| //! A hash set implemented using [`IndexMap`] |
| |
| mod iter; |
| mod mutable; |
| mod slice; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| pub use self::iter::{ |
| Difference, Drain, Intersection, IntoIter, Iter, Splice, SymmetricDifference, Union, |
| }; |
| pub use self::mutable::MutableValues; |
| pub use self::slice::Slice; |
| |
| #[cfg(feature = "rayon")] |
| pub use crate::rayon::set as rayon; |
| use crate::TryReserveError; |
| |
| #[cfg(feature = "std")] |
| use std::collections::hash_map::RandomState; |
| |
| use crate::util::try_simplify_range; |
| use alloc::boxed::Box; |
| use alloc::vec::Vec; |
| use core::cmp::Ordering; |
| use core::fmt; |
| use core::hash::{BuildHasher, Hash}; |
| use core::ops::{BitAnd, BitOr, BitXor, Index, RangeBounds, Sub}; |
| |
| use super::{Entries, Equivalent, IndexMap}; |
| |
| type Bucket<T> = super::Bucket<T, ()>; |
| |
| /// A hash set where the iteration order of the values is independent of their |
| /// hash values. |
| /// |
| /// The interface is closely compatible with the standard |
| /// [`HashSet`][std::collections::HashSet], |
| /// but also has additional features. |
| /// |
| /// # Order |
| /// |
| /// The values have a consistent order that is determined by the sequence of |
| /// insertion and removal calls on the set. The order does not depend on the |
| /// values or the hash function at all. Note that insertion order and value |
| /// are not affected if a re-insertion is attempted once an element is |
| /// already present. |
| /// |
| /// All iterators traverse the set *in order*. Set operation iterators like |
| /// [`IndexSet::union`] produce a concatenated order, as do their matching "bitwise" |
| /// operators. See their documentation for specifics. |
| /// |
| /// The insertion order is preserved, with **notable exceptions** like the |
| /// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. |
| /// Methods such as [`.sort_by()`][Self::sort_by] of |
| /// course result in a new order, depending on the sorting order. |
| /// |
| /// # Indices |
| /// |
| /// The values are indexed in a compact range without holes in the range |
| /// `0..self.len()`. For example, the method `.get_full` looks up the index for |
| /// a value, and the method `.get_index` looks up the value by index. |
| /// |
| /// # Complexity |
| /// |
| /// Internally, `IndexSet<T, S>` just holds an [`IndexMap<T, (), S>`](IndexMap). Thus the complexity |
| /// of the two are the same for most methods. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexSet; |
| /// |
| /// // Collects which letters appear in a sentence. |
| /// let letters: IndexSet<_> = "a short treatise on fungi".chars().collect(); |
| /// |
| /// assert!(letters.contains(&'s')); |
| /// assert!(letters.contains(&'t')); |
| /// assert!(letters.contains(&'u')); |
| /// assert!(!letters.contains(&'y')); |
| /// ``` |
| #[cfg(feature = "std")] |
| pub struct IndexSet<T, S = RandomState> { |
| pub(crate) map: IndexMap<T, (), S>, |
| } |
| #[cfg(not(feature = "std"))] |
| pub struct IndexSet<T, S> { |
| pub(crate) map: IndexMap<T, (), S>, |
| } |
| |
| impl<T, S> Clone for IndexSet<T, S> |
| where |
| T: Clone, |
| S: Clone, |
| { |
| fn clone(&self) -> Self { |
| IndexSet { |
| map: self.map.clone(), |
| } |
| } |
| |
| fn clone_from(&mut self, other: &Self) { |
| self.map.clone_from(&other.map); |
| } |
| } |
| |
| impl<T, S> Entries for IndexSet<T, S> { |
| type Entry = Bucket<T>; |
| |
| #[inline] |
| fn into_entries(self) -> Vec<Self::Entry> { |
| self.map.into_entries() |
| } |
| |
| #[inline] |
| fn as_entries(&self) -> &[Self::Entry] { |
| self.map.as_entries() |
| } |
| |
| #[inline] |
| fn as_entries_mut(&mut self) -> &mut [Self::Entry] { |
| self.map.as_entries_mut() |
| } |
| |
| fn with_entries<F>(&mut self, f: F) |
| where |
| F: FnOnce(&mut [Self::Entry]), |
| { |
| self.map.with_entries(f); |
| } |
| } |
| |
| impl<T, S> fmt::Debug for IndexSet<T, S> |
| where |
| T: fmt::Debug, |
| { |
| #[cfg(not(feature = "test_debug"))] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_set().entries(self.iter()).finish() |
| } |
| |
| #[cfg(feature = "test_debug")] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // Let the inner `IndexMap` print all of its details |
