| //! `IndexMap` is a hash table where the iteration order of the key-value |
| //! pairs is independent of the hash values of the keys. |
| |
| mod core; |
| mod iter; |
| mod slice; |
| |
| #[cfg(feature = "serde")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] |
| pub mod serde_seq; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| pub use self::core::{Entry, OccupiedEntry, VacantEntry}; |
| pub use self::iter::{ |
| Drain, IntoIter, IntoKeys, IntoValues, Iter, IterMut, Keys, Values, ValuesMut, |
| }; |
| pub use self::slice::Slice; |
| pub use crate::mutable_keys::MutableKeys; |
| |
| #[cfg(feature = "rayon")] |
| pub use crate::rayon::map as rayon; |
| |
| use ::core::cmp::Ordering; |
| use ::core::fmt; |
| use ::core::hash::{BuildHasher, Hash, Hasher}; |
| use ::core::ops::{Index, IndexMut, RangeBounds}; |
| use alloc::boxed::Box; |
| use alloc::vec::Vec; |
| |
| #[cfg(feature = "std")] |
| use std::collections::hash_map::RandomState; |
| |
| use self::core::IndexMapCore; |
| use crate::util::{third, try_simplify_range}; |
| use crate::{Bucket, Entries, Equivalent, HashValue, TryReserveError}; |
| |
| /// A hash table where the iteration order of the key-value pairs is independent |
| /// of the hash values of the keys. |
| /// |
| /// The interface is closely compatible with the standard `HashMap`, but also |
| /// has additional features. |
| /// |
| /// # Order |
| /// |
| /// The key-value pairs have a consistent order that is determined by |
| /// the sequence of insertion and removal calls on the map. The order does |
| /// not depend on the keys or the hash function at all. |
| /// |
| /// All iterators traverse the map in *the order*. |
| /// |
| /// The insertion order is preserved, with **notable exceptions** like the |
| /// `.remove()` or `.swap_remove()` methods. Methods such as `.sort_by()` of |
| /// course result in a new order, depending on the sorting order. |
| /// |
| /// # Indices |
| /// |
| /// The key-value pairs are indexed in a compact range without holes in the |
| /// range `0..self.len()`. For example, the method `.get_full` looks up the |
| /// index for a key, and the method `.get_index` looks up the key-value pair by |
| /// index. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// // count the frequency of each letter in a sentence. |
| /// let mut letters = IndexMap::new(); |
| /// for ch in "a short treatise on fungi".chars() { |
| /// *letters.entry(ch).or_insert(0) += 1; |
| /// } |
| /// |
| /// assert_eq!(letters[&'s'], 2); |
| /// assert_eq!(letters[&'t'], 3); |
| /// assert_eq!(letters[&'u'], 1); |
| /// assert_eq!(letters.get(&'y'), None); |
| /// ``` |
| #[cfg(feature = "std")] |
| pub struct IndexMap<K, V, S = RandomState> { |
| pub(crate) core: IndexMapCore<K, V>, |
| hash_builder: S, |
| } |
| #[cfg(not(feature = "std"))] |
| pub struct IndexMap<K, V, S> { |
| pub(crate) core: IndexMapCore<K, V>, |
| hash_builder: S, |
| } |
| |
| impl<K, V, S> Clone for IndexMap<K, V, S> |
| where |
| K: Clone, |
| V: Clone, |
| S: Clone, |
| { |
| fn clone(&self) -> Self { |
| IndexMap { |
| core: self.core.clone(), |
| hash_builder: self.hash_builder.clone(), |
| } |
| } |
| |
| fn clone_from(&mut self, other: &Self) { |
| self.core.clone_from(&other.core); |
| self.hash_builder.clone_from(&other.hash_builder); |
| } |
| } |
| |
| impl<K, V, S> Entries for IndexMap<K, V, S> { |
| type Entry = Bucket<K, V>; |
| |
| #[inline] |
| fn into_entries(self) -> Vec<Self::Entry> { |
| self.core.into_entries() |
| } |
| |
| #[inline] |
| fn as_entries(&self) -> &[Self::Entry] { |
| self.core.as_entries() |
| } |
| |
| #[inline] |
| fn as_entries_mut(&mut self) -> &mut [Self::Entry] { |
| self.core.as_entries_mut() |
| } |
| |
| fn with_entries<F>(&mut self, f: F) |
| where |
| F: FnOnce(&mut [Self::Entry]), |
| { |
| self.core.with_entries(f); |
| } |
| } |
| |
| impl<K, V, S> fmt::Debug for IndexMap<K, V, S> |
| where |
| K: fmt::Debug, |
| V: fmt::Debug, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| if cfg!(not(feature = "test_debug")) { |
| f.debug_map().entries(self.iter()).finish() |
| } else { |
| // Let the inner `IndexMapCore` print all of its details |
| f.debug_struct("IndexMap") |
