(_) => {} |
| RawEntryMut::Occupied(_) => panic!(), |
| } |
| |
| assert!(!a.contains_key(key)); |
| assert_eq!(a.len(), 0); |
| } |
| |
| #[test] |
| fn test_replace_entry_with_doesnt_corrupt() { |
| #![allow(deprecated)] //rand |
| // Test for #19292 |
| fn check(m: &HashMap<i32, ()>) { |
| for k in m.keys() { |
| assert!(m.contains_key(k), "{k} is in keys() but not in the map?"); |
| } |
| } |
| |
| let mut m = HashMap::new(); |
| |
| let mut rng = { |
| let seed = u64::from_le_bytes(*b"testseed"); |
| SmallRng::seed_from_u64(seed) |
| }; |
| |
| // Populate the map with some items. |
| for _ in 0..50 { |
| let x = rng.gen_range(-10..10); |
| m.insert(x, ()); |
| } |
| |
| for _ in 0..1000 { |
| let x = rng.gen_range(-10..10); |
| m.entry(x).and_replace_entry_with(|_, _| None); |
| check(&m); |
| } |
| } |
| |
| #[test] |
| fn test_replace_entry_ref_with_doesnt_corrupt() { |
| #![allow(deprecated)] //rand |
| // Test for #19292 |
| fn check(m: &HashMap<std::string::String, ()>) { |
| for k in m.keys() { |
| assert!(m.contains_key(k), "{k} is in keys() but not in the map?"); |
| } |
| } |
| |
| let mut m = HashMap::new(); |
| |
| let mut rng = { |
| let seed = u64::from_le_bytes(*b"testseed"); |
| SmallRng::seed_from_u64(seed) |
| }; |
| |
| // Populate the map with some items. |
| for _ in 0..50 { |
| let mut x = std::string::String::with_capacity(1); |
| x.push(rng.gen_range('a'..='z')); |
| m.insert(x, ()); |
| } |
| |
| for _ in 0..1000 { |
| let mut x = std::string::String::with_capacity(1); |
| x.push(rng.gen_range('a'..='z')); |
| m.entry_ref(x.as_str()).and_replace_entry_with(|_, _| None); |
| check(&m); |
| } |
| } |
| |
| #[test] |
| fn test_retain() { |
| let mut map: HashMap<i32, i32> = (0..100).map(|x| (x, x * 10)).collect(); |
| |
| map.retain(|&k, _| k % 2 == 0); |
| assert_eq!(map.len(), 50); |
| assert_eq!(map[&2], 20); |
| assert_eq!(map[&4], 40); |
| assert_eq!(map[&6], 60); |
| } |
| |
| #[test] |
| fn test_extract_if() { |
| { |
| let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x * 10)).collect(); |
| let drained = map.extract_if(|&k, _| k % 2 == 0); |
| let mut out = drained.collect::<Vec<_>>(); |
| out.sort_unstable(); |
| assert_eq!(vec![(0, 0), (2, 20), (4, 40), (6, 60)], out); |
| assert_eq!(map.len(), 4); |
| } |
| { |
| let mut map: HashMap<i32, i32> = (0..8).map(|x| (x, x * 10)).collect(); |
| map.extract_if(|&k, _| k % 2 == 0).for_each(drop); |
| assert_eq!(map.len(), 4); |
| } |
| } |
| |
| #[test] |
| #[cfg_attr(miri, ignore)] // FIXME: no OOM signalling (https://github.com/rust-lang/miri/issues/613) |
| fn test_try_reserve() { |
| use crate::TryReserveError::{AllocError, CapacityOverflow}; |
| |
| const MAX_ISIZE: usize = isize::MAX as usize; |
| |
| let mut empty_bytes: HashMap<u8, u8> = HashMap::new(); |
| |
| if let Err(CapacityOverflow) = empty_bytes.try_reserve(usize::MAX) { |
| } else { |
| panic!("usize::MAX should trigger an overflow!"); |
| } |
| |
| if let Err(CapacityOverflow) = empty_bytes.try_reserve(MAX_ISIZE) { |
| } else { |
