| //! [`IndexMap`] is a hash table where the iteration order of the key-value |
| //! pairs is independent of the hash values of the keys. |
| |
| mod core; |
| mod iter; |
| mod mutable; |
| mod slice; |
| |
| #[cfg(feature = "serde")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "serde")))] |
| pub mod serde_seq; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| pub use self::core::raw_entry_v1::{self, RawEntryApiV1}; |
| pub use self::core::{Entry, IndexedEntry, OccupiedEntry, VacantEntry}; |
| pub use self::iter::{ |
| Drain, IntoIter, IntoKeys, IntoValues, Iter, IterMut, IterMut2, Keys, Splice, Values, ValuesMut, |
| }; |
| pub use self::mutable::MutableEntryKey; |
| pub use self::mutable::MutableKeys; |
| pub use self::slice::Slice; |
| |
| #[cfg(feature = "rayon")] |
| pub use crate::rayon::map as rayon; |
| |
| use ::core::cmp::Ordering; |
| use ::core::fmt; |
| use ::core::hash::{BuildHasher, Hash, Hasher}; |
| use ::core::mem; |
| use ::core::ops::{Index, IndexMut, RangeBounds}; |
| use alloc::boxed::Box; |
| use alloc::vec::Vec; |
| |
| #[cfg(feature = "std")] |
| use std::collections::hash_map::RandomState; |
| |
| use self::core::IndexMapCore; |
| use crate::util::{third, try_simplify_range}; |
| use crate::{Bucket, Entries, Equivalent, HashValue, TryReserveError}; |
| |
| /// A hash table where the iteration order of the key-value pairs is independent |
| /// of the hash values of the keys. |
| /// |
| /// The interface is closely compatible with the standard |
| /// [`HashMap`][std::collections::HashMap], |
| /// but also has additional features. |
| /// |
| /// # Order |
| /// |
| /// The key-value pairs have a consistent order that is determined by |
| /// the sequence of insertion and removal calls on the map. The order does |
| /// not depend on the keys or the hash function at all. |
| /// |
| /// All iterators traverse the map in *the order*. |
| /// |
| /// The insertion order is preserved, with **notable exceptions** like the |
| /// [`.remove()`][Self::remove] or [`.swap_remove()`][Self::swap_remove] methods. |
| /// Methods such as [`.sort_by()`][Self::sort_by] of |
| /// course result in a new order, depending on the sorting order. |
| /// |
| /// # Indices |
| /// |
| /// The key-value pairs are indexed in a compact range without holes in the |
| /// range `0..self.len()`. For example, the method `.get_full` looks up the |
| /// index for a key, and the method `.get_index` looks up the key-value pair by |
| /// index. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// // count the frequency of each letter in a sentence. |
| /// let mut letters = IndexMap::new(); |
| /// for ch in "a short treatise on fungi".chars() { |
| /// *letters.entry(ch).or_insert(0) += 1; |
| /// } |
| /// |
| /// assert_eq!(letters[&'s'], 2); |
| /// assert_eq!(letters[&'t'], 3); |
| /// assert_eq!(letters[&'u'], 1); |
| /// assert_eq!(letters.get(&'y'), None); |
| /// ``` |
| #[cfg(feature = "std")] |
| pub struct IndexMap<K, V, S = RandomState> { |
| pub(crate) core: IndexMapCore<K, V>, |
| hash_builder: S, |
| } |
| #[cfg(not(feature = "std"))] |
| pub struct IndexMap<K, V, S> { |
| pub(crate) core: IndexMapCore<K, V>, |
| hash_builder: S, |
| } |
| |
| impl<K, V, S> Clone for IndexMap<K, V, S> |
| where |
| K: Clone, |
| V: Clone, |
| S: Clone, |
| { |
| fn clone(&self) -> Self { |
| IndexMap { |
| core: self.core.clone(), |
| hash_builder: self.hash_builder.clone(), |
| } |
| } |
| |
| fn clone_from(&mut self, other: &Self) { |
| self.core.clone_from(&other.core); |
| self.hash_builder.clone_from(&other.hash_builder); |
| } |
| } |
| |
| impl<K, V, S> Entries for IndexMap<K, V, S> { |
| type Entry = Bucket<K, V>; |
| |
| #[inline] |
| fn into_entries(self) -> Vec<Self::Entry> { |
| self.core.into_entries() |
| } |
| |
| #[inline] |
| fn as_entries(&self) -> &[Self::Entry] { |
| self.core.as_entries() |
| } |
| |
| #[inline] |
| fn as_entries_mut(&mut self) -> &mut [Self::Entry] { |
| self.core.as_entries_mut() |
| } |
| |
| fn with_entries<F>(&mut self, f: F) |
| where |
| F: FnOnce(&mut [Self::Entry]), |
| { |
| self.core.with_entries(f); |
| } |
| } |
| |
| impl<K, V, S> fmt::Debug for IndexMap<K, V, S> |
| where |
| K: fmt::Debug, |
| V: fmt::Debug, |
| { |
| #[cfg(not(feature = "test_debug"))] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| f.debug_map().entries(self.iter()).finish() |
| } |
| |
| #[cfg(feature = "test_debug")] |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| // Let the inner `IndexMapCore` print all of its details |
| f.debug_struct("IndexMap") |
| .field("core", &self.core) |
| .finish() |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| impl<K, V> IndexMap<K, V> { |
| /// Create a new map. (Does not allocate.) |
| #[inline] |
| pub fn new() -> Self { |
| Self::with_capacity(0) |
| } |
| |
| /// Create a new map with capacity for `n` key-value pairs. (Does not |
| /// allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| #[inline] |
| pub fn with_capacity(n: usize) -> Self { |
| Self::with_capacity_and_hasher(n, <_>::default()) |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> { |
| /// Create a new map with capacity for `n` key-value pairs. (Does not |
| /// allocate if `n` is zero.) |
| /// |
| /// Computes in **O(n)** time. |
| #[inline] |
| pub fn with_capacity_and_hasher(n: usize, hash_builder: S) -> Self { |
| if n == 0 { |
| Self::with_hasher(hash_builder) |
| } else { |
| IndexMap { |
| core: IndexMapCore::with_capacity(n), |
| hash_builder, |
| } |
| } |
| } |
| |
| /// Create a new map with `hash_builder`. |
| /// |
| /// This function is `const`, so it |
| /// can be called in `static` contexts. |
| pub const fn with_hasher(hash_builder: S) -> Self { |
| IndexMap { |
| core: IndexMapCore::new(), |
| hash_builder, |
| } |
| } |
| |
| /// Return the number of elements the map can hold without reallocating. |
| /// |
| /// This number is a lower bound; the map might be able to hold more, |
| /// but is guaranteed to be able to hold at least this many. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn capacity(&self) -> usize { |