| .field("core", &self.core) |
| .finish() |
| } |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| impl<K, V> IndexMap<K, V> { |
| /// Create a new map. (Does not allocate.) |
| #[inline] |
| pub fn new() -> Self { |
| Self::with_capacity(0) |
| } |
| |
| /// Create a new map with capacity for `n` key-value pairs. (Does not |
| /// allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| #[inline] |
| pub fn with_capacity(n: usize) -> Self { |
| Self::with_capacity_and_hasher(n, <_>::default()) |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> { |
| /// Create a new map with capacity for `n` key-value pairs. (Does not |
| /// allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| #[inline] |
| pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { |
| if n == 0 { |
| Self::with_hasher(hash_builder) |
| } else { |
| IndexMap { |
| core: IndexMapCore::with_capacity(n), |
| hash_builder, |
| } |
| } |
| } |
| |
| /// Create a new map with `hash_builder`. |
| /// |
| /// This function is `const`, so it |
| /// can be called in `static` contexts. |
| pub const fn with_hasher(hash_builder: S) -> Self { |
| IndexMap { |
| core: IndexMapCore::new(), |
| hash_builder, |
| } |
| } |
| |
| /// Return the number of elements the map can hold without reallocating. |
| /// |
| /// This number is a lower bound; the map might be able to hold more, |
| /// but is guaranteed to be able to hold at least this many. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn capacity(&self) -> usize { |
| self.core.capacity() |
| } |
| |
| /// Return a reference to the map's `BuildHasher`. |
| pub fn hasher(&self) -> &S { |
| &self.hash_builder |
| } |
| |
| /// Return the number of key-value pairs in the map. |
| /// |
| /// Computes in **O(1)** time. |
| #[inline] |
| pub fn len(&self) -> usize { |
| self.core.len() |
| } |
| |
| /// Returns true if the map contains no elements. |
| /// |
| /// Computes in **O(1)** time. |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Return an iterator over the key-value pairs of the map, in their order |
| pub fn iter(&self) -> Iter<'_, K, V> { |
| Iter::new(self.as_entries()) |
| } |
| |
| /// Return an iterator over the key-value pairs of the map, in their order |
| pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { |
| IterMut::new(self.as_entries_mut()) |
| } |
| |
| /// Return an iterator over the keys of the map, in their order |
| pub fn keys(&self) -> Keys<'_, K, V> { |
| Keys::new(self.as_entries()) |
| } |
| |
| /// Return an owning iterator over the keys of the map, in their order |
| pub fn into_keys(self) -> IntoKeys<K, V> { |
| IntoKeys::new(self.into_entries()) |
| } |
| |
| /// Return an iterator over the values of the map, in their order |
| pub fn values(&self) -> Values<'_, K, V> { |
| Values::new(self.as_entries()) |
| } |
| |
| /// Return an iterator over mutable references to the values of the map, |
| /// in their order |
| pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { |
| ValuesMut::new(self.as_entries_mut()) |
| } |
| |
| /// Return an owning iterator over the values of the map, in their order |
| pub fn into_values(self) -> IntoValues<K, V> { |
| IntoValues::new(self.into_entries()) |
| } |
| |
| /// Remove all key-value pairs in the map, while preserving its capacity. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn clear(&mut self) { |
| self.core.clear(); |
| } |
| |
| /// Shortens the map, keeping the first `len` elements and dropping the rest. |
| /// |
| /// If `len` is greater than the map's current length, this has no effect. |
| pub fn truncate(&mut self, len: usize) { |
| self.core.truncate(len); |
| } |
| |
| /// Clears the `IndexMap` in the given index range, returning those |
| /// key-value pairs as a drain iterator. |
| /// |
| /// The range may be any type that implements `RangeBounds<usize>`, |
| /// including all of the `std::ops::Range*` types, or even a tuple pair of |
| /// `Bound` start and end values. To drain the map entirely, use `RangeFull` |
| /// like `map.drain(..)`. |
| /// |
| /// This shifts down all entries following the drained range to fill the |
| /// gap, and keeps the allocated memory for reuse. |
| /// |
| /// ***Panics*** if the starting point is greater than the end point or if |