| panic!("isize::MAX should trigger an overflow!"); |
| } |
| |
| if let Err(AllocError { .. }) = empty_bytes.try_reserve(MAX_ISIZE / 5) { |
| } else { |
| // This may succeed if there is enough free memory. Attempt to |
| // allocate a few more hashmaps to ensure the allocation will fail. |
| let mut empty_bytes2: HashMap<u8, u8> = HashMap::new(); |
| let _ = empty_bytes2.try_reserve(MAX_ISIZE / 5); |
| let mut empty_bytes3: HashMap<u8, u8> = HashMap::new(); |
| let _ = empty_bytes3.try_reserve(MAX_ISIZE / 5); |
| let mut empty_bytes4: HashMap<u8, u8> = HashMap::new(); |
| if let Err(AllocError { .. }) = empty_bytes4.try_reserve(MAX_ISIZE / 5) { |
| } else { |
| panic!("isize::MAX / 5 should trigger an OOM!"); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_raw_entry() { |
| use super::RawEntryMut::{Occupied, Vacant}; |
| |
| let xs = [(1_i32, 10_i32), (2, 20), (3, 30), (4, 40), (5, 50), (6, 60)]; |
| |
| let mut map: HashMap<_, _> = xs.iter().copied().collect(); |
| |
| let compute_hash = |map: &HashMap<i32, i32>, k: i32| -> u64 { |
| super::make_hash::<i32, _>(map.hasher(), &k) |
| }; |
| |
| // Existing key (insert) |
| match map.raw_entry_mut().from_key(&1) { |
| Vacant(_) => unreachable!(), |
| Occupied(mut view) => { |
| assert_eq!(view.get(), &10); |
| assert_eq!(view.insert(100), 10); |
| } |
| } |
| let hash1 = compute_hash(&map, 1); |
| assert_eq!(map.raw_entry().from_key(&1).unwrap(), (&1, &100)); |
| assert_eq!( |
| map.raw_entry().from_hash(hash1, |k| *k == 1).unwrap(), |
| (&1, &100) |
| ); |
| assert_eq!( |
| map.raw_entry().from_key_hashed_nocheck(hash1, &1).unwrap(), |
| (&1, &100) |
| ); |
| assert_eq!(map.len(), 6); |
| |
| // Existing key (update) |
| match map.raw_entry_mut().from_key(&2) { |
| Vacant(_) => unreachable!(), |
| Occupied(mut view) => { |
| let v = view.get_mut(); |
| let new_v = (*v) * 10; |
| *v = new_v; |
| } |
| } |
| let hash2 = compute_hash(&map, 2); |
| assert_eq!(map.raw_entry().from_key(&2).unwrap(), (&2, &200)); |
| assert_eq!( |
| map.raw_entry().from_hash(hash2, |k| *k == 2).unwrap(), |
| (&2, &200) |
| ); |
| assert_eq!( |
| map.raw_entry().from_key_hashed_nocheck(hash2, &2).unwrap(), |
| (&2, &200) |
| ); |
| assert_eq!(map.len(), 6); |
| |
| // Existing key (take) |
| let hash3 = compute_hash(&map, 3); |
| match map.raw_entry_mut().from_key_hashed_nocheck(hash3, &3) { |
| Vacant(_) => unreachable!(), |
| Occupied(view) => { |
| assert_eq!(view.remove_entry(), (3, 30)); |
| } |
| } |
| assert_eq!(map.raw_entry().from_key(&3), None); |
| assert_eq!(map.raw_entry().from_hash(hash3, |k| *k == 3), None); |
| assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash3, &3), None); |
| assert_eq!(map.len(), 5); |
| |
| // Nonexistent key (insert) |
| match map.raw_entry_mut().from_key(&10) { |
| Occupied(_) => unreachable!(), |
| Vacant(view) => { |
| assert_eq!(view.insert(10, 1000), (&mut 10, &mut 1000)); |
| } |
| } |
| assert_eq!(map.raw_entry().from_key(&10).unwrap(), (&10, &1000)); |
| assert_eq!(map.len(), 6); |
| |
| // Ensure all lookup methods produce equivalent results. |
