| use super::size_hint; |
| |
| /// See [`multizip`] for more information. |
| #[derive(Clone, Debug)] |
| #[must_use = "iterator adaptors are lazy and do nothing unless consumed"] |
| pub struct Zip<T> { |
| t: T, |
| } |
| |
| /// An iterator that generalizes *.zip()* and allows running multiple iterators in lockstep. |
| /// |
| /// The iterator `Zip<(I, J, ..., M)>` is formed from a tuple of iterators (or values that |
| /// implement [`IntoIterator`]) and yields elements |
| /// until any of the subiterators yields `None`. |
| /// |
| /// The iterator element type is a tuple like like `(A, B, ..., E)` where `A` to `E` are the |
| /// element types of the subiterator. |
| /// |
| /// **Note:** The result of this macro is a value of a named type (`Zip<(I, J, |
| /// ..)>` of each component iterator `I, J, ...`) if each component iterator is |
| /// nameable. |
| /// |
| /// Prefer [`izip!()`] over `multizip` for the performance benefits of using the |
| /// standard library `.zip()`. Prefer `multizip` if a nameable type is needed. |
| /// |
| /// ``` |
| /// use itertools::multizip; |
| /// |
| /// // iterate over three sequences side-by-side |
| /// let mut results = [0, 0, 0, 0]; |
| /// let inputs = [3, 7, 9, 6]; |
| /// |
| /// for (r, index, input) in multizip((&mut results, 0..10, &inputs)) { |
| /// *r = index * 10 + input; |
| /// } |
| /// |
| /// assert_eq!(results, [0 + 3, 10 + 7, 29, 36]); |
| /// ``` |
| /// [`izip!()`]: crate::izip |
| pub fn multizip<T, U>(t: U) -> Zip<T> |
| where |
| Zip<T>: From<U> + Iterator, |
| { |
| Zip::from(t) |
| } |
| |
| macro_rules! impl_zip_iter { |
| ($($B:ident),*) => ( |
| #[allow(non_snake_case)] |
| impl<$($B: IntoIterator),*> From<($($B,)*)> for Zip<($($B::IntoIter,)*)> { |
| fn from(t: ($($B,)*)) -> Self { |
| let ($($B,)*) = t; |
| Zip { t: ($($B.into_iter(),)*) } |
| } |
| } |
| |
| #[allow(non_snake_case)] |
| #[allow(unused_assignments)] |
| impl<$($B),*> Iterator for Zip<($($B,)*)> |
| where |
| $( |
| $B: Iterator, |
| )* |
| { |
| type Item = ($($B::Item,)*); |
| |
| fn next(&mut self) -> Option<Self::Item> |
| { |
| let ($(ref mut $B,)*) = self.t; |
| |
| // NOTE: Just like iter::Zip, we check the iterators |
| // for None in order. We may finish unevenly (some |
| // iterators gave n + 1 elements, some only n). |
| $( |
| let $B = match $B.next() { |
| None => return None, |
| Some(elt) => elt |
| }; |
| )* |
| Some(($($B,)*)) |
| } |
| |
| fn size_hint(&self) -> (usize, Option<usize>) |
| { |
| let sh = (::std::usize::MAX, None); |
| let ($(ref $B,)*) = self.t; |
| $( |
| let sh = size_hint::min($B.size_hint(), sh); |
| )* |
| sh |
| } |
| } |
| |
| #[allow(non_snake_case)] |
| impl<$($B),*> ExactSizeIterator for Zip<($($B,)*)> where |
| $( |
| $B: ExactSizeIterator, |
| )* |
| { } |
| |
| #[allow(non_snake_case)] |
| impl<$($B),*> DoubleEndedIterator for Zip<($($B,)*)> where |
| $( |
| $B: DoubleEndedIterator + ExactSizeIterator, |
| )* |
| { |
| #[inline] |
| fn next_back(&mut self) -> Option<Self::Item> { |
| let ($(ref mut $B,)*) = self.t; |
| let size = *[$( $B.len(), )*].iter().min().unwrap(); |
| |
| $( |
| if $B.len() != size { |
| for _ in 0..$B.len() - size { $B.next_back(); } |
| } |
| )* |
| |
| match ($($B.next_back(),)*) { |
| ($(Some($B),)*) => Some(($($B,)*)), |
| _ => None, |
| } |
| } |
| } |
| ); |
| } |
| |
| impl_zip_iter!(A); |
| impl_zip_iter!(A, B); |
| impl_zip_iter!(A, B, C); |
| impl_zip_iter!(A, B, C, D); |
| impl_zip_iter!(A, B, C, D, E); |
| impl_zip_iter!(A, B, C, D, E, F); |
| impl_zip_iter!(A, B, C, D, E, F, G); |
| impl_zip_iter!(A, B, C, D, E, F, G, H); |
| impl_zip_iter!(A, B, C, D, E, F, G, H, I); |
| impl_zip_iter!(A, B, C, D, E, F, G, H, I, J); |
| impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K); |
| impl_zip_iter!(A, B, C, D, E, F, G, H, I, J, K, L); |