| self.core.capacity() |
| } |
| |
| /// Return a reference to the map's `BuildHasher`. |
| pub fn hasher(&self) -> &S { |
| &self.hash_builder |
| } |
| |
| /// Return the number of key-value pairs in the map. |
| /// |
| /// Computes in **O(1)** time. |
| #[inline] |
| pub fn len(&self) -> usize { |
| self.core.len() |
| } |
| |
| /// Returns true if the map contains no elements. |
| /// |
| /// Computes in **O(1)** time. |
| #[inline] |
| pub fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| |
| /// Return an iterator over the key-value pairs of the map, in their order |
| pub fn iter(&self) -> Iter<'_, K, V> { |
| Iter::new(self.as_entries()) |
| } |
| |
| /// Return an iterator over the key-value pairs of the map, in their order |
| pub fn iter_mut(&mut self) -> IterMut<'_, K, V> { |
| IterMut::new(self.as_entries_mut()) |
| } |
| |
| /// Return an iterator over the keys of the map, in their order |
| pub fn keys(&self) -> Keys<'_, K, V> { |
| Keys::new(self.as_entries()) |
| } |
| |
| /// Return an owning iterator over the keys of the map, in their order |
| pub fn into_keys(self) -> IntoKeys<K, V> { |
| IntoKeys::new(self.into_entries()) |
| } |
| |
| /// Return an iterator over the values of the map, in their order |
| pub fn values(&self) -> Values<'_, K, V> { |
| Values::new(self.as_entries()) |
| } |
| |
| /// Return an iterator over mutable references to the values of the map, |
| /// in their order |
| pub fn values_mut(&mut self) -> ValuesMut<'_, K, V> { |
| ValuesMut::new(self.as_entries_mut()) |
| } |
| |
| /// Return an owning iterator over the values of the map, in their order |
| pub fn into_values(self) -> IntoValues<K, V> { |
| IntoValues::new(self.into_entries()) |
| } |
| |
| /// Remove all key-value pairs in the map, while preserving its capacity. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn clear(&mut self) { |
| self.core.clear(); |
| } |
| |
| /// Shortens the map, keeping the first `len` elements and dropping the rest. |
| /// |
| /// If `len` is greater than the map's current length, this has no effect. |
| pub fn truncate(&mut self, len: usize) { |
| self.core.truncate(len); |
| } |
| |
| /// Clears the `IndexMap` in the given index range, returning those |
| /// key-value pairs as a drain iterator. |
| /// |
| /// The range may be any type that implements [`RangeBounds<usize>`], |
| /// including all of the `std::ops::Range*` types, or even a tuple pair of |
| /// `Bound` start and end values. To drain the map entirely, use `RangeFull` |
| /// like `map.drain(..)`. |
| /// |
| /// This shifts down all entries following the drained range to fill the |
| /// gap, and keeps the allocated memory for reuse. |
| /// |
| /// ***Panics*** if the starting point is greater than the end point or if |
| /// the end point is greater than the length of the map. |
| pub fn drain<R>(&mut self, range: R) -> Drain<'_, K, V> |
| where |
| R: RangeBounds<usize>, |
| { |
| Drain::new(self.core.drain(range)) |
| } |
| |
| /// Splits the collection into two at the given index. |
| /// |
| /// Returns a newly allocated map containing the elements in the range |
| /// `[at, len)`. After the call, the original map will be left containing |
| /// the elements `[0, at)` with its previous capacity unchanged. |
| /// |
| /// ***Panics*** if `at > len`. |
| pub fn split_off(&mut self, at: usize) -> Self |
| where |
| S: Clone, |
| { |
| Self { |
| core: self.core.split_off(at), |
| hash_builder: self.hash_builder.clone(), |
| } |
| } |
| |
| /// Reserve capacity for `additional` more key-value pairs. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve(&mut self, additional: usize) { |
| self.core.reserve(additional); |
| } |
| |
| /// Reserve capacity for `additional` more key-value pairs, without over-allocating. |
| /// |
| /// Unlike `reserve`, this does not deliberately over-allocate the entry capacity to avoid |
| /// frequent re-allocations. However, the underlying data structures may still have internal |
| /// capacity requirements, and the allocator itself may give more space than requested, so this |
| /// cannot be relied upon to be precisely minimal. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn reserve_exact(&mut self, additional: usize) { |
| self.core.reserve_exact(additional); |
| } |
| |
| /// Try to reserve capacity for `additional` more key-value pairs. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.core.try_reserve(additional) |
| } |
| |
| /// Try to reserve capacity for `additional` more key-value pairs, without over-allocating. |
| /// |
| /// Unlike `try_reserve`, this does not deliberately over-allocate the entry capacity to avoid |
| /// frequent re-allocations. However, the underlying data structures may still have internal |
| /// capacity requirements, and the allocator itself may give more space than requested, so this |
| /// cannot be relied upon to be precisely minimal. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { |
| self.core.try_reserve_exact(additional) |
| } |
| |
| /// Shrink the capacity of the map as much as possible. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to_fit(&mut self) { |
| self.core.shrink_to(0); |
| } |
| |
| /// Shrink the capacity of the map with a lower limit. |
| /// |
| /// Computes in **O(n)** time. |
| pub fn shrink_to(&mut self, min_capacity: usize) { |
| self.core.shrink_to(min_capacity); |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> |
| where |
| K: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Insert a key-value pair in the map. |
| /// |
| /// If an equivalent key already exists in the map: the key remains and |
| /// retains in its place in the order, its corresponding value is updated |
| /// with `value`, and the older value is returned inside `Some(_)`. |
| /// |
| /// If no equivalent key existed in the map: the new key-value pair is |
| /// inserted, last in order, and `None` is returned. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| /// |