| for k in 0..12 { |
| let hash = compute_hash(&map, k); |
| let v = map.get(&k).copied(); |
| let kv = v.as_ref().map(|v| (&k, v)); |
| |
| assert_eq!(map.raw_entry().from_key(&k), kv); |
| assert_eq!(map.raw_entry().from_hash(hash, |q| *q == k), kv); |
| assert_eq!(map.raw_entry().from_key_hashed_nocheck(hash, &k), kv); |
| |
| match map.raw_entry_mut().from_key(&k) { |
| Occupied(o) => assert_eq!(Some(o.get_key_value()), kv), |
| Vacant(_) => assert_eq!(v, None), |
| } |
| match map.raw_entry_mut().from_key_hashed_nocheck(hash, &k) { |
| Occupied(o) => assert_eq!(Some(o.get_key_value()), kv), |
| Vacant(_) => assert_eq!(v, None), |
| } |
| match map.raw_entry_mut().from_hash(hash, |q| *q == k) { |
| Occupied(o) => assert_eq!(Some(o.get_key_value()), kv), |
| Vacant(_) => assert_eq!(v, None), |
| } |
| } |
| } |
| |
| #[test] |
| fn test_key_without_hash_impl() { |
| #[derive(Debug)] |
| struct IntWrapper(u64); |
| |
| let mut m: HashMap<IntWrapper, (), ()> = HashMap::default(); |
| { |
| assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_none()); |
| } |
| { |
| let vacant_entry = match m.raw_entry_mut().from_hash(0, |k| k.0 == 0) { |
| RawEntryMut::Occupied(..) => panic!("Found entry for key 0"), |
| RawEntryMut::Vacant(e) => e, |
| }; |
| vacant_entry.insert_with_hasher(0, IntWrapper(0), (), |k| k.0); |
| } |
| { |
| assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_some()); |
| assert!(m.raw_entry().from_hash(1, |k| k.0 == 1).is_none()); |
| assert!(m.raw_entry().from_hash(2, |k| k.0 == 2).is_none()); |
| } |
| { |
| let vacant_entry = match m.raw_entry_mut().from_hash(1, |k| k.0 == 1) { |
| RawEntryMut::Occupied(..) => panic!("Found entry for key 1"), |
| RawEntryMut::Vacant(e) => e, |
| }; |
| vacant_entry.insert_with_hasher(1, IntWrapper(1), (), |k| k.0); |
| } |
| { |
| assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_some()); |
| assert!(m.raw_entry().from_hash(1, |k| k.0 == 1).is_some()); |
| assert!(m.raw_entry().from_hash(2, |k| k.0 == 2).is_none()); |
| } |
| { |
| let occupied_entry = match m.raw_entry_mut().from_hash(0, |k| k.0 == 0) { |
| RawEntryMut::Occupied(e) => e, |
| RawEntryMut::Vacant(..) => panic!("Couldn't find entry for key 0"), |
| }; |
| occupied_entry.remove(); |
| } |
| assert!(m.raw_entry().from_hash(0, |k| k.0 == 0).is_none()); |
| assert!(m.raw_entry().from_hash(1, |k| k.0 == 1).is_some()); |
| assert!(m.raw_entry().from_hash(2, |k| k.0 == 2).is_none()); |
| } |
| |
| #[test] |
| #[cfg(feature = "raw")] |
| fn test_into_iter_refresh() { |
| #[cfg(miri)] |
| const N: usize = 32; |
| #[cfg(not(miri))] |
| const N: usize = 128; |
| |
| let mut rng = rand::thread_rng(); |
| for n in 0..N { |
| let mut map = HashMap::new(); |
| for i in 0..n { |
| assert!(map.insert(i, 2 * i).is_none()); |
| } |
| let hash_builder = map.hasher().clone(); |
| |
| let mut it = unsafe { map.table.iter() }; |
| assert_eq!(it.len(), n); |
| |
| let mut i = 0; |
| let mut left = n; |
| let mut removed = Vec::new(); |
| loop { |
| // occasionally remove some elements |