| f.debug_struct("IndexSet").field("map", &self.map).finish() |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| impl<T> IndexSet<T> { |
| /// Create a new set. (Does not allocate.) |
| pub fn new() -> Self { |
| IndexSet { |
| map: IndexMap::new(), |
| } |
| } |
| |
| /// Create a new set with capacity for `n` elements. |
| /// (Does not allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| pub fn with_capacity(n: usize) -> Self { |
| IndexSet { |
| map: IndexMap::with_capacity(n), |
| } |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> { |
| /// Create a new set with capacity for `n` elements. |
| /// (Does not allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { |
| IndexSet { |
| map: IndexMap::with_capacity_and_hasher(n, hash_builder), |
| } |
| } |
| |
| /// Create a new set with `hash_builder`. |
| /// |
| /// This function is `const`, so it |
| /// can be called in `static` contexts. |
| pub const fn with_hasher(hash_builder: S) -> Self { |
| IndexSet { |
| map: IndexMap::with_hasher(hash_builder), |
| } |
| } |
| |
| /// Return the number of elements the set can hold without reallocating. |
| /// |
| /// This number is a lower bound; the set might be able to hold more, |
| /// but is guaranteed to be able to hold at least this many. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn capacity(&self) -> usize { |
| self.map.capacity() |
| } |
| |
| /// Return a reference to the set's `BuildHasher`. |
| pub fn hasher(&self) -> &S { |
| self.map.hasher() |
| } |
| |
| /// Return the number of elements in the set. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn len(&self) -> usize { |
| self.map.len() |
| } |
| |
| /// Returns true if the set contains no elements. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn is_empty(&self) -> bool { |
| self.map.is_empty() |
| } |
| |
| /// Return an iterator over the values of the set, in their order |
| pub fn iter(&self) -> Iter<'_, T> { |
| Iter::new(self.as_entries()) |
| } |
| |
| /// Remove all elements in the set, while preserving its capacity. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn clear(&mut self) { |
| self.map.clear(); |
| } |
| |
| /// Shortens the set, keeping the first `len` elements and dropping the rest. |
| /// |
| /// If `len` is greater than the set's current length, this has no effect. |
| pub fn truncate(&mut self, len: usize) { |
| self.map.truncate(len); |
| } |
| |
| /// Clears the `IndexSet` in the given index range, returning those values |
| /// as a drain iterator. |
| /// |
| /// The range may be any type that implements [`RangeBounds<usize>`], |
| /// including all of the `std::ops::Range*` types, or even a tuple pair of |
| /// `Bound` start and end values. To drain the set entirely, use `RangeFull` |
| /// like `set.drain(..)`. |
| /// |
| /// This shifts down all entries following the drained range to fill the |
| /// gap, and keeps the allocated memory for reuse. |
| /// |
| /// ***Panics*** if the starting point is greater than the end point or if |
| /// the end point is greater than the length of the set. |
| pub fn drain<R>(&mut self, range: R) -> Drain<'_, T> |
| where |
| R: RangeBounds<usize>, |
| { |
| Drain::new(self.map.core.drain(range)) |
| } |
| |
| /// Splits the collection into two at the given index. |
| /// |
| /// Returns a newly allocated set containing the elements in the range |
| /// `[at, len)`. After the call, the original set will be left containing |
| /// the elements `[0, at)` with its previous capacity unchanged. |
| /// |
| /// ***Panics*** if `at > len`. |
| pub fn split_off(&mut self, at: usize) -> Self |
| where |
| S: Clone, |
| { |
| Self { |
| map: self.map.split_off(at), |
| } |
| } |
| |
| /// Reserve capacity for `additional` more values. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve(&mut self, additional: usize) { |
| self.map.reserve(additional); |
| } |
| |
| /// Reserve capacity for `additional` more values, without over-allocating. |
| /// |
| /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid |
| /// frequent re-allocations. However, the underlying data structures may still have internal |
| /// capacity requirements, and the allocator itself may give more space than requested, so this |