| /// See also [`entry`][Self::entry] if you want to insert *or* modify, |
| /// or [`insert_full`][Self::insert_full] if you need to get the index of |
| /// the corresponding key-value pair. |
| pub fn insert(&mut self, key: K, value: V) -> Option<V> { |
| self.insert_full(key, value).1 |
| } |
| |
| /// Insert a key-value pair in the map, and get their index. |
| /// |
| /// If an equivalent key already exists in the map: the key remains and |
| /// retains in its place in the order, its corresponding value is updated |
| /// with `value`, and the older value is returned inside `(index, Some(_))`. |
| /// |
| /// If no equivalent key existed in the map: the new key-value pair is |
| /// inserted, last in order, and `(index, None)` is returned. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| /// |
| /// See also [`entry`][Self::entry] if you want to insert *or* modify. |
| pub fn insert_full(&mut self, key: K, value: V) -> (usize, Option<V>) { |
| let hash = self.hash(&key); |
| self.core.insert_full(hash, key, value) |
| } |
| |
| /// Insert a key-value pair in the map at its ordered position among sorted keys. |
| /// |
| /// This is equivalent to finding the position with |
| /// [`binary_search_keys`][Self::binary_search_keys], then either updating |
| /// it or calling [`insert_before`][Self::insert_before] for a new key. |
| /// |
| /// If the sorted key is found in the map, its corresponding value is |
| /// updated with `value`, and the older value is returned inside |
| /// `(index, Some(_))`. Otherwise, the new key-value pair is inserted at |
| /// the sorted position, and `(index, None)` is returned. |
| /// |
| /// If the existing keys are **not** already sorted, then the insertion |
| /// index is unspecified (like [`slice::binary_search`]), but the key-value |
| /// pair is moved to or inserted at that position regardless. |
| /// |
| /// Computes in **O(n)** time (average). Instead of repeating calls to |
| /// `insert_sorted`, it may be faster to call batched [`insert`][Self::insert] |
| /// or [`extend`][Self::extend] and only call [`sort_keys`][Self::sort_keys] |
| /// or [`sort_unstable_keys`][Self::sort_unstable_keys] once. |
| pub fn insert_sorted(&mut self, key: K, value: V) -> (usize, Option<V>) |
| where |
| K: Ord, |
| { |
| match self.binary_search_keys(&key) { |
| Ok(i) => (i, Some(mem::replace(&mut self[i], value))), |
| Err(i) => self.insert_before(i, key, value), |
| } |
| } |
| |
| /// Insert a key-value pair in the map before the entry at the given index, or at the end. |
| /// |
| /// If an equivalent key already exists in the map: the key remains and |
| /// is moved to the new position in the map, its corresponding value is updated |
| /// with `value`, and the older value is returned inside `Some(_)`. The returned index |
| /// will either be the given index or one less, depending on how the entry moved. |
| /// (See [`shift_insert`](Self::shift_insert) for different behavior here.) |
| /// |
| /// If no equivalent key existed in the map: the new key-value pair is |
| /// inserted exactly at the given index, and `None` is returned. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| /// Valid indices are `0..=map.len()` (inclusive). |
| /// |
| /// Computes in **O(n)** time (average). |
| /// |
| /// See also [`entry`][Self::entry] if you want to insert *or* modify, |
| /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect(); |
| /// |
| /// // The new key '*' goes exactly at the given index. |
| /// assert_eq!(map.get_index_of(&'*'), None); |
| /// assert_eq!(map.insert_before(10, '*', ()), (10, None)); |
| /// assert_eq!(map.get_index_of(&'*'), Some(10)); |
| /// |
| /// // Moving the key 'a' up will shift others down, so this moves *before* 10 to index 9. |
| /// assert_eq!(map.insert_before(10, 'a', ()), (9, Some(()))); |
| /// assert_eq!(map.get_index_of(&'a'), Some(9)); |
| /// assert_eq!(map.get_index_of(&'*'), Some(10)); |
| /// |
| /// // Moving the key 'z' down will shift others up, so this moves to exactly 10. |
| /// assert_eq!(map.insert_before(10, 'z', ()), (10, Some(()))); |
| /// assert_eq!(map.get_index_of(&'z'), Some(10)); |
| /// assert_eq!(map.get_index_of(&'*'), Some(11)); |
| /// |
| /// // Moving or inserting before the endpoint is also valid. |
| /// assert_eq!(map.len(), 27); |
| /// assert_eq!(map.insert_before(map.len(), '*', ()), (26, Some(()))); |
| /// assert_eq!(map.get_index_of(&'*'), Some(26)); |
| /// assert_eq!(map.insert_before(map.len(), '+', ()), (27, None)); |
| /// assert_eq!(map.get_index_of(&'+'), Some(27)); |
| /// assert_eq!(map.len(), 28); |
| /// ``` |
| pub fn insert_before(&mut self, mut index: usize, key: K, value: V) -> (usize, Option<V>) { |
| assert!(index <= self.len(), "index out of bounds"); |
| match self.entry(key) { |
| Entry::Occupied(mut entry) => { |
| if index > entry.index() { |
| // Some entries will shift down when this one moves up, |
| // so "insert before index" becomes "move to index - 1", |
| // keeping the entry at the original index unmoved. |
| index -= 1; |
| } |
| let old = mem::replace(entry.get_mut(), value); |
| entry.move_index(index); |
| (index, Some(old)) |
| } |
| Entry::Vacant(entry) => { |
| entry.shift_insert(index, value); |
| (index, None) |
| } |
| } |
| } |
| |
| /// Insert a key-value pair in the map at the given index. |
| /// |
| /// If an equivalent key already exists in the map: the key remains and |
| /// is moved to the given index in the map, its corresponding value is updated |
| /// with `value`, and the older value is returned inside `Some(_)`. |
| /// Note that existing entries **cannot** be moved to `index == map.len()`! |
| /// (See [`insert_before`](Self::insert_before) for different behavior here.) |
| /// |
| /// If no equivalent key existed in the map: the new key-value pair is |
| /// inserted at the given index, and `None` is returned. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| /// Valid indices are `0..map.len()` (exclusive) when moving an existing entry, or |
| /// `0..=map.len()` (inclusive) when inserting a new key. |