| /// the end point is greater than the length of the map. |
| pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V> |
| where |
| R: RangeBounds<usize>, |
| { |
| Drain::new(self.core.drain(range)) |
| } |
| |
| /// Splits the collection into two at the given index. |
| /// |
| /// Returns a newly allocated map containing the elements in the range |
| /// `[at, len)`. After the call, the original map will be left containing |
| /// the elements `[0, at)` with its previous capacity unchanged. |
| /// |
| /// ***Panics*** if `at > len`. |
| pub fn split_off(&mut self, at: usize) -> Self |
| where |
| S: Clone, |
| { |
| Self { |
| core: self.core.split_off(at), |
| hash_builder: self.hash_builder.clone(), |
| } |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> |
| where |
| K: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Reserve capacity for `additional` more key-value pairs. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve(&mut self, additional: usize) { |
| self.core.reserve(additional); |
| } |
| |
| /// Reserve capacity for `additional` more key-value pairs, without over-allocating. |
| /// |
| /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid |
| /// frequent re-allocations. However, the underlying data structures may still have internal |
| /// capacity requirements, and the allocator itself may give more space than requested, so this |
| /// cannot be relied upon to be precisely minimal. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve_exact(&mut self, additional: usize) { |
| self.core.reserve_exact(additional); |
| } |
| |
| /// Try to reserve capacity for `additional` more key-value pairs. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.core.try_reserve(additional) |
| } |
| |
| /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating. |
| /// |
| /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid |
| /// frequent re-allocations. However, the underlying data structures may still have internal |
| /// capacity requirements, and the allocator itself may give more space than requested, so this |
| /// cannot be relied upon to be precisely minimal. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.core.try_reserve_exact(additional) |
| } |
| |
| /// Shrink the capacity of the map as much as possible. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to_fit(&mut self) { |
| self.core.shrink_to(0); |
| } |
| |
| /// Shrink the capacity of the map with a lower limit. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to(&mut self, min_capacity: usize) { |
| self.core.shrink_to(min_capacity); |
| } |
| |
| fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue { |
| let mut h = self.hash_builder.build_hasher(); |
| key.hash(&mut h); |
| HashValue(h.finish() as usize) |
| } |
| |
| /// Insert a key-value pair in the map. |
| /// |
| /// If an equivalent key already exists in the map: the key remains and |
| /// retains in its place in the order, its corresponding value is updated |
| /// with `value` and the older value is returned inside `Some(_)`. |
| /// |
| /// If no equivalent key existed in the map: the new key-value pair is |
| /// inserted, last in order, and `None` is returned. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| /// |
| /// See also [`entry`](#method.entry) if you you want to insert *or* modify |
| /// or if you need to get the index of the corresponding key-value pair. |
| pub fn insert(&mut self, key: K, value: V) -> Option<V> { |
| self.insert_full(key, value).1 |
| } |
| |
| /// Insert a key-value pair in the map, and get their index. |
| /// |
| /// If an equivalent key already exists in the map: the key remains and |
| /// retains in its place in the order, its corresponding value is updated |
| /// with `value` and the older value is returned inside `(index, Some(_))`. |
| /// |
| /// If no equivalent key existed in the map: the new key-value pair is |
| /// inserted, last in order, and `(index, None)` is returned. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| /// |
| /// See also [`entry`](#method.entry) if you you want to insert *or* modify |
| /// or if you need to get the index of the corresponding key-value pair. |
| pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) { |
| let hash = self.hash(&key); |
| self.core.insert_full(hash, key, value) |
| } |
| |
| /// Get the given key’s corresponding entry in the map for insertion and/or |
| /// in-place manipulation. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { |
| let hash = self.hash(&key); |
| self.core.entry(hash, key) |
| } |
| |
| /// Return `true` if an equivalent to `key` exists in the map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn contains_key<Q: ?Sized>(&self, key: &Q) -> bool |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.get_index_of(key).is_some() |
| } |
| |
| /// Return a reference to the value stored for `key`, if it is present, |
| /// else `None`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get<Q: ?Sized>(&self, key: &Q) -> Option<&V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &self.as_entries()[i]; |
| Some(&entry.value) |
| } else { |
| None |
| } |
| } |
| |
| /// Return references to the key-value pair stored for `key`, |
| /// if it is present, else `None`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get_key_value<Q: ?Sized>(&self, key: &Q) -> Option<(&K, &V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &self.as_entries()[i]; |
| Some((&entry.key, &entry.value)) |
| } else { |
| None |
| } |
| } |
| |
| /// Return item index, key and value |
| pub fn get_full<Q: ?Sized>(&self, key: &Q) -> Option<(usize, &K, &V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &self.as_entries()[i]; |
| Some((i, &entry.key, &entry.value)) |
| } else { |
| None |
| } |
| } |
| |
| /// Return item index, if it exists in the map |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get_index_of<Q: ?Sized>(&self, key: &Q) -> Option<usize> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if self.is_empty() { |
| None |
| } else { |
| let hash = self.hash(key); |
| self.core.get_index_of(hash, key) |
| } |
| } |
| |
| pub fn get_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<&mut V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &mut self.as_entries_mut()[i]; |
| Some(&mut entry.value) |
| } else { |
| None |
| } |
| } |
| |
| pub fn get_full_mut<Q: ?Sized>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &mut self.as_entries_mut()[i]; |
| Some((i, &entry.key, &mut entry.value)) |
| } else { |
| None |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return |
| /// its value. |
| /// |
| /// **NOTE:** This is equivalent to `.swap_remove(key)`, if you need to |
| /// preserve the order of the keys in the map, use `.shift_remove(key)` |
| /// instead. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.swap_remove(key) |
| } |
| |
| /// Remove and return the key-value pair equivalent to `key`. |
| /// |
| /// **NOTE:** This is equivalent to `.swap_remove_entry(key)`, if you need to |
| /// preserve the order of the keys in the map, use `.shift_remove_entry(key)` |
| /// instead. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.swap_remove_entry(key) |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return |
| /// its value. |
| /// |
| /// Like `Vec::swap_remove`, the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.swap_remove_full(key).map(third) |
| } |
| |
| /// Remove and return the key-value pair equivalent to `key`. |
| /// |
| /// Like `Vec::swap_remove`, the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| match self.swap_remove_full(key) { |
| Some((_, key, value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return it and |
| /// the index it had. |
| /// |
| /// Like `Vec::swap_remove`, the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_full<Q: ?Sized>(&mut self, key: &Q) -> Option<(usize, K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if self.is_empty() { |
| return None; |
| } |
| let hash = self.hash(key); |
| self.core.swap_remove_full(hash, key) |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return |
| /// its value. |
| /// |
| /// Like `Vec::remove`, the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove<Q: ?Sized>(&mut self, key: &Q) -> Option<V> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| self.shift_remove_full(key).map(third) |
| } |
| |