| if i < n && rng.gen_bool(0.1) { |
| let hash_value = super::make_hash(&hash_builder, &i); |
| |
| unsafe { |
| let e = map.table.find(hash_value, |q| q.0.eq(&i)); |
| if let Some(e) = e { |
| it.reflect_remove(&e); |
| let t = map.table.remove(e).0; |
| removed.push(t); |
| left -= 1; |
| } else { |
| assert!(removed.contains(&(i, 2 * i)), "{i} not in {removed:?}"); |
| let e = map.table.insert( |
| hash_value, |
| (i, 2 * i), |
| super::make_hasher::<_, usize, _>(&hash_builder), |
| ); |
| it.reflect_insert(&e); |
| if let Some(p) = removed.iter().position(|e| e == &(i, 2 * i)) { |
| removed.swap_remove(p); |
| } |
| left += 1; |
| } |
| } |
| } |
| |
| let e = it.next(); |
| if e.is_none() { |
| break; |
| } |
| assert!(i < n); |
| let t = unsafe { e.unwrap().as_ref() }; |
| assert!(!removed.contains(t)); |
| let (key, value) = t; |
| assert_eq!(*value, 2 * key); |
| i += 1; |
| } |
| assert!(i <= n); |
| |
| // just for safety: |
| assert_eq!(map.table.len(), left); |
| } |
| } |
| |
| #[test] |
| fn test_const_with_hasher() { |
| use core::hash::BuildHasher; |
| use std::collections::hash_map::DefaultHasher; |
| |
| #[derive(Clone)] |
| struct MyHasher; |
| impl BuildHasher for MyHasher { |
| type Hasher = DefaultHasher; |
| |
| fn build_hasher(&self) -> DefaultHasher { |
| DefaultHasher::new() |
| } |
| } |
| |
| const EMPTY_MAP: HashMap<u32, std::string::String, MyHasher> = |
| HashMap::with_hasher(MyHasher); |
| |
| let mut map = EMPTY_MAP; |
| map.insert(17, "seventeen".to_owned()); |
| assert_eq!("seventeen", map[&17]); |
| } |
| |
| #[test] |
| fn test_get_each_mut() { |
| let mut map = HashMap::new(); |
| map.insert("foo".to_owned(), 0); |
| map.insert("bar".to_owned(), 10); |
| map.insert("baz".to_owned(), 20); |
| map.insert("qux".to_owned(), 30); |
| |
| let xs = map.get_many_mut(["foo", "qux"]); |
| assert_eq!(xs, Some([&mut 0, &mut 30])); |
| |
| let xs = map.get_many_mut(["foo", "dud"]); |
| assert_eq!(xs, None); |
| |
| let xs = map.get_many_mut(["foo", "foo"]); |
| assert_eq!(xs, None); |
| |
| let ys = map.get_many_key_value_mut(["bar", "baz"]); |
| assert_eq!( |
| ys, |
| Some([(&"bar".to_owned(), &mut 10), (&"baz".to_owned(), &mut 20),]), |
| ); |
| |
| let ys = map.get_many_key_value_mut(["bar", "dip"]); |
| assert_eq!(ys, None); |
| |
| let ys = map.get_many_key_value_mut(["baz", "baz"]); |
| assert_eq!(ys, None); |
| } |
| |
| #[test] |
| #[should_panic = "panic in drop"] |
| fn test_clone_from_double_drop() { |
| #[derive(Clone)] |
| struct CheckedDrop { |
| panic_in_drop: bool, |
| dropped: bool, |
| } |
| impl Drop for CheckedDrop { |
| fn drop(&mut self) { |
| if self.panic_in_drop { |
| self.dropped = true; |
| panic!("panic in drop"); |
| } |
| if self.dropped { |
| panic!("double drop"); |
| } |
| self.dropped = true; |
| } |
| } |
| const DISARMED: CheckedDrop = CheckedDrop { |
| panic_in_drop: false, |
| dropped: false, |
| }; |
| const ARMED: CheckedDrop = CheckedDrop { |
| panic_in_drop: true, |
| dropped: false, |
| }; |
| |
| let mut map1 = HashMap::new(); |