| /// cannot be relied upon to be precisely minimal. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve_exact(&mut self, additional: usize) { |
| self.map.reserve_exact(additional); |
| } |
| |
| /// Try to reserve capacity for `additional` more values. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.map.try_reserve(additional) |
| } |
| |
| /// Try to reserve capacity for `additional` more values, without over-allocating. |
| /// |
| /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid |
| /// frequent re-allocations. However, the underlying data structures may still have internal |
| /// capacity requirements, and the allocator itself may give more space than requested, so this |
| /// cannot be relied upon to be precisely minimal. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.map.try_reserve_exact(additional) |
| } |
| |
| /// Shrink the capacity of the set as much as possible. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to_fit(&mut self) { |
| self.map.shrink_to_fit(); |
| } |
| |
| /// Shrink the capacity of the set with a lower limit. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to(&mut self, min_capacity: usize) { |
| self.map.shrink_to(min_capacity); |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> |
| where |
| T: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Insert the value into the set. |
| /// |
| /// If an equivalent item already exists in the set, it returns |
| /// `false` leaving the original value in the set and without |
| /// altering its insertion order. Otherwise, it inserts the new |
| /// item and returns `true`. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| pub fn insert(&mut self, value: T) -> bool { |
| self.map.insert(value, ()).is_none() |
| } |
| |
| /// Insert the value into the set, and get its index. |
| /// |
| /// If an equivalent item already exists in the set, it returns |
| /// the index of the existing item and `false`, leaving the |
| /// original value in the set and without altering its insertion |
| /// order. Otherwise, it inserts the new item and returns the index |
| /// of the inserted item and `true`. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| pub fn insert_full(&mut self, value: T) -> (usize, bool) { |
| let (index, existing) = self.map.insert_full(value, ()); |
| (index, existing.is_none()) |
| } |
| |
| /// Insert the value into the set at its ordered position among sorted values. |
| /// |
| /// This is equivalent to finding the position with |
| /// [`binary_search`][Self::binary_search], and if needed calling |
| /// [`shift_insert`][Self::shift_insert] for a new value. |
| /// |
| /// If the sorted item is found in the set, it returns the index of that |
| /// existing item and `false`, without any change. Otherwise, it inserts the |
| /// new item and returns its sorted index and `true`. |
| /// |
| /// If the existing items are **not** already sorted, then the insertion |
| /// index is unspecified (like [`slice::binary_search`]), but the value |
| /// is moved to or inserted at that position regardless. |
| /// |
| /// Computes in **O(n)** time (average). Instead of repeating calls to |
| /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] |
| /// or [`extend`][Self::extend] and only call [`sort`][Self::sort] or |
| /// [`sort_unstable`][Self::sort_unstable] once. |
| pub fn insert_sorted(&mut self, value: T) -> (usize, bool) |
| where |
| T: Ord, |
| { |
| let (index, existing) = self.map.insert_sorted(value, ()); |
| (index, existing.is_none()) |
| } |
| |
| /// Insert the value into the set at the given index. |
| /// |
| /// If an equivalent item already exists in the set, it returns |
| /// `false` leaving the original value in the set, but moving it to |
| /// the new position in the set. Otherwise, it inserts the new |
| /// item at the given index and returns `true`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_insert(&mut self, index: usize, value: T) -> bool { |
| self.map.shift_insert(index, value, ()).is_none() |
| } |
| |
| /// Adds a value to the set, replacing the existing value, if any, that is |
| /// equal to the given one, without altering its insertion order. Returns |
| /// the replaced value. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn replace(&mut self, value: T) -> Option<T> { |