| /// Remove and return the key-value pair equivalent to `key`. |
| /// |
| /// Like `Vec::remove`, the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_entry<Q: ?Sized>(&mut self, key: &Q) -> Option<(K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| match self.shift_remove_full(key) { |
| Some((_, key, value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return it and |
| /// the index it had. |
| /// |
| /// Like `Vec::remove`, the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_full<Q: ?Sized>(&mut self, key: &Q) -> Option<(usize, K, V)> |
| where |
| Q: Hash + Equivalent<K>, |
| { |
| if self.is_empty() { |
| return None; |
| } |
| let hash = self.hash(key); |
| self.core.shift_remove_full(hash, key) |
| } |
| |
| /// Remove the last key-value pair |
| /// |
| /// This preserves the order of the remaining elements. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn pop(&mut self) -> Option<(K, V)> { |
| self.core.pop() |
| } |
| |
| /// Scan through each key-value pair in the map and keep those where the |
| /// closure `keep` returns `true`. |
| /// |
| /// The elements are visited in order, and remaining elements keep their |
| /// order. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn retain<F>(&mut self, mut keep: F) |
| where |
| F: FnMut(&K, &mut V) -> bool, |
| { |
| self.core.retain_in_order(move |k, v| keep(k, v)); |
| } |
| |
| pub(crate) fn retain_mut<F>(&mut self, keep: F) |
| where |
| F: FnMut(&mut K, &mut V) -> bool, |
| { |
| self.core.retain_in_order(keep); |
| } |
| |
| /// Sort the map’s key-value pairs by the default ordering of the keys. |
| /// |
| /// See [`sort_by`](Self::sort_by) for details. |
| pub fn sort_keys(&mut self) |
| where |
| K: Ord, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by(move |a, b| K::cmp(&a.key, &b.key)); |
| }); |
| } |
| |
| /// Sort the map’s key-value pairs in place using the comparison |
| /// function `cmp`. |
| /// |
| /// The comparison function receives two key and value pairs to compare (you |
| /// can sort by keys or values or their combination as needed). |
| /// |
| /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is |
| /// the length of the map and *c* the capacity. The sort is stable. |
| pub fn sort_by<F>(&mut self, mut cmp: F) |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| }); |
| } |
| |
| /// Sort the key-value pairs of the map and return a by-value iterator of |
| /// the key-value pairs with the result. |
| /// |
| /// The sort is stable. |
| pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V> |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| let mut entries = self.into_entries(); |
| entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| IntoIter::new(entries) |
| } |
| |
| /// Sort the map's key-value pairs by the default ordering of the keys, but |
| /// may not preserve the order of equal elements. |
| /// |
| /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. |
| pub fn sort_unstable_keys(&mut self) |
| where |
| K: Ord, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key)); |
| }); |
| } |
| |
| /// Sort the map's key-value pairs in place using the comparison function `cmp`, but |
| /// may not preserve the order of equal elements. |
| /// |
| /// The comparison function receives two key and value pairs to compare (you |
| /// can sort by keys or values or their combination as needed). |
| /// |
| /// Computes in **O(n log n + c)** time where *n* is |
| /// the length of the map and *c* is the capacity. The sort is unstable. |
| pub fn sort_unstable_by<F>(&mut self, mut cmp: F) |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| }); |
| } |
| |
| /// Sort the key-value pairs of the map and return a by-value iterator of |
| /// the key-value pairs with the result. |
| /// |
| /// The sort is unstable. |
| #[inline] |
| pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V> |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| let mut entries = self.into_entries(); |
| entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| IntoIter::new(entries) |
| } |
| |
| /// Sort the map’s key-value pairs in place using a sort-key extraction function. |
| /// |
| /// During sorting, the function is called at most once per entry, by using temporary storage |