| map1.insert(1, DISARMED); |
| map1.insert(2, DISARMED); |
| map1.insert(3, DISARMED); |
| map1.insert(4, DISARMED); |
| |
| let mut map2 = HashMap::new(); |
| map2.insert(1, DISARMED); |
| map2.insert(2, ARMED); |
| map2.insert(3, DISARMED); |
| map2.insert(4, DISARMED); |
| |
| map2.clone_from(&map1); |
| } |
| |
| #[test] |
| #[should_panic = "panic in clone"] |
| fn test_clone_from_memory_leaks() { |
| use ::alloc::vec::Vec; |
| |
| struct CheckedClone { |
| panic_in_clone: bool, |
| need_drop: Vec<i32>, |
| } |
| impl Clone for CheckedClone { |
| fn clone(&self) -> Self { |
| if self.panic_in_clone { |
| panic!("panic in clone") |
| } |
| Self { |
| panic_in_clone: self.panic_in_clone, |
| need_drop: self.need_drop.clone(), |
| } |
| } |
| } |
| let mut map1 = HashMap::new(); |
| map1.insert( |
| 1, |
| CheckedClone { |
| panic_in_clone: false, |
| need_drop: vec![0, 1, 2], |
| }, |
| ); |
| map1.insert( |
| 2, |
| CheckedClone { |
| panic_in_clone: false, |
| need_drop: vec![3, 4, 5], |
| }, |
| ); |
| map1.insert( |
| 3, |
| CheckedClone { |
| panic_in_clone: true, |
| need_drop: vec![6, 7, 8], |
| }, |
| ); |
| let _map2 = map1.clone(); |
| } |
| |
| struct MyAllocInner { |
| drop_count: Arc<AtomicI8>, |
| } |
| |
| #[derive(Clone)] |
| struct MyAlloc { |
| _inner: Arc<MyAllocInner>, |
| } |
| |
| impl MyAlloc { |
| fn new(drop_count: Arc<AtomicI8>) -> Self { |
| MyAlloc { |
| _inner: Arc::new(MyAllocInner { drop_count }), |
| } |
| } |
| } |
| |
| impl Drop for MyAllocInner { |
| fn drop(&mut self) { |
| println!("MyAlloc freed."); |
| self.drop_count.fetch_sub(1, Ordering::SeqCst); |
| } |
| } |
| |
| unsafe impl Allocator for MyAlloc { |
| fn allocate(&self, layout: Layout) -> std::result::Result<NonNull<[u8]>, AllocError> { |
| let g = Global; |
| g.allocate(layout) |
| } |
| |
| unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout) { |
| let g = Global; |
| g.deallocate(ptr, layout) |
| } |
| } |
| |
| #[test] |
| fn test_hashmap_into_iter_bug() { |
| let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(1)); |
| |
| { |
| let mut map = HashMap::with_capacity_in(10, MyAlloc::new(dropped.clone())); |
| for i in 0..10 { |
| map.entry(i).or_insert_with(|| "i".to_string()); |
| } |
| |
| for (k, v) in map { |
| println!("{}, {}", k, v); |
| } |
| } |
| |
| // All allocator clones should already be dropped. |
| assert_eq!(dropped.load(Ordering::SeqCst), 0); |
| } |
| |
| #[derive(Debug)] |
| struct CheckedCloneDrop<T> { |
| panic_in_clone: bool, |
| panic_in_drop: bool, |
| dropped: bool, |
| data: T, |
| } |
| |
| impl<T> CheckedCloneDrop<T> { |
| fn new(panic_in_clone: bool, panic_in_drop: bool, data: T) -> Self { |
| CheckedCloneDrop { |
| panic_in_clone, |
| panic_in_drop, |
| dropped: false, |
| data, |
| } |
| } |
| } |
| |
| impl<T: Clone> Clone for CheckedCloneDrop<T> { |
| fn clone(&self) -> Self { |
| if self.panic_in_clone { |
| panic!("panic in clone") |
| } |
| Self { |
| panic_in_clone: self.panic_in_clone, |
| panic_in_drop: self.panic_in_drop, |
| dropped: self.dropped, |
