| //! A hash set implemented using `IndexMap` |
| |
| #[cfg(feature = "rayon")] |
| pub use crate::rayon::set as rayon; |
| |
| #[cfg(has_std)] |
| use std::collections::hash_map::RandomState; |
| |
| use crate::vec::{self, Vec}; |
| use core::cmp::Ordering; |
| use core::fmt; |
| use core::hash::{BuildHasher, Hash}; |
| use core::iter::{Chain, FromIterator}; |
| use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; |
| use core::slice; |
| |
| use super::{Entries, Equivalent, IndexMap}; |
| |
| type Bucket<T> = super::Bucket<T, ()>; |
| |
| /// A hash set where the iteration order of the values is independent of their |
| /// hash values. |
| /// |
| /// The interface is closely compatible with the standard `HashSet`, but also |
| /// has additional features. |
| /// |
| /// # Order |
| /// |
| /// The values have a consistent order that is determined by the sequence of |
| /// insertion and removal calls on the set. The order does not depend on the |
| /// values or the hash function at all. Note that insertion order and value |
| /// are not affected if a re-insertion is attempted once an element is |
| /// already present. |
| /// |
| /// All iterators traverse the set *in order*. Set operation iterators like |
| /// `union` produce a concatenated order, as do their matching "bitwise" |
| /// operators. See their documentation for specifics. |
| /// |
| /// The insertion order is preserved, with **notable exceptions** like the |
| /// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of |
| /// course result in a new order, depending on the sorting order. |
| /// |
| /// # Indices |
| /// |
| /// The values are indexed in a compact range without holes in the range |
| /// `0..self.len()`. For example, the method `.get_full` looks up the index for |
| /// a value, and the method `.get_index` looks up the value by index. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexSet; |
| /// |
| /// // Collects which letters appear in a sentence. |
| /// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect(); |
| /// |
| /// assert!(letters.contains(&'s')); |
| /// assert!(letters.contains(&'t')); |
| /// assert!(letters.contains(&'u')); |
| /// assert!(!letters.contains(&'y')); |
| /// ``` |
| #[cfg(has_std)] |
| pub struct IndexSet<T, S = RandomState> { |
| map: IndexMap<T, (), S>, |
| } |
| #[cfg(not(has_std))] |
| pub struct IndexSet<T, S> { |
| map: IndexMap<T, (), S>, |
| } |
| |
| impl<T, S> Clone for IndexSet<T, S> |
| where |
| T: Clone, |
| S: Clone, |
| { |
| fn clone(&self) -> Self { |
| IndexSet { |
| map: self.map.clone(), |
| } |
| } |
| |
| fn clone_from(&mut self, other: &Self) { |
| self.map.clone_from(&other.map); |
| } |
| } |
| |
| impl<T, S> Entries for IndexSet<T, S> { |
| type Entry = Bucket<T>; |
| |
| #[inline] |
| fn into_entries(self) -> Vec<Self::Entry> { |
| self.map.into_entries() |
| } |
| |
| #[inline] |
| fn as_entries(&self) -> &[Self::Entry] { |
| self.map.as_entries() |
| } |
| |
| #[inline] |
| fn as_entries_mut(&mut self) -> &mut [Self::Entry] { |
| self.map.as_entries_mut() |
| } |
| |
| fn with_entries<F>(&mut self, f: F) |
| where |
| F: FnOnce(&mut [Self::Entry]), |
| { |
| self.map.with_entries(f); |
| } |
| } |
| |
| impl<T, S> fmt::Debug for IndexSet<T, S> |
| where |
| T: fmt::Debug, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if cfg!(not(feature = "test_debug")) { |
| f.debug_set().entries(self.iter()).finish() |
| } else { |
| // Let the inner `IndexMap` print all of its details |
| f.debug_struct("IndexSet").field("map", &self.map).finish() |
| } |
| } |
| } |
| |
| #[cfg(has_std)] |
| impl<T> IndexSet<T> { |
| /// Create a new set. (Does not allocate.) |
| pub fn new() -> Self { |
| IndexSet { |
| map: IndexMap::new(), |
| } |
| } |
| |
| /// Create a new set with capacity for `n` elements. |
| /// (Does not allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| pub fn with_capacity(n: usize) -> Self { |
| IndexSet { |
| map: IndexMap::with_capacity(n), |
| } |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> { |
| /// Create a new set with capacity for `n` elements. |
| /// (Does not allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { |
| IndexSet { |
| map: IndexMap::with_capacity_and_hasher(n, hash_builder), |
| } |
| } |
| |
| /// Create a new set with `hash_builder` |
| pub fn with_hasher(hash_builder: S) -> Self { |
| IndexSet { |
| map: IndexMap::with_hasher(hash_builder), |
| } |
| } |
| |
| /// Computes in **O(1)** time. |
| pub fn capacity(&self) -> usize { |
| self.map.capacity() |
| } |
| |
| /// Return a reference to the set's `BuildHasher`. |
| pub fn hasher(&self) -> &S { |
| self.map.hasher() |
| } |
| |
| /// Return the number of elements in the set. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn len(&self) -> usize { |
| self.map.len() |
| } |
| |
| /// Returns true if the set contains no elements. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn is_empty(&self) -> bool { |
| self.map.is_empty() |
| } |
| |
| /// Return an iterator over the values of the set, in their order |
| pub fn iter(&self) -> Iter<'_, T> { |
| Iter { |
| iter: self.map.keys().iter, |