| /// to remember the results of its evaluation. The order of calls to the function is |
| /// unspecified and may change between versions of `indexmap` or the standard library. |
| /// |
| /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is |
| /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. |
| pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F) |
| where |
| T: Ord, |
| F: FnMut(&K, &V) -> T, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value)); |
| }); |
| } |
| |
| /// Search over a sorted map for a key. |
| /// |
| /// Returns the position where that key is present, or the position where it can be inserted to |
| /// maintain the sort. See [`slice::binary_search`] for more details. |
| /// |
| /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up |
| /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys. |
| pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize> |
| where |
| K: Ord, |
| { |
| self.as_slice().binary_search_keys(x) |
| } |
| |
| /// Search over a sorted map with a comparator function. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search_by`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[inline] |
| pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> |
| where |
| F: FnMut(&'a K, &'a V) -> Ordering, |
| { |
| self.as_slice().binary_search_by(f) |
| } |
| |
| /// Search over a sorted map with an extraction function. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[inline] |
| pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> |
| where |
| F: FnMut(&'a K, &'a V) -> B, |
| B: Ord, |
| { |
| self.as_slice().binary_search_by_key(b, f) |
| } |
| |
| /// Returns the index of the partition point of a sorted map according to the given predicate |
| /// (the index of the first element of the second partition). |
| /// |
| /// See [`slice::partition_point`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[must_use] |
| pub fn partition_point<P>(&self, pred: P) -> usize |
| where |
| P: FnMut(&K, &V) -> bool, |
| { |
| self.as_slice().partition_point(pred) |
| } |
| |
| /// Reverses the order of the map’s key-value pairs in place. |
| /// |
| /// Computes in **O(n)** time and **O(1)** space. |
| pub fn reverse(&mut self) { |
| self.core.reverse() |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> { |
| /// Returns a slice of all the key-value pairs in the map. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn as_slice(&self) -> &Slice<K, V> { |
| Slice::from_slice(self.as_entries()) |
| } |
| |
| /// Returns a mutable slice of all the key-value pairs in the map. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> { |
| Slice::from_mut_slice(self.as_entries_mut()) |
| } |
| |
| /// Converts into a boxed slice of all the key-value pairs in the map. |
| /// |
| /// Note that this will drop the inner hash table and any excess capacity. |
| pub fn into_boxed_slice(self) -> Box<Slice<K, V>> { |
| Slice::from_boxed(self.into_entries().into_boxed_slice()) |
| } |
| |
| /// Get a key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index(&self, index: usize) -> Option<(&K, &V)> { |
| self.as_entries().get(index).map(Bucket::refs) |
| } |
| |
| /// Get a key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> { |
| self.as_entries_mut().get_mut(index).map(Bucket::ref_mut) |
| } |
| |
| /// Returns a slice of key-value pairs in the given range of indices. |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> { |
| let entries = self.as_entries(); |
| let range = try_simplify_range(range, entries.len())?; |
| entries.get(range).map(Slice::from_slice) |
| } |
| |
| /// Returns a mutable slice of key-value pairs in the given range of indices. |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> { |
| let entries = self.as_entries_mut(); |
| let range = try_simplify_range(range, entries.len())?; |
| entries.get_mut(range).map(Slice::from_mut_slice) |
| } |
| |
| /// Get the first key-value pair |
| /// |
| /// Computes in **O(1)** time. |
| pub fn first(&self) -> Option<(&K, &V)> { |
| self.as_entries().first().map(Bucket::refs) |
| } |
| |
| /// Get the first key-value pair, with mutable access to the value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn first_mut(&mut self) -> Option<(&K, &mut V)> { |