| /// |
| /// Computes in **O(n)** time (average). |
| /// |
| /// See also [`entry`][Self::entry] if you want to insert *or* modify, |
| /// perhaps only using the index for new entries with [`VacantEntry::shift_insert`]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect(); |
| /// |
| /// // The new key '*' goes exactly at the given index. |
| /// assert_eq!(map.get_index_of(&'*'), None); |
| /// assert_eq!(map.shift_insert(10, '*', ()), None); |
| /// assert_eq!(map.get_index_of(&'*'), Some(10)); |
| /// |
| /// // Moving the key 'a' up to 10 will shift others down, including the '*' that was at 10. |
| /// assert_eq!(map.shift_insert(10, 'a', ()), Some(())); |
| /// assert_eq!(map.get_index_of(&'a'), Some(10)); |
| /// assert_eq!(map.get_index_of(&'*'), Some(9)); |
| /// |
| /// // Moving the key 'z' down to 9 will shift others up, including the '*' that was at 9. |
| /// assert_eq!(map.shift_insert(9, 'z', ()), Some(())); |
| /// assert_eq!(map.get_index_of(&'z'), Some(9)); |
| /// assert_eq!(map.get_index_of(&'*'), Some(10)); |
| /// |
| /// // Existing keys can move to len-1 at most, but new keys can insert at the endpoint. |
| /// assert_eq!(map.len(), 27); |
| /// assert_eq!(map.shift_insert(map.len() - 1, '*', ()), Some(())); |
| /// assert_eq!(map.get_index_of(&'*'), Some(26)); |
| /// assert_eq!(map.shift_insert(map.len(), '+', ()), None); |
| /// assert_eq!(map.get_index_of(&'+'), Some(27)); |
| /// assert_eq!(map.len(), 28); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// let mut map: IndexMap<char, ()> = ('a'..='z').map(|c| (c, ())).collect(); |
| /// |
| /// // This is an invalid index for moving an existing key! |
| /// map.shift_insert(map.len(), 'a', ()); |
| /// ``` |
| pub fn shift_insert(&mut self, index: usize, key: K, value: V) -> Option<V> { |
| let len = self.len(); |
| match self.entry(key) { |
| Entry::Occupied(mut entry) => { |
| assert!(index < len, "index out of bounds"); |
| let old = mem::replace(entry.get_mut(), value); |
| entry.move_index(index); |
| Some(old) |
| } |
| Entry::Vacant(entry) => { |
| assert!(index <= len, "index out of bounds"); |
| entry.shift_insert(index, value); |
| None |
| } |
| } |
| } |
| |
| /// Get the given key’s corresponding entry in the map for insertion and/or |
| /// in-place manipulation. |
| /// |
| /// Computes in **O(1)** time (amortized average). |
| pub fn entry(&mut self, key: K) -> Entry<'_, K, V> { |
| let hash = self.hash(&key); |
| self.core.entry(hash, key) |
| } |
| |
| /// Creates a splicing iterator that replaces the specified range in the map |
| /// with the given `replace_with` key-value iterator and yields the removed |
| /// items. `replace_with` does not need to be the same length as `range`. |
| /// |
| /// The `range` is removed even if the iterator is not consumed until the |
| /// end. It is unspecified how many elements are removed from the map if the |
| /// `Splice` value is leaked. |
| /// |
| /// The input iterator `replace_with` is only consumed when the `Splice` |
| /// value is dropped. If a key from the iterator matches an existing entry |
| /// in the map (outside of `range`), then the value will be updated in that |
| /// position. Otherwise, the new key-value pair will be inserted in the |
| /// replaced `range`. |
| /// |
| /// ***Panics*** if the starting point is greater than the end point or if |
| /// the end point is greater than the length of the map. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::from([(0, '_'), (1, 'a'), (2, 'b'), (3, 'c'), (4, 'd')]); |
| /// let new = [(5, 'E'), (4, 'D'), (3, 'C'), (2, 'B'), (1, 'A')]; |
| /// let removed: Vec<_> = map.splice(2..4, new).collect(); |
| /// |
| /// // 1 and 4 got new values, while 5, 3, and 2 were newly inserted. |
| /// assert!(map.into_iter().eq([(0, '_'), (1, 'A'), (5, 'E'), (3, 'C'), (2, 'B'), (4, 'D')])); |
| /// assert_eq!(removed, &[(2, 'b'), (3, 'c')]); |
| /// ``` |
| pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, K, V, S> |
| where |
| R: RangeBounds<usize>, |
| I: IntoIterator<Item = (K, V)>, |
| { |
| Splice::new(self, range, replace_with.into_iter()) |
| } |
| |
| /// Moves all key-value pairs from `other` into `self`, leaving `other` empty. |
| /// |
| /// This is equivalent to calling [`insert`][Self::insert] for each |
| /// key-value pair from `other` in order, which means that for keys that |
| /// already exist in `self`, their value is updated in the current position. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// // Note: Key (3) is present in both maps. |
| /// let mut a = IndexMap::from([(3, "c"), (2, "b"), (1, "a")]); |
| /// let mut b = IndexMap::from([(3, "d"), (4, "e"), (5, "f")]); |
| /// let old_capacity = b.capacity(); |
| /// |
| /// a.append(&mut b); |
| /// |
| /// assert_eq!(a.len(), 5); |
| /// assert_eq!(b.len(), 0); |
| /// assert_eq!(b.capacity(), old_capacity); |
| /// |
| /// assert!(a.keys().eq(&[3, 2, 1, 4, 5])); |
| /// assert_eq!(a[&3], "d"); // "c" was overwritten. |
| /// ``` |
| pub fn append<S2>(&mut self, other: &mut IndexMap<K, V, S2>) { |
| self.extend(other.drain(..)); |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> |
| where |
| S: BuildHasher, |
| { |
| pub(crate) fn hash<Q: ?Sized + Hash>(&self, key: &Q) -> HashValue { |
| let mut h = self.hash_builder.build_hasher(); |
| key.hash(&mut h); |
| HashValue(h.finish() as usize) |
| } |
| |
| /// Return `true` if an equivalent to `key` exists in the map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn contains_key<Q>(&self, key: &Q) -> bool |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| self.get_index_of(key).is_some() |
| } |
| |
| /// Return a reference to the value stored for `key`, if it is present, |
| /// else `None`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get<Q>(&self, key: &Q) -> Option<&V> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &self.as_entries()[i]; |
| Some(&entry.value) |
| } else { |
| None |
| } |
| } |
| |
| /// Return references to the key-value pair stored for `key`, |