| data: self.data.clone(), |
| } |
| } |
| } |
| |
| impl<T> Drop for CheckedCloneDrop<T> { |
| fn drop(&mut self) { |
| if self.panic_in_drop { |
| self.dropped = true; |
| panic!("panic in drop"); |
| } |
| if self.dropped { |
| panic!("double drop"); |
| } |
| self.dropped = true; |
| } |
| } |
| |
| /// Return hashmap with predefined distribution of elements. |
| /// All elements will be located in the same order as elements |
| /// returned by iterator. |
| /// |
| /// This function does not panic, but returns an error as a `String` |
| /// to distinguish between a test panic and an error in the input data. |
| fn get_test_map<I, T, A>( |
| iter: I, |
| mut fun: impl FnMut(u64) -> T, |
| alloc: A, |
| ) -> Result<HashMap<u64, CheckedCloneDrop<T>, DefaultHashBuilder, A>, String> |
| where |
| I: Iterator<Item = (bool, bool)> + Clone + ExactSizeIterator, |
| A: Allocator, |
| T: PartialEq + core::fmt::Debug, |
| { |
| use crate::scopeguard::guard; |
| |
| let mut map: HashMap<u64, CheckedCloneDrop<T>, _, A> = |
| HashMap::with_capacity_in(iter.size_hint().0, alloc); |
| { |
| let mut guard = guard(&mut map, |map| { |
| for (_, value) in map.iter_mut() { |
| value.panic_in_drop = false |
| } |
| }); |
| |
| let mut count = 0; |
| // Hash and Key must be equal to each other for controlling the elements placement. |
| for (panic_in_clone, panic_in_drop) in iter.clone() { |
| if core::mem::needs_drop::<T>() && panic_in_drop { |
| return Err(String::from( |
| "panic_in_drop can be set with a type that doesn't need to be dropped", |
| )); |
| } |
| guard.table.insert( |
| count, |
| ( |
| count, |
| CheckedCloneDrop::new(panic_in_clone, panic_in_drop, fun(count)), |
| ), |
| |(k, _)| *k, |
| ); |
| count += 1; |
| } |
| |
| // Let's check that all elements are located as we wanted |
| let mut check_count = 0; |
| for ((key, value), (panic_in_clone, panic_in_drop)) in guard.iter().zip(iter) { |
| if *key != check_count { |
| return Err(format!( |
| "key != check_count,\nkey: `{}`,\ncheck_count: `{}`", |
| key, check_count |
| )); |
| } |
| if value.dropped |
| || value.panic_in_clone != panic_in_clone |
| || value.panic_in_drop != panic_in_drop |
| || value.data != fun(check_count) |
| { |
| return Err(format!( |
| "Value is not equal to expected,\nvalue: `{:?}`,\nexpected: \ |
| `CheckedCloneDrop {{ panic_in_clone: {}, panic_in_drop: {}, dropped: {}, data: {:?} }}`", |
| value, panic_in_clone, panic_in_drop, false, fun(check_count) |
| )); |
| } |
| check_count += 1; |
| } |
| |
| if guard.len() != check_count as usize { |
| return Err(format!( |
| "map.len() != check_count,\nmap.len(): `{}`,\ncheck_count: `{}`", |
| guard.len(), |
| check_count |
| )); |
| } |
| |
| if count != check_count { |
| return Err(format!( |
| "count != check_count,\ncount: `{}`,\ncheck_count: `{}`", |
| count, check_count |
| )); |
| } |
| core::mem::forget(guard); |
| } |
| Ok(map) |
| } |
| |
| const DISARMED: bool = false; |
| const ARMED: bool = true; |
| |
| const ARMED_FLAGS: [bool; 8] = [ |
| DISARMED, DISARMED, DISARMED, ARMED, DISARMED, DISARMED, DISARMED, DISARMED, |