| self.as_entries_mut().first_mut().map(Bucket::ref_mut) |
| } |
| |
| /// Get the last key-value pair |
| /// |
| /// Computes in **O(1)** time. |
| pub fn last(&self) -> Option<(&K, &V)> { |
| self.as_entries().last().map(Bucket::refs) |
| } |
| |
| /// Get the last key-value pair, with mutable access to the value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn last_mut(&mut self) -> Option<(&K, &mut V)> { |
| self.as_entries_mut().last_mut().map(Bucket::ref_mut) |
| } |
| |
| /// Remove the key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like `Vec::swap_remove`, the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> { |
| self.core.swap_remove_index(index) |
| } |
| |
| /// Remove the key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like `Vec::remove`, the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> { |
| self.core.shift_remove_index(index) |
| } |
| |
| /// Moves the position of a key-value pair from one index to another |
| /// by shifting all other pairs in-between. |
| /// |
| /// * If `from < to`, the other pairs will shift down while the targeted pair moves up. |
| /// * If `from > to`, the other pairs will shift up while the targeted pair moves down. |
| /// |
| /// ***Panics*** if `from` or `to` are out of bounds. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn move_index(&mut self, from: usize, to: usize) { |
| self.core.move_index(from, to) |
| } |
| |
| /// Swaps the position of two key-value pairs in the map. |
| /// |
| /// ***Panics*** if `a` or `b` are out of bounds. |
| pub fn swap_indices(&mut self, a: usize, b: usize) { |
| self.core.swap_indices(a, b) |
| } |
| } |
| |
| /// Access `IndexMap` values corresponding to a key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_uppercase()); |
| /// } |
| /// assert_eq!(map["lorem"], "LOREM"); |
| /// assert_eq!(map["ipsum"], "IPSUM"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// println!("{:?}", map["bar"]); // panics! |
| /// ``` |
| impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S> |
| where |
| Q: Hash + Equivalent<K>, |
| K: Hash + Eq, |
| S: BuildHasher, |
| { |
| type Output = V; |
| |
| /// Returns a reference to the value corresponding to the supplied `key`. |
| /// |
| /// ***Panics*** if `key` is not present in the map. |
| fn index(&self, key: &Q) -> &V { |
| self.get(key).expect("IndexMap: key not found") |
| } |
| } |
| |
| /// Access `IndexMap` values corresponding to a key. |
| /// |
| /// Mutable indexing allows changing / updating values of key-value |
| /// pairs that are already present. |
| /// |
| /// You can **not** insert new pairs with index syntax, use `.insert()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_string()); |
| /// } |
| /// let lorem = &mut map["lorem"]; |
| /// assert_eq!(lorem, "Lorem"); |
| /// lorem.retain(char::is_lowercase); |
| /// assert_eq!(map["lorem"], "orem"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// map["bar"] = 1; // panics! |
| /// ``` |
| impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S> |
| where |
| Q: Hash + Equivalent<K>, |
| K: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Returns a mutable reference to the value corresponding to the supplied `key`. |
| /// |
| /// ***Panics*** if `key` is not present in the map. |
| fn index_mut(&mut self, key: &Q) -> &mut V { |
| self.get_mut(key).expect("IndexMap: key not found") |
| } |
| } |
| |
| /// Access `IndexMap` values at indexed positions. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_uppercase()); |
| /// } |
| /// assert_eq!(map[0], "LOREM"); |
| /// assert_eq!(map[1], "IPSUM"); |
| /// map.reverse(); |
| /// assert_eq!(map[0], "AMET"); |
| /// assert_eq!(map[1], "SIT"); |
| /// map.sort_keys(); |
| /// assert_eq!(map[0], "AMET"); |
| /// assert_eq!(map[1], "DOLOR"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// println!("{:?}", map[10]); // panics! |
| /// ``` |
| impl<K, V, S> Index<usize> for IndexMap<K, V, S> { |
| type Output = V; |
| |
| /// Returns a reference to the value at the supplied `index`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| fn index(&self, index: usize) -> &V { |
| self.get_index(index) |