| /// if it is present, else `None`. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get_key_value<Q>(&self, key: &Q) -> Option<(&K, &V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &self.as_entries()[i]; |
| Some((&entry.key, &entry.value)) |
| } else { |
| None |
| } |
| } |
| |
| /// Return item index, key and value |
| pub fn get_full<Q>(&self, key: &Q) -> Option<(usize, &K, &V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &self.as_entries()[i]; |
| Some((i, &entry.key, &entry.value)) |
| } else { |
| None |
| } |
| } |
| |
| /// Return item index, if it exists in the map |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn get_index_of<Q>(&self, key: &Q) -> Option<usize> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| match self.as_entries() { |
| [] => None, |
| [x] => key.equivalent(&x.key).then_some(0), |
| _ => { |
| let hash = self.hash(key); |
| self.core.get_index_of(hash, key) |
| } |
| } |
| } |
| |
| pub fn get_mut<Q>(&mut self, key: &Q) -> Option<&mut V> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &mut self.as_entries_mut()[i]; |
| Some(&mut entry.value) |
| } else { |
| None |
| } |
| } |
| |
| pub fn get_full_mut<Q>(&mut self, key: &Q) -> Option<(usize, &K, &mut V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| if let Some(i) = self.get_index_of(key) { |
| let entry = &mut self.as_entries_mut()[i]; |
| Some((i, &entry.key, &mut entry.value)) |
| } else { |
| None |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return |
| /// its value. |
| /// |
| /// **NOTE:** This is equivalent to [`.swap_remove(key)`][Self::swap_remove], replacing this |
| /// entry's position with the last element, and it is deprecated in favor of calling that |
| /// explicitly. If you need to preserve the relative order of the keys in the map, use |
| /// [`.shift_remove(key)`][Self::shift_remove] instead. |
| #[deprecated(note = "`remove` disrupts the map order -- \ |
| use `swap_remove` or `shift_remove` for explicit behavior.")] |
| pub fn remove<Q>(&mut self, key: &Q) -> Option<V> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| self.swap_remove(key) |
| } |
| |
| /// Remove and return the key-value pair equivalent to `key`. |
| /// |
| /// **NOTE:** This is equivalent to [`.swap_remove_entry(key)`][Self::swap_remove_entry], |
| /// replacing this entry's position with the last element, and it is deprecated in favor of |
| /// calling that explicitly. If you need to preserve the relative order of the keys in the map, |
| /// use [`.shift_remove_entry(key)`][Self::shift_remove_entry] instead. |
| #[deprecated(note = "`remove_entry` disrupts the map order -- \ |
| use `swap_remove_entry` or `shift_remove_entry` for explicit behavior.")] |
| pub fn remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| self.swap_remove_entry(key) |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return |
| /// its value. |
| /// |
| /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove<Q>(&mut self, key: &Q) -> Option<V> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| self.swap_remove_full(key).map(third) |
| } |
| |
| /// Remove and return the key-value pair equivalent to `key`. |
| /// |
| /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| match self.swap_remove_full(key) { |
| Some((_, key, value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return it and |
| /// the index it had. |
| /// |
| /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| match self.as_entries() { |
| [x] if key.equivalent(&x.key) => { |
| let (k, v) = self.core.pop()?; |
| Some((0, k, v)) |
| } |
| [_] | [] => None, |
| _ => { |
| let hash = self.hash(key); |
| self.core.swap_remove_full(hash, key) |
| } |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return |
| /// its value. |
| /// |
| /// Like [`Vec::remove`], the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove<Q>(&mut self, key: &Q) -> Option<V> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| self.shift_remove_full(key).map(third) |
| } |
| |
| /// Remove and return the key-value pair equivalent to `key`. |
| /// |
| /// Like [`Vec::remove`], the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_entry<Q>(&mut self, key: &Q) -> Option<(K, V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| match self.shift_remove_full(key) { |
| Some((_, key, value)) => Some((key, value)), |
| None => None, |
| } |
| } |
| |
| /// Remove the key-value pair equivalent to `key` and return it and |
| /// the index it had. |
| /// |
| /// Like [`Vec::remove`], the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Return `None` if `key` is not in map. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_full<Q>(&mut self, key: &Q) -> Option<(usize, K, V)> |
| where |
| Q: ?Sized + Hash + Equivalent<K>, |
| { |
| match self.as_entries() { |
| [x] if key.equivalent(&x.key) => { |
| let (k, v) = self.core.pop()?; |
| Some((0, k, v)) |
| } |
| [_] | [] => None, |
| _ => { |
| let hash = self.hash(key); |
| self.core.shift_remove_full(hash, key) |
| } |
| } |
| } |
| } |
| |
| impl<K, V, S> IndexMap<K, V, S> { |
| /// Remove the last key-value pair |
| /// |
| /// This preserves the order of the remaining elements. |
| /// |
| /// Computes in **O(1)** time (average). |
| #[doc(alias = "pop_last")] // like `BTreeMap` |
| pub fn pop(&mut self) -> Option<(K, V)> { |
| self.core.pop() |
| } |
| |
| /// Scan through each key-value pair in the map and keep those where the |
| /// closure `keep` returns `true`. |
| /// |
| /// The elements are visited in order, and remaining elements keep their |
| /// order. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn retain<F>(&mut self, mut keep: F) |
| where |
| F: FnMut(&K, &mut V) -> bool, |
| { |
| self.core.retain_in_order(move |k, v| keep(k, v)); |
| } |
| |
| /// Sort the map’s key-value pairs by the default ordering of the keys. |
| /// |
| /// This is a stable sort -- but equivalent keys should not normally coexist in |
| /// a map at all, so [`sort_unstable_keys`][Self::sort_unstable_keys] is preferred |
| /// because it is generally faster and doesn't allocate auxiliary memory. |