| ]; |
| |
| const DISARMED_FLAGS: [bool; 8] = [ |
| DISARMED, DISARMED, DISARMED, DISARMED, DISARMED, DISARMED, DISARMED, DISARMED, |
| ]; |
| |
| #[test] |
| #[should_panic = "panic in clone"] |
| fn test_clone_memory_leaks_and_double_drop_one() { |
| let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2)); |
| |
| { |
| assert_eq!(ARMED_FLAGS.len(), DISARMED_FLAGS.len()); |
| |
| let map: HashMap<u64, CheckedCloneDrop<Vec<u64>>, DefaultHashBuilder, MyAlloc> = |
| match get_test_map( |
| ARMED_FLAGS.into_iter().zip(DISARMED_FLAGS), |
| |n| vec![n], |
| MyAlloc::new(dropped.clone()), |
| ) { |
| Ok(map) => map, |
| Err(msg) => panic!("{msg}"), |
| }; |
| |
| // Clone should normally clone a few elements, and then (when the |
| // clone function panics), deallocate both its own memory, memory |
| // of `dropped: Arc<AtomicI8>` and the memory of already cloned |
| // elements (Vec<i32> memory inside CheckedCloneDrop). |
| let _map2 = map.clone(); |
| } |
| } |
| |
| #[test] |
| #[should_panic = "panic in drop"] |
| fn test_clone_memory_leaks_and_double_drop_two() { |
| let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2)); |
| |
| { |
| assert_eq!(ARMED_FLAGS.len(), DISARMED_FLAGS.len()); |
| |
| let map: HashMap<u64, CheckedCloneDrop<u64>, DefaultHashBuilder, _> = match get_test_map( |
| DISARMED_FLAGS.into_iter().zip(DISARMED_FLAGS), |
| |n| n, |
| MyAlloc::new(dropped.clone()), |
| ) { |
| Ok(map) => map, |
| Err(msg) => panic!("{msg}"), |
| }; |
| |
| let mut map2 = match get_test_map( |
| DISARMED_FLAGS.into_iter().zip(ARMED_FLAGS), |
| |n| n, |
| MyAlloc::new(dropped.clone()), |
| ) { |
| Ok(map) => map, |
| Err(msg) => panic!("{msg}"), |
| }; |
| |
| // The `clone_from` should try to drop the elements of `map2` without |
| // double drop and leaking the allocator. Elements that have not been |
| // dropped leak their memory. |
| map2.clone_from(&map); |
| } |
| } |
| |
| /// We check that we have a working table if the clone operation from another |
| /// thread ended in a panic (when buckets of maps are equal to each other). |
| #[test] |
| fn test_catch_panic_clone_from_when_len_is_equal() { |
| use std::thread; |
| |
| let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2)); |
| |
| { |
| assert_eq!(ARMED_FLAGS.len(), DISARMED_FLAGS.len()); |
| |
| let mut map = match get_test_map( |
| DISARMED_FLAGS.into_iter().zip(DISARMED_FLAGS), |
| |n| vec![n], |
| MyAlloc::new(dropped.clone()), |
| ) { |
| Ok(map) => map, |
| Err(msg) => panic!("{msg}"), |
| }; |
| |
| thread::scope(|s| { |
| let result: thread::ScopedJoinHandle<'_, String> = s.spawn(|| { |
| let scope_map = |
| match get_test_map(ARMED_FLAGS.into_iter().zip(DISARMED_FLAGS), |n| vec![n * 2], MyAlloc::new(dropped.clone())) { |
| Ok(map) => map, |
| Err(msg) => return msg, |
| }; |
| if map.table.buckets() != scope_map.table.buckets() { |
| return format!( |
| "map.table.buckets() != scope_map.table.buckets(),\nleft: `{}`,\nright: `{}`", |
| map.table.buckets(), scope_map.table.buckets() |