| self.replace_full(value).1 |
| } |
| |
| /// Adds a value to the set, replacing the existing value, if any, that is |
| /// equal to the given one, without altering its insertion order. Returns |
| /// the index of the item and its replaced value. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn replace_full(&mut self, value: T) -> (usize, Option<T>) { |
| let hash = self.map.hash(&value); |
| match self.map.core.replace_full(hash, value, ()) { |
| (i, Some((replaced, ()))) => (i, Some(replaced)), |
| (i, None) => (i, None), |
| } |
| } |
| |
| /// Return an iterator over the values that are in `self` but not `other`. |
| /// |
| /// Values are produced in the same order that they appear in `self`. |
| pub fn difference<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Difference<'a, T, S2> |
| where |
| S2: BuildHasher, |
| { |
| Difference::new(self, other) |
| } |
| |
| /// Return an iterator over the values that are in `self` or `other`, |
| /// but not in both. |
| /// |
| /// Values from `self` are produced in their original order, followed by |
| /// values from `other` in their original order. |
| pub fn symmetric_difference<'a, S2>( |
| &'a self, |
| other: &'a IndexSet<T, S2>, |
| ) -> SymmetricDifference<'a, T, S, S2> |
| where |
| S2: BuildHasher, |
| { |
| SymmetricDifference::new(self, other) |
| } |
| |
| /// Return an iterator over the values that are in both `self` and `other`. |
| /// |
| /// Values are produced in the same order that they appear in `self`. |
| pub fn intersection<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Intersection<'a, T, S2> |
| where |
| S2: BuildHasher, |
| { |
| Intersection::new(self, other) |
| } |
| |
| /// Return an iterator over all values that are in `self` or `other`. |
| /// |
| /// Values from `self` are produced in their original order, followed by |
| /// values that are unique to `other` in their original order. |
| pub fn union<'a, S2>(&'a self, other: &'a IndexSet<T, S2>) -> Union<'a, T, S> |
| where |
| S2: BuildHasher, |
| { |
| Union::new(self, other) |
| } |
| |
| /// Creates a splicing iterator that replaces the specified range in the set |
| /// with the given `replace_with` iterator and yields the removed items. |
| /// `replace_with` does not need to be the same length as `range`. |
| /// |
| /// The `range` is removed even if the iterator is not consumed until the |
| /// end. It is unspecified how many elements are removed from the set if the |
| /// `Splice` value is leaked. |
| /// |
| /// The input iterator `replace_with` is only consumed when the `Splice` |
| /// value is dropped. If a value from the iterator matches an existing entry |
| /// in the set (outside of `range`), then the original will be unchanged. |
| /// Otherwise, the new value will be inserted in the replaced `range`. |
| /// |
| /// ***Panics*** if the starting point is greater than the end point or if |
| /// the end point is greater than the length of the set. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexSet; |
| /// |
| /// let mut set = IndexSet::from([0, 1, 2, 3, 4]); |
| /// let new = [5, 4, 3, 2, 1]; |
| /// let removed: Vec<_> = set.splice(2..4, new).collect(); |
| /// |
| /// // 1 and 4 kept their positions, while 5, 3, and 2 were newly inserted. |
| /// assert!(set.into_iter().eq([0, 1, 5, 3, 2, 4])); |
| /// assert_eq!(removed, &[2, 3]); |
| /// ``` |
| pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, T, S> |
| where |
| R: RangeBounds<usize>, |
| I: IntoIterator<Item = T>, |
| { |
| Splice::new(self, range, replace_with.into_iter()) |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> |
| where |
| S: BuildHasher, |
| { |
| /// Return `true` if an equivalent to `value` exists in the set. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn contains<Q>(&self, value: &Q) -> bool |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.contains_key(value) |
| } |
| |
| /// Return a reference to the value stored in the set, if it is present, |
| /// else `None`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get<Q>(&self, value: &Q) -> Option<&T> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.get_key_value(value).map(|(x, &())| x) |