| } |
| } |
| |
| /// Remove all elements in the set, while preserving its capacity. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn clear(&mut self) { |
| self.map.clear(); |
| } |
| |
| /// Shortens the set, keeping the first `len` elements and dropping the rest. |
| /// |
| /// If `len` is greater than the set's current length, this has no effect. |
| pub fn truncate(&mut self, len: usize) { |
| self.map.truncate(len); |
| } |
| |
| /// Clears the `IndexSet` in the given index range, returning those values |
| /// as a drain iterator. |
| /// |
| /// The range may be any type that implements `RangeBounds<usize>`, |
| /// including all of the `std::ops::Range*` types, or even a tuple pair of |
| /// `Bound` start and end values. To drain the set entirely, use `RangeFull` |
| /// like `set.drain(..)`. |
| /// |
| /// This shifts down all entries following the drained range to fill the |
| /// gap, and keeps the allocated memory for reuse. |
| /// |
| /// ***Panics*** if the starting point is greater than the end point or if |
| /// the end point is greater than the length of the set. |
| pub fn drain<R>(&mut self, range: R) -> Drain<'_, T> |
| where |
| R: RangeBounds<usize>, |
| { |
| Drain { |
| iter: self.map.drain(range).iter, |
| } |
| } |
| |
| /// Splits the collection into two at the given index. |
| /// |
| /// Returns a newly allocated set containing the elements in the range |
| /// `[at, len)`. After the call, the original set will be left containing |
| /// the elements `[0, at)` with its previous capacity unchanged. |
| /// |
| /// ***Panics*** if `at > len`. |
| pub fn split_off(&mut self, at: usize) -> Self |
| where |
| S: Clone, |
| { |
| Self { |
| map: self.map.split_off(at), |
| } |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> |
| where |
| T: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Reserve capacity for `additional` more values. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve(&mut self, additional: usize) { |
| self.map.reserve(additional); |
| } |
| |
| /// Shrink the capacity of the set as much as possible. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to_fit(&mut self) { |
| self.map.shrink_to_fit(); |
| } |
| |
| /// Insert the value into the set. |
| /// |
| /// If an equivalent item already exists in the set, it returns |
| /// `false` leaving the original value in the set and without |
| /// altering its insertion order. Otherwise, it inserts the new |
| /// item and returns `true`. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| pub fn insert(&mut self, value: T) -> bool { |
| self.map.insert(value, ()).is_none() |
| } |
| |
| /// Insert the value into the set, and get its index. |
| /// |
| /// If an equivalent item already exists in the set, it returns |
| /// the index of the existing item and `false`, leaving the |
| /// original value in the set and without altering its insertion |
| /// order. Otherwise, it inserts the new item and returns the index |
| /// of the inserted item and `true`. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| pub fn insert_full(&mut self, value: T) -> (usize, bool) { |
| use super::map::Entry::*; |
| |
| match self.map.entry(value) { |
| Occupied(e) => (e.index(), false), |
| Vacant(e) => { |
| let index = e.index(); |
| e.insert(()); |
| (index, true) |
| } |
| } |
| } |
| |
| /// Return an iterator over the values that are in `self` but not `other`. |
| /// |
| /// Values are produced in the same order that they appear in `self`. |
| pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2> |
| where |
| S2: BuildHasher, |
| { |
| Difference { |
| iter: self.iter(), |
| other, |
| } |
| } |
| |
| /// Return an iterator over the values that are in `self` or `other`, |
| /// but not in both. |
| /// |
| /// Values from `self` are produced in their original order, followed by |
| /// values from `other` in their original order. |
| pub fn symmetric_difference<'a, S2>( |
| &'a self, |
| other: &'a IndexSet<T, S2>, |
| ) -> SymmetricDifference<'a, T, S, S2> |
| where |
| S2: BuildHasher, |
| { |
| SymmetricDifference { |
| iter: self.difference(other).chain(other.difference(self)), |
| } |
| } |
| |
| /// Return an iterator over the values that are in both `self` and `other`. |
| /// |
| /// Values are produced in the same order that they appear in `self`. |
| pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2> |
| where |
| S2: BuildHasher, |
| { |
| Intersection { |
| iter: self.iter(), |
| other, |
| } |
| } |
| |
| /// Return an iterator over all values that are in `self` or `other`. |
| /// |
| /// Values from `self` are produced in their original order, followed by |
| /// values that are unique to `other` in their original order. |
| pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S> |
| where |
| S2: BuildHasher, |
| { |
| Union { |
| iter: self.iter().chain(other.difference(self)), |
| } |
| } |
| |
| /// Return `true` if an equivalent to `value` exists in the set. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn contains<Q: ?Sized>(&self, value: &Q) -> bool |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.contains_key(value) |