| ); |
| } |
| map.clone_from(&scope_map); |
| "We must fail the cloning!!!".to_owned() |
| }); |
| if let Ok(msg) = result.join() { |
| panic!("{msg}") |
| } |
| }); |
| |
| // Let's check that all iterators work fine and do not return elements |
| // (especially `RawIterRange`, which does not depend on the number of |
| // elements in the table, but looks directly at the control bytes) |
| // |
| // SAFETY: We know for sure that `RawTable` will outlive |
| // the returned `RawIter / RawIterRange` iterator. |
| assert_eq!(map.len(), 0); |
| assert_eq!(map.iter().count(), 0); |
| assert_eq!(unsafe { map.table.iter().count() }, 0); |
| assert_eq!(unsafe { map.table.iter().iter.count() }, 0); |
| |
| for idx in 0..map.table.buckets() { |
| let idx = idx as u64; |
| assert!( |
| map.table.find(idx, |(k, _)| *k == idx).is_none(), |
| "Index: {idx}" |
| ); |
| } |
| } |
| |
| // All allocator clones should already be dropped. |
| assert_eq!(dropped.load(Ordering::SeqCst), 0); |
| } |
| |
| /// We check that we have a working table if the clone operation from another |
| /// thread ended in a panic (when buckets of maps are not equal to each other). |
| #[test] |
| fn test_catch_panic_clone_from_when_len_is_not_equal() { |
| use std::thread; |
| |
| let dropped: Arc<AtomicI8> = Arc::new(AtomicI8::new(2)); |
| |
| { |
| assert_eq!(ARMED_FLAGS.len(), DISARMED_FLAGS.len()); |
| |
| let mut map = match get_test_map( |
| [DISARMED].into_iter().zip([DISARMED]), |
| |n| vec![n], |
| MyAlloc::new(dropped.clone()), |
| ) { |
| Ok(map) => map, |
| Err(msg) => panic!("{msg}"), |
| }; |
| |
| thread::scope(|s| { |
| let result: thread::ScopedJoinHandle<'_, String> = s.spawn(|| { |
| let scope_map = match get_test_map( |
| ARMED_FLAGS.into_iter().zip(DISARMED_FLAGS), |
| |n| vec![n * 2], |
| MyAlloc::new(dropped.clone()), |
| ) { |
| Ok(map) => map, |
| Err(msg) => return msg, |
| }; |
| if map.table.buckets() == scope_map.table.buckets() { |
| return format!( |
| "map.table.buckets() == scope_map.table.buckets(): `{}`", |
| map.table.buckets() |
| ); |
| } |
| map.clone_from(&scope_map); |
| "We must fail the cloning!!!".to_owned() |
| }); |
| if let Ok(msg) = result.join() { |
| panic!("{msg}") |
| } |
| }); |
| |
| // Let's check that all iterators work fine and do not return elements |
| // (especially `RawIterRange`, which does not depend on the number of |
| // elements in the table, but looks directly at the control bytes) |
| // |
| // SAFETY: We know for sure that `RawTable` will outlive |
| // the returned `RawIter / RawIterRange` iterator. |
| assert_eq!(map.len(), 0); |
| assert_eq!(map.iter().count(), 0); |
| assert_eq!(unsafe { map.table.iter().count() }, 0); |
| assert_eq!(unsafe { map.table.iter().iter.count() }, 0); |
| |
| for idx in 0..map.table.buckets() { |
| let idx = idx as u64; |
| assert!( |
| map.table.find(idx, |(k, _)| *k == idx).is_none(), |
| "Index: {idx}" |
| ); |
| } |
| } |
| |
| // All allocator clones should already be dropped. |
| assert_eq!(dropped.load(Ordering::SeqCst), 0); |
| } |
| } |