| /// |
| /// See [`sort_by`](Self::sort_by) for details. |
| pub fn sort_keys(&mut self) |
| where |
| K: Ord, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by(move |a, b| K::cmp(&a.key, &b.key)); |
| }); |
| } |
| |
| /// Sort the map’s key-value pairs in place using the comparison |
| /// function `cmp`. |
| /// |
| /// The comparison function receives two key and value pairs to compare (you |
| /// can sort by keys or values or their combination as needed). |
| /// |
| /// Computes in **O(n log n + c)** time and **O(n)** space where *n* is |
| /// the length of the map and *c* the capacity. The sort is stable. |
| pub fn sort_by<F>(&mut self, mut cmp: F) |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| }); |
| } |
| |
| /// Sort the key-value pairs of the map and return a by-value iterator of |
| /// the key-value pairs with the result. |
| /// |
| /// The sort is stable. |
| pub fn sorted_by<F>(self, mut cmp: F) -> IntoIter<K, V> |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| let mut entries = self.into_entries(); |
| entries.sort_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| IntoIter::new(entries) |
| } |
| |
| /// Sort the map's key-value pairs by the default ordering of the keys, but |
| /// may not preserve the order of equal elements. |
| /// |
| /// See [`sort_unstable_by`](Self::sort_unstable_by) for details. |
| pub fn sort_unstable_keys(&mut self) |
| where |
| K: Ord, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_unstable_by(move |a, b| K::cmp(&a.key, &b.key)); |
| }); |
| } |
| |
| /// Sort the map's key-value pairs in place using the comparison function `cmp`, but |
| /// may not preserve the order of equal elements. |
| /// |
| /// The comparison function receives two key and value pairs to compare (you |
| /// can sort by keys or values or their combination as needed). |
| /// |
| /// Computes in **O(n log n + c)** time where *n* is |
| /// the length of the map and *c* is the capacity. The sort is unstable. |
| pub fn sort_unstable_by<F>(&mut self, mut cmp: F) |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| }); |
| } |
| |
| /// Sort the key-value pairs of the map and return a by-value iterator of |
| /// the key-value pairs with the result. |
| /// |
| /// The sort is unstable. |
| #[inline] |
| pub fn sorted_unstable_by<F>(self, mut cmp: F) -> IntoIter<K, V> |
| where |
| F: FnMut(&K, &V, &K, &V) -> Ordering, |
| { |
| let mut entries = self.into_entries(); |
| entries.sort_unstable_by(move |a, b| cmp(&a.key, &a.value, &b.key, &b.value)); |
| IntoIter::new(entries) |
| } |
| |
| /// Sort the map’s key-value pairs in place using a sort-key extraction function. |
| /// |
| /// During sorting, the function is called at most once per entry, by using temporary storage |
| /// to remember the results of its evaluation. The order of calls to the function is |
| /// unspecified and may change between versions of `indexmap` or the standard library. |
| /// |
| /// Computes in **O(m n + n log n + c)** time () and **O(n)** space, where the function is |
| /// **O(m)**, *n* is the length of the map, and *c* the capacity. The sort is stable. |
| pub fn sort_by_cached_key<T, F>(&mut self, mut sort_key: F) |
| where |
| T: Ord, |
| F: FnMut(&K, &V) -> T, |
| { |
| self.with_entries(move |entries| { |
| entries.sort_by_cached_key(move |a| sort_key(&a.key, &a.value)); |
| }); |
| } |
| |
| /// Search over a sorted map for a key. |
| /// |
| /// Returns the position where that key is present, or the position where it can be inserted to |
| /// maintain the sort. See [`slice::binary_search`] for more details. |
| /// |
| /// Computes in **O(log(n))** time, which is notably less scalable than looking the key up |
| /// using [`get_index_of`][IndexMap::get_index_of], but this can also position missing keys. |
| pub fn binary_search_keys(&self, x: &K) -> Result<usize, usize> |
| where |
| K: Ord, |
| { |
| self.as_slice().binary_search_keys(x) |
| } |
| |
| /// Search over a sorted map with a comparator function. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search_by`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[inline] |
| pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> |
| where |
| F: FnMut(&'a K, &'a V) -> Ordering, |
| { |
| self.as_slice().binary_search_by(f) |
| } |
| |
| /// Search over a sorted map with an extraction function. |
| /// |
| /// Returns the position where that value is present, or the position where it can be inserted |
| /// to maintain the sort. See [`slice::binary_search_by_key`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[inline] |
| pub fn binary_search_by_key<'a, B, F>(&'a self, b: &B, f: F) -> Result<usize, usize> |
| where |
| F: FnMut(&'a K, &'a V) -> B, |
| B: Ord, |
| { |
| self.as_slice().binary_search_by_key(b, f) |
| } |
| |
| /// Returns the index of the partition point of a sorted map according to the given predicate |
| /// (the index of the first element of the second partition). |
| /// |
| /// See [`slice::partition_point`] for more details. |
| /// |
| /// Computes in **O(log(n))** time. |
| #[must_use] |
| pub fn partition_point<P>(&self, pred: P) -> usize |
| where |
| P: FnMut(&K, &V) -> bool, |
| { |
| self.as_slice().partition_point(pred) |
| } |
| |
| /// Reverses the order of the map’s key-value pairs in place. |
| /// |
| /// Computes in **O(n)** time and **O(1)** space. |
| pub fn reverse(&mut self) { |
| self.core.reverse() |
| } |
| |
| /// Returns a slice of all the key-value pairs in the map. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn as_slice(&self) -> &Slice<K, V> { |
| Slice::from_slice(self.as_entries()) |
| } |
| |
| /// Returns a mutable slice of all the key-value pairs in the map. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn as_mut_slice(&mut self) -> &mut Slice<K, V> { |
| Slice::from_mut_slice(self.as_entries_mut()) |
| } |
| |
| /// Converts into a boxed slice of all the key-value pairs in the map. |
| /// |
| /// Note that this will drop the inner hash table and any excess capacity. |