| } |
| |
| /// Return a reference to the value stored in the set, if it is present, |
| /// else `None`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get<Q: ?Sized>(&self, value: &Q) -> Option<&T> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.get_key_value(value).map(|(x, &())| x) |
| } |
| |
| /// Return item index and value |
| pub fn get_full<Q: ?Sized>(&self, value: &Q) -> Option<(usize, &T)> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.get_full(value).map(|(i, x, &())| (i, x)) |
| } |
| |
| /// Return item index, if it exists in the set |
| pub fn get_index_of<Q: ?Sized>(&self, value: &Q) -> Option<usize> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.get_index_of(value) |
| } |
| |
| /// Adds a value to the set, replacing the existing value, if any, that is |
| /// equal to the given one. Returns the replaced value. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn replace(&mut self, value: T) -> Option<T> { |
| use super::map::Entry::*; |
| |
| match self.map.entry(value) { |
| Vacant(e) => { |
| e.insert(()); |
| None |
| } |
| Occupied(e) => Some(e.replace_key()), |
| } |
| } |
| |
| /// Remove the value from the set, and return `true` if it was present. |
| /// |
| /// **NOTE:** This is equivalent to `.swap_remove(value)`, if you want |
| /// to preserve the order of the values in the set, use `.shift_remove(value)`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn remove<Q: ?Sized>(&mut self, value: &Q) -> bool |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.swap_remove(value) |
| } |
| |
| /// Remove the value from the set, and return `true` if it was present. |
| /// |
| /// Like `Vec::swap_remove`, the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `false` if `value` was not in the set. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove<Q: ?Sized>(&mut self, value: &Q) -> bool |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.swap_remove(value).is_some() |
| } |
| |
| /// Remove the value from the set, and return `true` if it was present. |
| /// |
| /// Like `Vec::remove`, the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `false` if `value` was not in the set. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove<Q: ?Sized>(&mut self, value: &Q) -> bool |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.shift_remove(value).is_some() |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the |
| /// given one. |
| /// |
| /// **NOTE:** This is equivalent to `.swap_take(value)`, if you need to |
| /// preserve the order of the values in the set, use `.shift_take(value)` |
| /// instead. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.swap_take(value) |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the |
| /// given one. |
| /// |
| /// Like `Vec::swap_remove`, the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.swap_remove_entry(value).map(|(x, ())| x) |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the |
| /// given one. |
| /// |
| /// Like `Vec::remove`, the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_take<Q: ?Sized>(&mut self, value: &Q) -> Option<T> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.shift_remove_entry(value).map(|(x, ())| x) |
| } |
| |
| /// Remove the value from the set return it and the index it had. |
| /// |
| /// Like `Vec::swap_remove`, the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| pub fn swap_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.swap_remove_full(value).map(|(i, x, ())| (i, x)) |
| } |
| |
| /// Remove the value from the set return it and the index it had. |
| /// |
| /// Like `Vec::remove`, the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| pub fn shift_remove_full<Q: ?Sized>(&mut self, value: &Q) -> Option<(usize, T)> |
| where |
| Q: Hash + Equivalent<T>, |
| { |
| self.map.shift_remove_full(value).map(|(i, x, ())| (i, x)) |
| } |
| |
| /// Remove the last value |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn pop(&mut self) -> Option<T> { |
| self.map.pop().map(|(x, ())| x) |
| } |
| |
| /// Scan through each value in the set and keep those where the |
| /// closure `keep` returns `true`. |
| /// |
| /// The elements are visited in order, and remaining elements keep their |
| /// order. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn retain<F>(&mut self, mut keep: F) |
| where |
| F: FnMut(&T) -> bool, |
| { |
| self.map.retain(move |x, &mut ()| keep(x)) |
| } |
| |
| /// Sort the set’s values by their default ordering. |
| /// |
| /// See `sort_by` for details. |
| pub fn sort(&mut self) |
| where |
| T: Ord, |
| { |
| self.map.sort_keys() |
| } |
| |
| /// Sort the set’s values in place using the comparison function `compare`. |
| /// |
| /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. |
| pub fn sort_by<F>(&mut self, mut compare: F) |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| self.map.sort_by(move |a, _, b, _| compare(a, b)); |
| } |
| |
| /// Sort the values of the set and return a by value iterator of |
| /// the values with the result. |
| /// |
| /// The sort is stable. |
| pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T> |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| IntoIter { |
| iter: self.map.sorted_by(move |a, &(), b, &()| cmp(a, b)).iter, |
| } |
| } |
| |
| /// Reverses the order of the set’s values in place. |
| /// |
| /// Computes in **O(n)** time and **O(1)** space. |
| pub fn reverse(&mut self) { |
| self.map.reverse() |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> { |
| /// Get a value by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index(&self, index: usize) -> Option<&T> { |
| self.as_entries().get(index).map(Bucket::key_ref) |
| } |
| |
| /// Get the first value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn first(&self) -> Option<&T> { |
| self.as_entries().first().map(Bucket::key_ref) |
| } |
| |
| /// Get the last value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn last(&self) -> Option<&T> { |
| self.as_entries().last().map(Bucket::key_ref) |
| } |
| |
| /// Remove the value by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like `Vec::swap_remove`, the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_index(&mut self, index: usize) -> Option<T> { |
| self.map.swap_remove_index(index).map(|(x, ())| x) |
| } |
| |
| /// Remove the value by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like `Vec::remove`, the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_index(&mut self, index: usize) -> Option<T> { |
| self.map.shift_remove_index(index).map(|(x, ())| x) |
| } |
| |
| /// Swaps the position of two values in the set. |
| /// |
| /// ***Panics*** if `a` or `b` are out of bounds. |
| pub fn swap_indices(&mut self, a: usize, b: usize) { |
| self.map.swap_indices(a, b) |
| } |
| } |
| |
| /// Access `IndexSet` values at indexed positions. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexSet; |
| /// |
| /// let mut set = IndexSet::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// set.insert(word.to_string()); |
| /// } |
| /// assert_eq!(set[0], "Lorem"); |
| /// assert_eq!(set[1], "ipsum"); |
| /// set.reverse(); |
| /// assert_eq!(set[0], "amet"); |
| /// assert_eq!(set[1], "sit"); |
| /// set.sort(); |
| /// assert_eq!(set[0], "Lorem"); |
| /// assert_eq!(set[1], "amet"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexSet; |
| /// |
| /// let mut set = IndexSet::new(); |
| /// set.insert("foo"); |
| /// println!("{:?}", set[10]); // panics! |
| /// ``` |
| impl<T, S> Index<usize> for IndexSet<T, S> { |
| type Output = T; |
| |
| /// Returns a reference to the value at the supplied `index`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| fn index(&self, index: usize) -> &T { |
| self.get_index(index) |
| .expect("IndexSet: index out of bounds") |
| } |
| } |
| |
| /// An owning iterator over the items of a `IndexSet`. |
| /// |
| /// This `struct` is created by the [`into_iter`] method on [`IndexSet`] |
| /// (provided by the `IntoIterator` trait). See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`into_iter`]: struct.IndexSet.html#method.into_iter |
| pub struct IntoIter<T> { |
| iter: vec::IntoIter<Bucket<T>>, |
| } |
| |
| impl<T> Iterator for IntoIter<T> { |
| type Item = T; |
| |
| iterator_methods!(Bucket::key); |
| } |
| |
| impl<T> DoubleEndedIterator for IntoIter<T> { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.next_back().map(Bucket::key) |
| } |
| } |
| |
| impl<T> ExactSizeIterator for IntoIter<T> { |
| fn len(&self) -> usize { |
| self.iter.len() |
| } |
| } |
| |
| impl<T: fmt::Debug> fmt::Debug for IntoIter<T> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| let iter = self.iter.as_slice().iter().map(Bucket::key_ref); |
| f.debug_list().entries(iter).finish() |
| } |
| } |
| |
| /// An iterator over the items of a `IndexSet`. |
| /// |
| /// This `struct` is created by the [`iter`] method on [`IndexSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`iter`]: struct.IndexSet.html#method.iter |
| pub struct Iter<'a, T> { |
| iter: slice::Iter<'a, Bucket<T>>, |
| } |
| |
| impl<'a, T> Iterator for Iter<'a, T> { |
| type Item = &'a T; |
| |
| iterator_methods!(Bucket::key_ref); |
| } |
| |
| impl<T> DoubleEndedIterator for Iter<'_, T> { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.next_back().map(Bucket::key_ref) |
| } |
| } |
| |
| impl<T> ExactSizeIterator for Iter<'_, T> { |
| fn len(&self) -> usize { |
| self.iter.len() |
| } |
| } |
| |
| impl<T> Clone for Iter<'_, T> { |
| fn clone(&self) -> Self { |
| Iter { |
| iter: self.iter.clone(), |
| } |
| } |
| } |
| |
| impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// A draining iterator over the items of a `IndexSet`. |
| /// |
| /// This `struct` is created by the [`drain`] method on [`IndexSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`drain`]: struct.IndexSet.html#method.drain |
| pub struct Drain<'a, T> { |
| iter: vec::Drain<'a, Bucket<T>>, |
| } |
| |
| impl<T> Iterator for Drain<'_, T> { |
| type Item = T; |
| |
| iterator_methods!(Bucket::key); |
| } |
| |
| impl<T> DoubleEndedIterator for Drain<'_, T> { |
| double_ended_iterator_methods!(Bucket::key); |
| } |
| |
| impl<'a, T, S> IntoIterator for &'a IndexSet<T, S> { |
| type Item = &'a T; |