| .expect("IndexMap: index out of bounds") |
| .1 |
| } |
| } |
| |
| /// Access `IndexMap` values at indexed positions. |
| /// |
| /// Mutable indexing allows changing / updating indexed values |
| /// that are already present. |
| /// |
| /// You can **not** insert new values with index syntax, use `.insert()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_string()); |
| /// } |
| /// let lorem = &mut map[0]; |
| /// assert_eq!(lorem, "Lorem"); |
| /// lorem.retain(char::is_lowercase); |
| /// assert_eq!(map["lorem"], "orem"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// map[10] = 1; // panics! |
| /// ``` |
| impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> { |
| /// Returns a mutable reference to the value at the supplied `index`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| fn index_mut(&mut self, index: usize) -> &mut V { |
| self.get_index_mut(index) |
| .expect("IndexMap: index out of bounds") |
| .1 |
| } |
| } |
| |
| impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S> |
| where |
| K: Hash + Eq, |
| S: BuildHasher + Default, |
| { |
| /// Create an `IndexMap` from the sequence of key-value pairs in the |
| /// iterable. |
| /// |
| /// `from_iter` uses the same logic as `extend`. See |
| /// [`extend`](#method.extend) for more details. |
| fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self { |
| let iter = iterable.into_iter(); |
| let (low, _) = iter.size_hint(); |
| let mut map = Self::with_capacity_and_hasher(low, <_>::default()); |
| map.extend(iter); |
| map |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState> |
| where |
| K: Hash + Eq, |
| { |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let map1 = IndexMap::from([(1, 2), (3, 4)]); |
| /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into(); |
| /// assert_eq!(map1, map2); |
| /// ``` |
| fn from(arr: [(K, V); N]) -> Self { |
| Self::from_iter(arr) |
| } |
| } |
| |
| impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S> |
| where |
| K: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Extend the map with all key-value pairs in the iterable. |
| /// |
| /// This is equivalent to calling [`insert`](#method.insert) for each of |
| /// them in order, which means that for keys that already existed |
| /// in the map, their value is updated but it keeps the existing order. |
| /// |
| /// New keys are inserted in the order they appear in the sequence. If |
| /// equivalents of a key occur more than once, the last corresponding value |
| /// prevails. |
| fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) { |
| // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.) |
| // Keys may be already present or show multiple times in the iterator. |
| // Reserve the entire hint lower bound if the map is empty. |
| // Otherwise reserve half the hint (rounded up), so the map |
| // will only resize twice in the worst case. |
| let iter = iterable.into_iter(); |
| let reserve = if self.is_empty() { |
| iter.size_hint().0 |
| } else { |
| (iter.size_hint().0 + 1) / 2 |
| }; |
| self.reserve(reserve); |
| iter.for_each(move |(k, v)| { |
| self.insert(k, v); |
| }); |
| } |
| } |
| |
| impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S> |
| where |
| K: Hash + Eq + Copy, |
| V: Copy, |
| S: BuildHasher, |
| { |
| /// Extend the map with all key-value pairs in the iterable. |
| /// |
| /// See the first extend method for more details. |
| fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) { |
| self.extend(iterable.into_iter().map(|(&key, &value)| (key, value))); |
| } |
| } |
| |
| impl<K, V, S> Default for IndexMap<K, V, S> |
| where |
| S: Default, |
| { |
| /// Return an empty `IndexMap` |
| fn default() -> Self { |
| Self::with_capacity_and_hasher(0, S::default()) |
| } |
| } |
| |
| impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1> |
| where |
| K: Hash + Eq, |
| V1: PartialEq<V2>, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool { |
| if self.len() != other.len() { |
| return false; |
| } |
| |
| self.iter() |
| .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) |
| } |
| } |
| |
| impl<K, V, S> Eq for IndexMap<K, V, S> |
| where |
| K: Eq + Hash, |
| V: Eq, |
| S: BuildHasher, |
| { |
| } |