| } |
| |
| /// Return item index and value |
| pub fn get_full<Q>(&self, value: &Q) -> Option<(usize, &T)> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.get_full(value).map(|(i, x, &())| (i, x)) |
| } |
| |
| /// Return item index, if it exists in the set |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get_index_of<Q>(&self, value: &Q) -> Option<usize> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.get_index_of(value) |
| } |
| |
| /// Remove the value from the set, and return `true` if it was present. |
| /// |
| /// **NOTE:** This is equivalent to [`.swap_remove(value)`][Self::swap_remove], replacing this |
| /// value's position with the last element, and it is deprecated in favor of calling that |
| /// explicitly. If you need to preserve the relative order of the values in the set, use |
| /// [`.shift_remove(value)`][Self::shift_remove] instead. |
| #[deprecated(note = "`remove` disrupts the set order -- \ |
| use `swap_remove` or `shift_remove` for explicit behavior.")] |
| pub fn remove<Q>(&mut self, value: &Q) -> bool |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.swap_remove(value) |
| } |
| |
| /// Remove the value from the set, and return `true` if it was present. |
| /// |
| /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `false` if `value` was not in the set. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove<Q>(&mut self, value: &Q) -> bool |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.swap_remove(value).is_some() |
| } |
| |
| /// Remove the value from the set, and return `true` if it was present. |
| /// |
| /// Like [`Vec::remove`], the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `false` if `value` was not in the set. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove<Q>(&mut self, value: &Q) -> bool |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.shift_remove(value).is_some() |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the |
| /// given one. |
| /// |
| /// **NOTE:** This is equivalent to [`.swap_take(value)`][Self::swap_take], replacing this |
| /// value's position with the last element, and it is deprecated in favor of calling that |
| /// explicitly. If you need to preserve the relative order of the values in the set, use |
| /// [`.shift_take(value)`][Self::shift_take] instead. |
| #[deprecated(note = "`take` disrupts the set order -- \ |
| use `swap_take` or `shift_take` for explicit behavior.")] |
| pub fn take<Q>(&mut self, value: &Q) -> Option<T> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.swap_take(value) |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the |
| /// given one. |
| /// |
| /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_take<Q>(&mut self, value: &Q) -> Option<T> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.swap_remove_entry(value).map(|(x, ())| x) |
| } |
| |
| /// Removes and returns the value in the set, if any, that is equal to the |
| /// given one. |
| /// |
| /// Like [`Vec::remove`], the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_take<Q>(&mut self, value: &Q) -> Option<T> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.shift_remove_entry(value).map(|(x, ())| x) |
| } |
| |
| /// Remove the value from the set return it and the index it had. |
| /// |
| /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| pub fn swap_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.swap_remove_full(value).map(|(i, x, ())| (i, x)) |
| } |
| |
| /// Remove the value from the set return it and the index it had. |
| /// |
| /// Like [`Vec::remove`], the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `value` was not in the set. |
| pub fn shift_remove_full<Q>(&mut self, value: &Q) -> Option<(usize, T)> |
| where |
| Q: ?Sized + Hash + Equivalent<T>, |
| { |
| self.map.shift_remove_full(value).map(|(i, x, ())| (i, x)) |
| } |
| } |
| |
| impl<T, S> IndexSet<T, S> { |
| /// Remove the last value |
| /// |
| /// This preserves the order of the remaining elements. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn pop(&mut self) -> Option<T> { |
| self.map.pop().map(|(x, ())| x) |
| } |
| |
| /// Scan through each value in the set and keep those where the |
| /// closure `keep` returns `true`. |
| /// |