| type IntoIter = Iter<'a, T>; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| self.iter() |
| } |
| } |
| |
| impl<T, S> IntoIterator for IndexSet<T, S> { |
| type Item = T; |
| type IntoIter = IntoIter<T>; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| IntoIter { |
| iter: self.map.into_iter().iter, |
| } |
| } |
| } |
| |
| impl<T, S> FromIterator<T> for IndexSet<T, S> |
| where |
| T: Hash + Eq, |
| S: BuildHasher + Default, |
| { |
| fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self { |
| let iter = iterable.into_iter().map(|x| (x, ())); |
| IndexSet { |
| map: IndexMap::from_iter(iter), |
| } |
| } |
| } |
| |
| impl<T, S> Extend<T> for IndexSet<T, S> |
| where |
| T: Hash + Eq, |
| S: BuildHasher, |
| { |
| fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) { |
| let iter = iterable.into_iter().map(|x| (x, ())); |
| self.map.extend(iter); |
| } |
| } |
| |
| impl<'a, T, S> Extend<&'a T> for IndexSet<T, S> |
| where |
| T: Hash + Eq + Copy + 'a, |
| S: BuildHasher, |
| { |
| fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) { |
| let iter = iterable.into_iter().copied(); |
| self.extend(iter); |
| } |
| } |
| |
| impl<T, S> Default for IndexSet<T, S> |
| where |
| S: Default, |
| { |
| /// Return an empty `IndexSet` |
| fn default() -> Self { |
| IndexSet { |
| map: IndexMap::default(), |
| } |
| } |
| } |
| |
| impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1> |
| where |
| T: Hash + Eq, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| fn eq(&self, other: &IndexSet<T, S2>) -> bool { |
| self.len() == other.len() && self.is_subset(other) |
| } |
| } |
| |
| impl<T, S> Eq for IndexSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> IndexSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| /// Returns `true` if `self` has no elements in common with `other`. |
| pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool |
| where |
| S2: BuildHasher, |
| { |
| if self.len() <= other.len() { |
| self.iter().all(move |value| !other.contains(value)) |
| } else { |
| other.iter().all(move |value| !self.contains(value)) |
| } |
| } |
| |
| /// Returns `true` if all elements of `self` are contained in `other`. |
| pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool |
| where |
| S2: BuildHasher, |
| { |
| self.len() <= other.len() && self.iter().all(move |value| other.contains(value)) |
| } |
| |
| /// Returns `true` if all elements of `other` are contained in `self`. |
| pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool |
| where |
| S2: BuildHasher, |
| { |
| other.is_subset(self) |
| } |
| } |
| |
| /// A lazy iterator producing elements in the difference of `IndexSet`s. |
| /// |
| /// This `struct` is created by the [`difference`] method on [`IndexSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`difference`]: struct.IndexSet.html#method.difference |
| pub struct Difference<'a, T, S> { |
| iter: Iter<'a, T>, |
| other: &'a IndexSet<T, S>, |
| } |
| |
| impl<'a, T, S> Iterator for Difference<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| while let Some(item) = self.iter.next() { |
| if !self.other.contains(item) { |
| return Some(item); |
| } |
| } |
| None |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (0, self.iter.size_hint().1) |
| } |
| } |
| |
| impl<T, S> DoubleEndedIterator for Difference<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| while let Some(item) = self.iter.next_back() { |
| if !self.other.contains(item) { |
| return Some(item); |
| } |
| } |
| None |
| } |
| } |
| |
| impl<T, S> Clone for Difference<'_, T, S> { |
| fn clone(&self) -> Self { |
| Difference { |
| iter: self.iter.clone(), |
| ..*self |
| } |
| } |
| } |
| |
| impl<T, S> fmt::Debug for Difference<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// A lazy iterator producing elements in the intersection of `IndexSet`s. |
| /// |
| /// This `struct` is created by the [`intersection`] method on [`IndexSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`intersection`]: struct.IndexSet.html#method.intersection |
| pub struct Intersection<'a, T, S> { |
| iter: Iter<'a, T>, |
| other: &'a IndexSet<T, S>, |
| } |
| |
| impl<'a, T, S> Iterator for Intersection<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| while let Some(item) = self.iter.next() { |
| if self.other.contains(item) { |
| return Some(item); |
| } |
| } |
| None |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| (0, self.iter.size_hint().1) |
| } |
| } |
| |
| impl<T, S> DoubleEndedIterator for Intersection<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| while let Some(item) = self.iter.next_back() { |
| if self.other.contains(item) { |
| return Some(item); |
| } |
| } |
| None |
| } |
| } |
| |
| impl<T, S> Clone for Intersection<'_, T, S> { |
| fn clone(&self) -> Self { |
| Intersection { |
| iter: self.iter.clone(), |
| ..*self |
| } |
| } |
| } |
| |
| impl<T, S> fmt::Debug for Intersection<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// A lazy iterator producing elements in the symmetric difference of `IndexSet`s. |
| /// |
| /// This `struct` is created by the [`symmetric_difference`] method on |