| pub fn into_boxed_slice(self) -> Box<Slice<K, V>> { |
| Slice::from_boxed(self.into_entries().into_boxed_slice()) |
| } |
| |
| /// Get a key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index(&self, index: usize) -> Option<(&K, &V)> { |
| self.as_entries().get(index).map(Bucket::refs) |
| } |
| |
| /// Get a key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index_mut(&mut self, index: usize) -> Option<(&K, &mut V)> { |
| self.as_entries_mut().get_mut(index).map(Bucket::ref_mut) |
| } |
| |
| /// Get an entry in the map by index for in-place manipulation. |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_index_entry(&mut self, index: usize) -> Option<IndexedEntry<'_, K, V>> { |
| if index >= self.len() { |
| return None; |
| } |
| Some(IndexedEntry::new(&mut self.core, index)) |
| } |
| |
| /// Returns a slice of key-value pairs in the given range of indices. |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_range<R: RangeBounds<usize>>(&self, range: R) -> Option<&Slice<K, V>> { |
| let entries = self.as_entries(); |
| let range = try_simplify_range(range, entries.len())?; |
| entries.get(range).map(Slice::from_slice) |
| } |
| |
| /// Returns a mutable slice of key-value pairs in the given range of indices. |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Computes in **O(1)** time. |
| pub fn get_range_mut<R: RangeBounds<usize>>(&mut self, range: R) -> Option<&mut Slice<K, V>> { |
| let entries = self.as_entries_mut(); |
| let range = try_simplify_range(range, entries.len())?; |
| entries.get_mut(range).map(Slice::from_mut_slice) |
| } |
| |
| /// Get the first key-value pair |
| /// |
| /// Computes in **O(1)** time. |
| #[doc(alias = "first_key_value")] // like `BTreeMap` |
| pub fn first(&self) -> Option<(&K, &V)> { |
| self.as_entries().first().map(Bucket::refs) |
| } |
| |
| /// Get the first key-value pair, with mutable access to the value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn first_mut(&mut self) -> Option<(&K, &mut V)> { |
| self.as_entries_mut().first_mut().map(Bucket::ref_mut) |
| } |
| |
| /// Get the first entry in the map for in-place manipulation. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn first_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> { |
| self.get_index_entry(0) |
| } |
| |
| /// Get the last key-value pair |
| /// |
| /// Computes in **O(1)** time. |
| #[doc(alias = "last_key_value")] // like `BTreeMap` |
| pub fn last(&self) -> Option<(&K, &V)> { |
| self.as_entries().last().map(Bucket::refs) |
| } |
| |
| /// Get the last key-value pair, with mutable access to the value |
| /// |
| /// Computes in **O(1)** time. |
| pub fn last_mut(&mut self) -> Option<(&K, &mut V)> { |
| self.as_entries_mut().last_mut().map(Bucket::ref_mut) |
| } |
| |
| /// Get the last entry in the map for in-place manipulation. |
| /// |
| /// Computes in **O(1)** time. |
| pub fn last_entry(&mut self) -> Option<IndexedEntry<'_, K, V>> { |
| self.get_index_entry(self.len().checked_sub(1)?) |
| } |
| |
| /// Remove the key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like [`Vec::swap_remove`], the pair is removed by swapping it with the |
| /// last element of the map and popping it off. **This perturbs |
| /// the position of what used to be the last element!** |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_remove_index(&mut self, index: usize) -> Option<(K, V)> { |
| self.core.swap_remove_index(index) |
| } |
| |
| /// Remove the key-value pair by index |
| /// |
| /// Valid indices are *0 <= index < self.len()* |
| /// |
| /// Like [`Vec::remove`], the pair is removed by shifting all of the |
| /// elements that follow it, preserving their relative order. |
| /// **This perturbs the index of all of those elements!** |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn shift_remove_index(&mut self, index: usize) -> Option<(K, V)> { |
| self.core.shift_remove_index(index) |
| } |
| |
| /// Moves the position of a key-value pair from one index to another |
| /// by shifting all other pairs in-between. |
| /// |
| /// * If `from < to`, the other pairs will shift down while the targeted pair moves up. |
| /// * If `from > to`, the other pairs will shift up while the targeted pair moves down. |
| /// |
| /// ***Panics*** if `from` or `to` are out of bounds. |
| /// |
| /// Computes in **O(n)** time (average). |
| pub fn move_index(&mut self, from: usize, to: usize) { |
| self.core.move_index(from, to) |
| } |
| |
| /// Swaps the position of two key-value pairs in the map. |
| /// |
| /// ***Panics*** if `a` or `b` are out of bounds. |
| /// |
| /// Computes in **O(1)** time (average). |
| pub fn swap_indices(&mut self, a: usize, b: usize) { |
| self.core.swap_indices(a, b) |
| } |
| } |
| |
| /// Access [`IndexMap`] values corresponding to a key. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_uppercase()); |
| /// } |
| /// assert_eq!(map["lorem"], "LOREM"); |
| /// assert_eq!(map["ipsum"], "IPSUM"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// println!("{:?}", map["bar"]); // panics! |
| /// ``` |
| impl<K, V, Q: ?Sized, S> Index<&Q> for IndexMap<K, V, S> |
| where |
| Q: Hash + Equivalent<K>, |
| S: BuildHasher, |
| { |
| type Output = V; |
| |
| /// Returns a reference to the value corresponding to the supplied `key`. |
| /// |
| /// ***Panics*** if `key` is not present in the map. |
| fn index(&self, key: &Q) -> &V { |
| self.get(key).expect("IndexMap: key not found") |
| } |
| } |
| |
| /// Access [`IndexMap`] values corresponding to a key. |
| /// |
| /// Mutable indexing allows changing / updating values of key-value |
| /// pairs that are already present. |
| /// |
| /// You can **not** insert new pairs with index syntax, use `.insert()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_string()); |
| /// } |
| /// let lorem = &mut map["lorem"]; |
| /// assert_eq!(lorem, "Lorem"); |
| /// lorem.retain(char::is_lowercase); |
| /// assert_eq!(map["lorem"], "orem"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// map["bar"] = 1; // panics! |
| /// ``` |