| /// The elements are visited in order, and remaining elements keep their |
| /// order. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn retain<F>(&mut self, mut keep: F) |
| where |
| F: FnMut(&T) -> bool, |
| { |
| self.map.retain(move |x, &mut ()| keep(x)) |
| } |
| |
| /// Sort the set’s values by their default ordering. |
| /// |
| /// This is a stable sort -- but equivalent values should not normally coexist in |
| /// a set at all, so [`sort_unstable`][Self::sort_unstable] is preferred |
| /// because it is generally faster and doesn't allocate auxiliary memory. |
| /// |
| /// See [`sort_by`](Self::sort_by) for details. |
| pub fn sort(&mut self) |
| where |
| T: Ord, |
| { |
| self.map.sort_keys() |
| } |
| |
| /// Sort the set’s values in place using the comparison function `cmp`. |
| /// |
| /// Computes in **O(n log n)** time and **O(n)** space. The sort is stable. |
| pub fn sort_by<F>(&mut self, mut cmp: F) |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| self.map.sort_by(move |a, _, b, _| cmp(a, b)); |
| } |
| |
| /// Sort the values of the set and return a by-value iterator of |
| /// the values with the result. |
| /// |
| /// The sort is stable. |
| pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<T> |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| let mut entries = self.into_entries(); |
| entries.sort_by(move |a, b| cmp(&a.key, &b.key)); |
| IntoIter::new(entries) |
| } |
| |
| /// Sort the set's values by their default ordering. |
| /// |
| /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. |
| pub fn sort_unstable(&mut self) |
| where |
| T: Ord, |
| { |
| self.map.sort_unstable_keys() |
| } |
| |
| /// Sort the set's values in place using the comparison function `cmp`. |
| /// |
| /// Computes in **O(n log n)** time. The sort is unstable. |
| pub fn sort_unstable_by<F>(&mut self, mut cmp: F) |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| self.map.sort_unstable_by(move |a, _, b, _| cmp(a, b)) |
| } |
| |
| /// Sort the values of the set and return a by-value iterator of |
| /// the values with the result. |
| pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<T> |
| where |
| F: FnMut(&T, &T) -> Ordering, |
| { |
| let mut entries = self.into_entries(); |
| entries.sort_unstable_by(move |a, b| cmp(&a.key, &b.key)); |
| IntoIter::new(entries) |
| } |
| |
| /// Sort the set’s values in place using a key extraction function. |
| /// |
| /// During sorting, the function is called at most once per entry, by using temporary storage |
| /// to remember the results of its evaluation. The order of calls to the function is |
| /// unspecified and may change between versions of `indexmap` or the standard library. |
| /// |
| /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is |
| /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. |
| pub fn sort_by_cached_key<K, F>(&mut self, mut sort_key: F) |
| where |
| K: Ord, |
| F: FnMut(&T) -> K, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by_cached_key(move |a| sort_key(&a.key)); |
| }); |
| } |
| |
| /// Search over a sorted set for a value. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search`] for more details. |
| /// |
| /// Computes in **O(log(n))** time, which is notably less scalable than looking the value up |
| /// using [`get_index_of`][IndexSet::get_index_of], but this can also position missing values. |
| pub fn binary_search(&self, x: &T) -> Result<usize, usize> |
| where |
| T: Ord, |
| { |
| self.as_slice().binary_search(x) |
| } |
| |
| /// Search over a sorted set with a comparator function. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search_by`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[inline] |
| pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> |
| where |
| F: FnMut(&'a T) -> Ordering, |
| { |
| self.as_slice().binary_search_by(f) |
| } |
| |
| /// Search over a sorted set with an extraction function. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[inline] |
| pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> |
| where |
| F: FnMut(&'a T) -> B, |
| B: Ord, |
| { |
| self.as_slice().binary_search_by_key(b, f) |
| } |
| |
| /// Returns the index of the partition point of a sorted set according to the given predicate |