| /// [`IndexSet`]. See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`symmetric_difference`]: struct.IndexSet.html#method.symmetric_difference |
| pub struct SymmetricDifference<'a, T, S1, S2> { |
| iter: Chain<Difference<'a, T, S2>, Difference<'a, T, S1>>, |
| } |
| |
| impl<'a, T, S1, S2> Iterator for SymmetricDifference<'a, T, S1, S2> |
| where |
| T: Eq + Hash, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter.next() |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| |
| fn fold<B, F>(self, init: B, f: F) -> B |
| where |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.iter.fold(init, f) |
| } |
| } |
| |
| impl<T, S1, S2> DoubleEndedIterator for SymmetricDifference<'_, T, S1, S2> |
| where |
| T: Eq + Hash, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.next_back() |
| } |
| } |
| |
| impl<T, S1, S2> Clone for SymmetricDifference<'_, T, S1, S2> { |
| fn clone(&self) -> Self { |
| SymmetricDifference { |
| iter: self.iter.clone(), |
| } |
| } |
| } |
| |
| impl<T, S1, S2> fmt::Debug for SymmetricDifference<'_, T, S1, S2> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| /// A lazy iterator producing elements in the union of `IndexSet`s. |
| /// |
| /// This `struct` is created by the [`union`] method on [`IndexSet`]. |
| /// See its documentation for more. |
| /// |
| /// [`IndexSet`]: struct.IndexSet.html |
| /// [`union`]: struct.IndexSet.html#method.union |
| pub struct Union<'a, T, S> { |
| iter: Chain<Iter<'a, T>, Difference<'a, T, S>>, |
| } |
| |
| impl<'a, T, S> Iterator for Union<'a, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| type Item = &'a T; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.iter.next() |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) { |
| self.iter.size_hint() |
| } |
| |
| fn fold<B, F>(self, init: B, f: F) -> B |
| where |
| F: FnMut(B, Self::Item) -> B, |
| { |
| self.iter.fold(init, f) |
| } |
| } |
| |
| impl<T, S> DoubleEndedIterator for Union<'_, T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| fn next_back(&mut self) -> Option<Self::Item> { |
| self.iter.next_back() |
| } |
| } |
| |
| impl<T, S> Clone for Union<'_, T, S> { |
| fn clone(&self) -> Self { |
| Union { |
| iter: self.iter.clone(), |
| } |
| } |
| } |
| |
| impl<T, S> fmt::Debug for Union<'_, T, S> |
| where |
| T: fmt::Debug + Eq + Hash, |
| S: BuildHasher, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_list().entries(self.clone()).finish() |
| } |
| } |
| |
| impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set intersection, cloned into a new set. |
| /// |
| /// Values are collected in the same order that they appear in `self`. |
| fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.intersection(other).cloned().collect() |
| } |
| } |
| |
| impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set union, cloned into a new set. |
| /// |
| /// Values from `self` are collected in their original order, followed by |
| /// values that are unique to `other` in their original order. |
| fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.union(other).cloned().collect() |
| } |
| } |
| |
| impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set symmetric-difference, cloned into a new set. |
| /// |
| /// Values from `self` are collected in their original order, followed by |
| /// values from `other` in their original order. |
| fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.symmetric_difference(other).cloned().collect() |
| } |
| } |
| |
| impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set difference, cloned into a new set. |
| /// |
| /// Values are collected in the same order that they appear in `self`. |
| fn sub(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.difference(other).cloned().collect() |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| use crate::util::enumerate; |
| use std::string::String; |
| |
| #[test] |
| fn it_works() { |
| let mut set = IndexSet::new(); |
| assert_eq!(set.is_empty(), true); |
| set.insert(1); |
| set.insert(1); |
| assert_eq!(set.len(), 1); |
| assert!(set.get(&1).is_some()); |
| assert_eq!(set.is_empty(), false); |
| } |
| |
| #[test] |
| fn new() { |
| let set = IndexSet::<String>::new(); |
| println!("{:?}", set); |
| assert_eq!(set.capacity(), 0); |
| assert_eq!(set.len(), 0); |
| assert_eq!(set.is_empty(), true); |
| } |
| |
| #[test] |
| fn insert() { |
| let insert = [0, 4, 2, 12, 8, 7, 11, 5]; |
| let not_present = [1, 3, 6, 9, 10]; |
| let mut set = IndexSet::with_capacity(insert.len()); |
| |
| for (i, &elt) in enumerate(&insert) { |
| assert_eq!(set.len(), i); |
| set.insert(elt); |
| assert_eq!(set.len(), i + 1); |
| assert_eq!(set.get(&elt), Some(&elt)); |
| } |
| println!("{:?}", set); |
| |
| for &elt in ¬_present { |
| assert!(set.get(&elt).is_none()); |
| } |
| } |
| |
| #[test] |
| fn insert_full() { |
| let insert = vec![9, 2, 7, 1, 4, 6, 13]; |
| let present = vec![1, 6, 2]; |
| let mut set = IndexSet::with_capacity(insert.len()); |
| |
| for (i, &elt) in enumerate(&insert) { |
| assert_eq!(set.len(), i); |
| let (index, success) = set.insert_full(elt); |
| assert!(success); |
| assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); |