| impl<K, V, Q: ?Sized, S> IndexMut<&Q> for IndexMap<K, V, S> |
| where |
| Q: Hash + Equivalent<K>, |
| S: BuildHasher, |
| { |
| /// Returns a mutable reference to the value corresponding to the supplied `key`. |
| /// |
| /// ***Panics*** if `key` is not present in the map. |
| fn index_mut(&mut self, key: &Q) -> &mut V { |
| self.get_mut(key).expect("IndexMap: key not found") |
| } |
| } |
| |
| /// Access [`IndexMap`] values at indexed positions. |
| /// |
| /// See [`Index<usize> for Keys`][keys] to access a map's keys instead. |
| /// |
| /// [keys]: Keys#impl-Index<usize>-for-Keys<'a,+K,+V> |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_uppercase()); |
| /// } |
| /// assert_eq!(map[0], "LOREM"); |
| /// assert_eq!(map[1], "IPSUM"); |
| /// map.reverse(); |
| /// assert_eq!(map[0], "AMET"); |
| /// assert_eq!(map[1], "SIT"); |
| /// map.sort_keys(); |
| /// assert_eq!(map[0], "AMET"); |
| /// assert_eq!(map[1], "DOLOR"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// println!("{:?}", map[10]); // panics! |
| /// ``` |
| impl<K, V, S> Index<usize> for IndexMap<K, V, S> { |
| type Output = V; |
| |
| /// Returns a reference to the value at the supplied `index`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| fn index(&self, index: usize) -> &V { |
| self.get_index(index) |
| .expect("IndexMap: index out of bounds") |
| .1 |
| } |
| } |
| |
| /// Access [`IndexMap`] values at indexed positions. |
| /// |
| /// Mutable indexing allows changing / updating indexed values |
| /// that are already present. |
| /// |
| /// You can **not** insert new values with index syntax -- use [`.insert()`][IndexMap::insert]. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// for word in "Lorem ipsum dolor sit amet".split_whitespace() { |
| /// map.insert(word.to_lowercase(), word.to_string()); |
| /// } |
| /// let lorem = &mut map[0]; |
| /// assert_eq!(lorem, "Lorem"); |
| /// lorem.retain(char::is_lowercase); |
| /// assert_eq!(map["lorem"], "orem"); |
| /// ``` |
| /// |
| /// ```should_panic |
| /// use indexmap::IndexMap; |
| /// |
| /// let mut map = IndexMap::new(); |
| /// map.insert("foo", 1); |
| /// map[10] = 1; // panics! |
| /// ``` |
| impl<K, V, S> IndexMut<usize> for IndexMap<K, V, S> { |
| /// Returns a mutable reference to the value at the supplied `index`. |
| /// |
| /// ***Panics*** if `index` is out of bounds. |
| fn index_mut(&mut self, index: usize) -> &mut V { |
| self.get_index_mut(index) |
| .expect("IndexMap: index out of bounds") |
| .1 |
| } |
| } |
| |
| impl<K, V, S> FromIterator<(K, V)> for IndexMap<K, V, S> |
| where |
| K: Hash + Eq, |
| S: BuildHasher + Default, |
| { |
| /// Create an `IndexMap` from the sequence of key-value pairs in the |
| /// iterable. |
| /// |
| /// `from_iter` uses the same logic as `extend`. See |
| /// [`extend`][IndexMap::extend] for more details. |
| fn from_iter<I: IntoIterator<Item = (K, V)>>(iterable: I) -> Self { |
| let iter = iterable.into_iter(); |
| let (low, _) = iter.size_hint(); |
| let mut map = Self::with_capacity_and_hasher(low, <_>::default()); |
| map.extend(iter); |
| map |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| #[cfg_attr(docsrs, doc(cfg(feature = "std")))] |
| impl<K, V, const N: usize> From<[(K, V); N]> for IndexMap<K, V, RandomState> |
| where |
| K: Hash + Eq, |
| { |
| /// # Examples |
| /// |
| /// ``` |
| /// use indexmap::IndexMap; |
| /// |
| /// let map1 = IndexMap::from([(1, 2), (3, 4)]); |
| /// let map2: IndexMap<_, _> = [(1, 2), (3, 4)].into(); |
| /// assert_eq!(map1, map2); |
| /// ``` |
| fn from(arr: [(K, V); N]) -> Self { |
| Self::from_iter(arr) |
| } |
| } |
| |
| impl<K, V, S> Extend<(K, V)> for IndexMap<K, V, S> |
| where |
| K: Hash + Eq, |
| S: BuildHasher, |
| { |
| /// Extend the map with all key-value pairs in the iterable. |
| /// |
| /// This is equivalent to calling [`insert`][IndexMap::insert] for each of |
| /// them in order, which means that for keys that already existed |
| /// in the map, their value is updated but it keeps the existing order. |
| /// |
| /// New keys are inserted in the order they appear in the sequence. If |
| /// equivalents of a key occur more than once, the last corresponding value |
| /// prevails. |
| fn extend<I: IntoIterator<Item = (K, V)>>(&mut self, iterable: I) { |
| // (Note: this is a copy of `std`/`hashbrown`'s reservation logic.) |
| // Keys may be already present or show multiple times in the iterator. |
| // Reserve the entire hint lower bound if the map is empty. |
| // Otherwise reserve half the hint (rounded up), so the map |
| // will only resize twice in the worst case. |
| let iter = iterable.into_iter(); |
| let reserve = if self.is_empty() { |
| iter.size_hint().0 |
| } else { |
| (iter.size_hint().0 + 1) / 2 |
| }; |
| self.reserve(reserve); |
| iter.for_each(move |(k, v)| { |
| self.insert(k, v); |
| }); |
| } |
| } |
| |
| impl<'a, K, V, S> Extend<(&'a K, &'a V)> for IndexMap<K, V, S> |
| where |
| K: Hash + Eq + Copy, |
| V: Copy, |
| S: BuildHasher, |
| { |
| /// Extend the map with all key-value pairs in the iterable. |
| /// |
| /// See the first extend method for more details. |
| fn extend<I: IntoIterator<Item = (&'a K, &'a V)>>(&mut self, iterable: I) { |
| self.extend(iterable.into_iter().map(|(&key, &value)| (key, value))); |
| } |
| } |
| |
| impl<K, V, S> Default for IndexMap<K, V, S> |
| where |
| S: Default, |
| { |
| /// Return an empty [`IndexMap`] |
| fn default() -> Self { |
| Self::with_capacity_and_hasher(0, S::default()) |
| } |
| } |
| |
| impl<K, V1, S1, V2, S2> PartialEq<IndexMap<K, V2, S2>> for IndexMap<K, V1, S1> |
| where |
| K: Hash + Eq, |
| V1: PartialEq<V2>, |
| S1: BuildHasher, |
| S2: BuildHasher, |
| { |
| fn eq(&self, other: &IndexMap<K, V2, S2>) -> bool { |
| if self.len() != other.len() { |
| return false; |
| } |
| |
| self.iter() |
| .all(|(key, value)| other.get(key).map_or(false, |v| *value == *v)) |
| } |
| } |
| |
| impl<K, V, S> Eq for IndexMap<K, V, S> |
| where |
| K: Eq + Hash, |
| V: Eq, |
| S: BuildHasher, |
| { |
| } |