| /// (the index of the first element of the second partition). |
| /// |
| /// See [`slice::partition_point`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[must_use] |
| pub fn partition_point<P>(&self, pred: P) -> usize |
| where |
| P: FnMut(&T) -> bool, |
| { |
| self.as_slice().partition_point(pred) |
| } |
| |
| /// Reverses the order of the set’s values in place. |
| /// |
| /// Computes in **O(n)** time and **O(1)** space. |
| pub fn reverse(&mut self) { |
| self.map.reverse() |
| } |
| |
| /// Returns a slice of all the values in the set. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn as_slice(&self) -> &Slice<T> { |
| Slice::from_slice(self.as_entries()) |
| } |
| |
| /// Converts into a boxed slice of all the values in the set. |
| /// |
| /// Note that this will drop the inner hash table and any excess capacity. |
| pub fn into_boxed_slice(self) -> Box<Slice<T>> { |
| Slice::from_boxed(self.into_entries().into_boxed_slice()) |
| } |
| |
| /// Get a value by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index(&self, index: usize) -> Option<&T> { |
| self.as_entries().get(index).map(Bucket::key_ref) |
| } |
| |
| /// Returns a slice of values in the given range of indices. |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<T>> { |
| let entries = self.as_entries(); |
| let range = try_simplify_range(range, entries.len())?; |
| entries.get(range).map(Slice::from_slice) |
| } |
| |
| /// Get the first value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn first(&self) -> Option<&T> { |
| self.as_entries().first().map(Bucket::key_ref) |
| } |
| |
| /// Get the last value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn last(&self) -> Option<&T> { |
| self.as_entries().last().map(Bucket::key_ref) |
| } |
| |
| /// Remove the value by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like [`Vec::swap_remove`], the value is removed by swapping it with the |
| /// last element of the set and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_index(&mut self, index: usize) -> Option<T> { |
| self.map.swap_remove_index(index).map(|(x, ())| x) |
| } |
| |
| /// Remove the value by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like [`Vec::remove`], the value is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_index(&mut self, index: usize) -> Option<T> { |
| self.map.shift_remove_index(index).map(|(x, ())| x) |
| } |
| |
| /// Moves the position of a value from one index to another |
| /// by shifting all other values in-between. |
| /// |
| /// * If `from < to`, the other values will shift down while the targeted value moves up. |
| /// * If `from > to`, the other values will shift up while the targeted value moves down. |
| /// |
| /// ***Panics*** if `from` or `to` are out of bounds. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn move_index(&mut self, from: usize, to: usize) { |
| self.map.move_index(from, to) |
| } |
| |
| /// Swaps the position of two values in the set. |
| /// |
| /// ***Panics*** if `a` or `b` are out of bounds. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_indices(&mut self, a: usize, b: usize) { |
| self.map.swap_indices(a, b) |
| } |
| } |
| |
| /// Access [`IndexSet`] values at indexed positions. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexSet; |
| /// |
| /// let mut set = IndexSet::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// set.insert(word.to_string()); |
| /// } |
| /// assert_eq!(set[0], "Lorem"); |
| /// assert_eq!(set[1], "ipsum"); |
| /// set.reverse(); |
| /// assert_eq!(set[0], "amet"); |
| /// assert_eq!(set[1], "sit"); |
| /// set.sort(); |
| /// assert_eq!(set[0], "Lorem"); |
| /// assert_eq!(set[1], "amet"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexSet; |
| /// |
| /// let mut set = IndexSet::new(); |
| /// set.insert("foo"); |
| /// println!("{:?}", set[10]); // panics! |
| /// ``` |
| impl<T, S> Index<usize> for IndexSet<T, S> { |
| type Output = T; |
| |
| /// Returns a reference to the value at the supplied `index`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| fn index(&self, index: usize) -> &T { |
| self.get_index(index) |
| .expect("IndexSet: index out of bounds") |
| } |
| } |
| |
| impl<T, S> FromIterator<T> for IndexSet<T, S> |
| where |
| T: Hash + Eq, |