| assert_eq!(set.len(), i + 1); |
| } |
| |
| let len = set.len(); |
| for &elt in &present { |
| let (index, success) = set.insert_full(elt); |
| assert!(!success); |
| assert_eq!(Some(index), set.get_full(&elt).map(|x| x.0)); |
| assert_eq!(set.len(), len); |
| } |
| } |
| |
| #[test] |
| fn insert_2() { |
| let mut set = IndexSet::with_capacity(16); |
| |
| let mut values = vec![]; |
| values.extend(0..16); |
| values.extend(128..267); |
| |
| for &i in &values { |
| let old_set = set.clone(); |
| set.insert(i); |
| for value in old_set.iter() { |
| if set.get(value).is_none() { |
| println!("old_set: {:?}", old_set); |
| println!("set: {:?}", set); |
| panic!("did not find {} in set", value); |
| } |
| } |
| } |
| |
| for &i in &values { |
| assert!(set.get(&i).is_some(), "did not find {}", i); |
| } |
| } |
| |
| #[test] |
| fn insert_dup() { |
| let mut elements = vec![0, 2, 4, 6, 8]; |
| let mut set: IndexSet<u8> = elements.drain(..).collect(); |
| { |
| let (i, v) = set.get_full(&0).unwrap(); |
| assert_eq!(set.len(), 5); |
| assert_eq!(i, 0); |
| assert_eq!(*v, 0); |
| } |
| { |
| let inserted = set.insert(0); |
| let (i, v) = set.get_full(&0).unwrap(); |
| assert_eq!(set.len(), 5); |
| assert_eq!(inserted, false); |
| assert_eq!(i, 0); |
| assert_eq!(*v, 0); |
| } |
| } |
| |
| #[test] |
| fn insert_order() { |
| let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; |
| let mut set = IndexSet::new(); |
| |
| for &elt in &insert { |
| set.insert(elt); |
| } |
| |
| assert_eq!(set.iter().count(), set.len()); |
| assert_eq!(set.iter().count(), insert.len()); |
| for (a, b) in insert.iter().zip(set.iter()) { |
| assert_eq!(a, b); |
| } |
| for (i, v) in (0..insert.len()).zip(set.iter()) { |
| assert_eq!(set.get_index(i).unwrap(), v); |
| } |
| } |
| |
| #[test] |
| fn grow() { |
| let insert = [0, 4, 2, 12, 8, 7, 11]; |
| let not_present = [1, 3, 6, 9, 10]; |
| let mut set = IndexSet::with_capacity(insert.len()); |
| |
| for (i, &elt) in enumerate(&insert) { |
| assert_eq!(set.len(), i); |
| set.insert(elt); |
| assert_eq!(set.len(), i + 1); |
| assert_eq!(set.get(&elt), Some(&elt)); |
| } |
| |
| println!("{:?}", set); |
| for &elt in &insert { |
| set.insert(elt * 10); |
| } |
| for &elt in &insert { |
| set.insert(elt * 100); |
| } |
| for (i, &elt) in insert.iter().cycle().enumerate().take(100) { |
| set.insert(elt * 100 + i as i32); |
| } |
| println!("{:?}", set); |
| for &elt in ¬_present { |
| assert!(set.get(&elt).is_none()); |
| } |
| } |
| |
| #[test] |
| fn reserve() { |
| let mut set = IndexSet::<usize>::new(); |
| assert_eq!(set.capacity(), 0); |
| set.reserve(100); |
| let capacity = set.capacity(); |
| assert!(capacity >= 100); |
| for i in 0..capacity { |
| assert_eq!(set.len(), i); |
| set.insert(i); |
| assert_eq!(set.len(), i + 1); |
| assert_eq!(set.capacity(), capacity); |
| assert_eq!(set.get(&i), Some(&i)); |
| } |
| set.insert(capacity); |
| assert_eq!(set.len(), capacity + 1); |
| assert!(set.capacity() > capacity); |
| assert_eq!(set.get(&capacity), Some(&capacity)); |
| } |
| |
| #[test] |
| fn shrink_to_fit() { |
| let mut set = IndexSet::<usize>::new(); |
| assert_eq!(set.capacity(), 0); |
| for i in 0..100 { |
| assert_eq!(set.len(), i); |
| set.insert(i); |
| assert_eq!(set.len(), i + 1); |
| assert!(set.capacity() >= i + 1); |
| assert_eq!(set.get(&i), Some(&i)); |
| set.shrink_to_fit(); |
| assert_eq!(set.len(), i + 1); |
| assert_eq!(set.capacity(), i + 1); |
| assert_eq!(set.get(&i), Some(&i)); |
| } |
| } |
| |
| #[test] |
| fn remove() { |
| let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; |
| let mut set = IndexSet::new(); |
| |
| for &elt in &insert { |
| set.insert(elt); |
| } |
| |
| assert_eq!(set.iter().count(), set.len()); |
| assert_eq!(set.iter().count(), insert.len()); |
| for (a, b) in insert.iter().zip(set.iter()) { |
| assert_eq!(a, b); |
| } |
| |
| let remove_fail = [99, 77]; |
| let remove = [4, 12, 8, 7]; |
| |
| for &value in &remove_fail { |
| assert!(set.swap_remove_full(&value).is_none()); |
| } |
| println!("{:?}", set); |
| for &value in &remove { |
| //println!("{:?}", set); |
| let index = set.get_full(&value).unwrap().0; |
| assert_eq!(set.swap_remove_full(&value), Some((index, value))); |
| } |
| println!("{:?}", set); |
| |
| for value in &insert { |
| assert_eq!(set.get(value).is_some(), !remove.contains(value)); |
| } |
| assert_eq!(set.len(), insert.len() - remove.len()); |
| assert_eq!(set.iter().count(), insert.len() - remove.len()); |
| } |
| |
| #[test] |
| fn swap_remove_index() { |
| let insert = [0, 4, 2, 12, 8, 7, 11, 5, 3, 17, 19, 22, 23]; |
| let mut set = IndexSet::new(); |
| |
| for &elt in &insert { |
| set.insert(elt); |
| } |
| |
| let mut vector = insert.to_vec(); |
| let remove_sequence = &[3, 3, 10, 4, 5, 4, 3, 0, 1]; |
| |
| // check that the same swap remove sequence on vec and set |
| // have the same result. |
| for &rm in remove_sequence { |
| let out_vec = vector.swap_remove(rm); |
| let out_set = set.swap_remove_index(rm).unwrap(); |
| assert_eq!(out_vec, out_set); |
| } |
| assert_eq!(vector.len(), set.len()); |