| S: BuildHasher + Default, |
| { |
| fn from_iter<I: IntoIterator<Item = T>>(iterable: I) -> Self { |
| let iter = iterable.into_iter().map(|x| (x, ())); |
| IndexSet { |
| map: IndexMap::from_iter(iter), |
| } |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| impl<T, const N: usize> From<[T; N]> for IndexSet<T, RandomState> |
| where |
| T: Eq + Hash, |
| { |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexSet; |
| /// |
| /// let set1 = IndexSet::from([1, 2, 3, 4]); |
| /// let set2: IndexSet<_> = [1, 2, 3, 4].into(); |
| /// assert_eq!(set1, set2); |
| /// ``` |
| fn from(arr: [T; N]) -> Self { |
| Self::from_iter(arr) |
| } |
| } |
| |
| impl<T, S> Extend<T> for IndexSet<T, S> |
| where |
| T: Hash + Eq, |
| S: BuildHasher, |
| { |
| fn extend<I: IntoIterator<Item = T>>(&mut self, iterable: I) { |
| let iter = iterable.into_iter().map(|x| (x, ())); |
| self.map.extend(iter); |
| } |
| } |
| |
| impl<'a, T, S> Extend<&'a T> for IndexSet<T, S> |
| where |
| T: Hash + Eq + Copy + 'a, |
| S: BuildHasher, |
| { |
| fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iterable: I) { |
| let iter = iterable.into_iter().copied(); |
| self.extend(iter); |
| } |
| } |
| |
| impl<T, S> Default for IndexSet<T, S> |
| where |
| S: Default, |
| { |
| /// Return an empty [`IndexSet`] |
| fn default() -> Self { |
| IndexSet { |
| map: IndexMap::default(), |
| } |
| } |
| } |
| |
| impl<T, S1, S2> PartialEq<IndexSet<T, S2>> for IndexSet<T, S1> |
| where |
| T: Hash + Eq, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| fn eq(&self, other: &IndexSet<T, S2>) -> bool { |
| self.len() == other.len() && self.is_subset(other) |
| } |
| } |
| |
| impl<T, S> Eq for IndexSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| } |
| |
| impl<T, S> IndexSet<T, S> |
| where |
| T: Eq + Hash, |
| S: BuildHasher, |
| { |
| /// Returns `true` if `self` has no elements in common with `other`. |
| pub fn is_disjoint<S2>(&self, other: &IndexSet<T, S2>) -> bool |
| where |
| S2: BuildHasher, |
| { |
| if self.len() <= other.len() { |
| self.iter().all(move |value| !other.contains(value)) |
| } else { |
| other.iter().all(move |value| !self.contains(value)) |
| } |
| } |
| |
| /// Returns `true` if all elements of `self` are contained in `other`. |
| pub fn is_subset<S2>(&self, other: &IndexSet<T, S2>) -> bool |
| where |
| S2: BuildHasher, |
| { |
| self.len() <= other.len() && self.iter().all(move |value| other.contains(value)) |
| } |
| |
| /// Returns `true` if all elements of `other` are contained in `self`. |
| pub fn is_superset<S2>(&self, other: &IndexSet<T, S2>) -> bool |
| where |
| S2: BuildHasher, |
| { |
| other.is_subset(self) |
| } |
| } |
| |
| impl<T, S1, S2> BitAnd<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set intersection, cloned into a new set. |
| /// |
| /// Values are collected in the same order that they appear in `self`. |
| fn bitand(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.intersection(other).cloned().collect() |
| } |
| } |
| |
| impl<T, S1, S2> BitOr<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set union, cloned into a new set. |
| /// |
| /// Values from `self` are collected in their original order, followed by |
| /// values that are unique to `other` in their original order. |
| fn bitor(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.union(other).cloned().collect() |
| } |
| } |
| |
| impl<T, S1, S2> BitXor<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set symmetric-difference, cloned into a new set. |
| /// |
| /// Values from `self` are collected in their original order, followed by |
| /// values from `other` in their original order. |
| fn bitxor(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.symmetric_difference(other).cloned().collect() |
| } |
| } |
| |
| impl<T, S1, S2> Sub<&IndexSet<T, S2>> for &IndexSet<T, S1> |
| where |
| T: Eq + Hash + Clone, |
| S1: BuildHasher + Default, |
| S2: BuildHasher, |
| { |
| type Output = IndexSet<T, S1>; |
| |
| /// Returns the set difference, cloned into a new set. |
| /// |
| /// Values are collected in the same order that they appear in `self`. |
| fn sub(self, other: &IndexSet<T, S2>) -> Self::Output { |
| self.difference(other).cloned().collect() |
| } |
| } |