| for (a, b) in vector.iter().zip(set.iter()) { |
| assert_eq!(a, b); |
| } |
| } |
| |
| #[test] |
| fn partial_eq_and_eq() { |
| let mut set_a = IndexSet::new(); |
| set_a.insert(1); |
| set_a.insert(2); |
| let mut set_b = set_a.clone(); |
| assert_eq!(set_a, set_b); |
| set_b.swap_remove(&1); |
| assert_ne!(set_a, set_b); |
| |
| let set_c: IndexSet<_> = set_b.into_iter().collect(); |
| assert_ne!(set_a, set_c); |
| assert_ne!(set_c, set_a); |
| } |
| |
| #[test] |
| fn extend() { |
| let mut set = IndexSet::new(); |
| set.extend(vec![&1, &2, &3, &4]); |
| set.extend(vec![5, 6]); |
| assert_eq!(set.into_iter().collect::<Vec<_>>(), vec![1, 2, 3, 4, 5, 6]); |
| } |
| |
| #[test] |
| fn comparisons() { |
| let set_a: IndexSet<_> = (0..3).collect(); |
| let set_b: IndexSet<_> = (3..6).collect(); |
| let set_c: IndexSet<_> = (0..6).collect(); |
| let set_d: IndexSet<_> = (3..9).collect(); |
| |
| assert!(!set_a.is_disjoint(&set_a)); |
| assert!(set_a.is_subset(&set_a)); |
| assert!(set_a.is_superset(&set_a)); |
| |
| assert!(set_a.is_disjoint(&set_b)); |
| assert!(set_b.is_disjoint(&set_a)); |
| assert!(!set_a.is_subset(&set_b)); |
| assert!(!set_b.is_subset(&set_a)); |
| assert!(!set_a.is_superset(&set_b)); |
| assert!(!set_b.is_superset(&set_a)); |
| |
| assert!(!set_a.is_disjoint(&set_c)); |
| assert!(!set_c.is_disjoint(&set_a)); |
| assert!(set_a.is_subset(&set_c)); |
| assert!(!set_c.is_subset(&set_a)); |
| assert!(!set_a.is_superset(&set_c)); |
| assert!(set_c.is_superset(&set_a)); |
| |
| assert!(!set_c.is_disjoint(&set_d)); |
| assert!(!set_d.is_disjoint(&set_c)); |
| assert!(!set_c.is_subset(&set_d)); |
| assert!(!set_d.is_subset(&set_c)); |
| assert!(!set_c.is_superset(&set_d)); |
| assert!(!set_d.is_superset(&set_c)); |
| } |
| |
| #[test] |
| fn iter_comparisons() { |
| use std::iter::empty; |
| |
| fn check<'a, I1, I2>(iter1: I1, iter2: I2) |
| where |
| I1: Iterator<Item = &'a i32>, |
| I2: Iterator<Item = i32>, |
| { |
| assert!(iter1.copied().eq(iter2)); |
| } |
| |
| let set_a: IndexSet<_> = (0..3).collect(); |
| let set_b: IndexSet<_> = (3..6).collect(); |
| let set_c: IndexSet<_> = (0..6).collect(); |
| let set_d: IndexSet<_> = (3..9).rev().collect(); |
| |
| check(set_a.difference(&set_a), empty()); |
| check(set_a.symmetric_difference(&set_a), empty()); |
| check(set_a.intersection(&set_a), 0..3); |
| check(set_a.union(&set_a), 0..3); |
| |
| check(set_a.difference(&set_b), 0..3); |
| check(set_b.difference(&set_a), 3..6); |
| check(set_a.symmetric_difference(&set_b), 0..6); |
| check(set_b.symmetric_difference(&set_a), (3..6).chain(0..3)); |
| check(set_a.intersection(&set_b), empty()); |
| check(set_b.intersection(&set_a), empty()); |
| check(set_a.union(&set_b), 0..6); |
| check(set_b.union(&set_a), (3..6).chain(0..3)); |
| |
| check(set_a.difference(&set_c), empty()); |
| check(set_c.difference(&set_a), 3..6); |
| check(set_a.symmetric_difference(&set_c), 3..6); |
| check(set_c.symmetric_difference(&set_a), 3..6); |
| check(set_a.intersection(&set_c), 0..3); |
| check(set_c.intersection(&set_a), 0..3); |
| check(set_a.union(&set_c), 0..6); |
| check(set_c.union(&set_a), 0..6); |
| |
| check(set_c.difference(&set_d), 0..3); |
| check(set_d.difference(&set_c), (6..9).rev()); |
| check( |
| set_c.symmetric_difference(&set_d), |
| (0..3).chain((6..9).rev()), |
| ); |
| check(set_d.symmetric_difference(&set_c), (6..9).rev().chain(0..3)); |
| check(set_c.intersection(&set_d), 3..6); |
| check(set_d.intersection(&set_c), (3..6).rev()); |
| check(set_c.union(&set_d), (0..6).chain((6..9).rev())); |
| check(set_d.union(&set_c), (3..9).rev().chain(0..3)); |
| } |
| |
| #[test] |
| fn ops() { |
| let empty = IndexSet::<i32>::new(); |
| let set_a: IndexSet<_> = (0..3).collect(); |
| let set_b: IndexSet<_> = (3..6).collect(); |
| let set_c: IndexSet<_> = (0..6).collect(); |
| let set_d: IndexSet<_> = (3..9).rev().collect(); |
| |
| #[allow(clippy::eq_op)] |
| { |
| assert_eq!(&set_a & &set_a, set_a); |
| assert_eq!(&set_a | &set_a, set_a); |
| assert_eq!(&set_a ^ &set_a, empty); |
| assert_eq!(&set_a - &set_a, empty); |
| } |
| |
| assert_eq!(&set_a & &set_b, empty); |
| assert_eq!(&set_b & &set_a, empty); |
| assert_eq!(&set_a | &set_b, set_c); |
| assert_eq!(&set_b | &set_a, set_c); |
| assert_eq!(&set_a ^ &set_b, set_c); |
| assert_eq!(&set_b ^ &set_a, set_c); |
| assert_eq!(&set_a - &set_b, set_a); |
| assert_eq!(&set_b - &set_a, set_b); |
| |
| assert_eq!(&set_a & &set_c, set_a); |
| assert_eq!(&set_c & &set_a, set_a); |
| assert_eq!(&set_a | &set_c, set_c); |
| assert_eq!(&set_c | &set_a, set_c); |
| assert_eq!(&set_a ^ &set_c, set_b); |
| assert_eq!(&set_c ^ &set_a, set_b); |
| assert_eq!(&set_a - &set_c, empty); |
| assert_eq!(&set_c - &set_a, set_b); |
| |
| assert_eq!(&set_c & &set_d, set_b); |
| assert_eq!(&set_d & &set_c, set_b); |
| assert_eq!(&set_c | &set_d, &set_a | &set_d); |
| assert_eq!(&set_d | &set_c, &set_a | &set_d); |
| assert_eq!(&set_c ^ &set_d, &set_a | &(&set_d - &set_b)); |
| assert_eq!(&set_d ^ &set_c, &set_a | &(&set_d - &set_b)); |
| assert_eq!(&set_c - &set_d, set_a); |
| assert_eq!(&set_d - &set_c, &set_d - &set_b); |
| } |
| } |