| /* origin: FreeBSD /usr/src/lib/msun/src/s_atan.c */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunPro, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| /* atan(x) |
| * Method |
| * 1. Reduce x to positive by atan(x) = -atan(-x). |
| * 2. According to the integer k=4t+0.25 chopped, t=x, the argument |
| * is further reduced to one of the following intervals and the |
| * arctangent of t is evaluated by the corresponding formula: |
| * |
| * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) |
| * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) |
| * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) |
| * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) |
| * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) |
| * |
| * Constants: |
| * The hexadecimal values are the intended ones for the following |
| * constants. The decimal values may be used, provided that the |
| * compiler will convert from decimal to binary accurately enough |
| * to produce the hexadecimal values shown. |
| */ |
| |
| use super::fabs; |
| use core::f64; |
| |
| const ATANHI: [f64; 4] = [ |
| 4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */ |
| 7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */ |
| 9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */ |
| 1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */ |
| ]; |
| |
| const ATANLO: [f64; 4] = [ |
| 2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */ |
| 3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */ |
| 1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */ |
| 6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */ |
| ]; |
| |
| const AT: [f64; 11] = [ |
| 3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */ |
| -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */ |
| 1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */ |
| -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */ |
| 9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */ |
| -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */ |
| 6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */ |
| -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */ |
| 4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */ |
| -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */ |
| 1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */ |
| ]; |
| |
| /// Arctangent (f64) |
| /// |
| /// Computes the inverse tangent (arc tangent) of the input value. |
| /// Returns a value in radians, in the range of -pi/2 to pi/2. |
| #[inline] |
| #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] |
| pub fn atan(x: f64) -> f64 { |
| let mut x = x; |
| let mut ix = (x.to_bits() >> 32) as u32; |
| let sign = ix >> 31; |
| ix &= 0x7fff_ffff; |
| if ix >= 0x4410_0000 { |
| if x.is_nan() { |
| return x; |
| } |
| |
| let z = ATANHI[3] + f64::from_bits(0x0380_0000); // 0x1p-120f |
| return if sign != 0 { -z } else { z }; |
| } |
| |
| let id = if ix < 0x3fdc_0000 { |
| /* |x| < 0.4375 */ |
| if ix < 0x3e40_0000 { |
| /* |x| < 2^-27 */ |
| if ix < 0x0010_0000 { |
| /* raise underflow for subnormal x */ |
| force_eval!(x as f32); |
| } |
| |
| return x; |
| } |
| |
| -1 |
| } else { |
| x = fabs(x); |
| if ix < 0x3ff30000 { |
| /* |x| < 1.1875 */ |
| if ix < 0x3fe60000 { |
| /* 7/16 <= |x| < 11/16 */ |
| x = (2. * x - 1.) / (2. + x); |
| 0 |
| } else { |
| /* 11/16 <= |x| < 19/16 */ |
| x = (x - 1.) / (x + 1.); |
| 1 |
| } |
| } else if ix < 0x40038000 { |
| /* |x| < 2.4375 */ |
| x = (x - 1.5) / (1. + 1.5 * x); |
| 2 |
| } else { |
| /* 2.4375 <= |x| < 2^66 */ |
| x = -1. / x; |
| 3 |
| } |
| }; |
| |
| let z = x * x; |
| let w = z * z; |
| /* break sum from i=0 to 10 AT[i]z**(i+1) into odd and even poly */ |
| let s1 = z * (AT[0] + w * (AT[2] + w * (AT[4] + w * (AT[6] + w * (AT[8] + w * AT[10]))))); |
| let s2 = w * (AT[1] + w * (AT[3] + w * (AT[5] + w * (AT[7] + w * AT[9])))); |
| |
| if id < 0 { |
| return x - x * (s1 + s2); |
| } |
| |
| let z = i!(ATANHI, id as usize) - (x * (s1 + s2) - i!(ATANLO, id as usize) - x); |
| |
| if sign != 0 { |
| -z |
| } else { |
| z |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::atan; |
| use core::f64; |
| |
| #[test] |
| fn sanity_check() { |
| for (input, answer) in [ |
| (3.0_f64.sqrt() / 3.0, f64::consts::FRAC_PI_6), |
| (1.0, f64::consts::FRAC_PI_4), |
| (3.0_f64.sqrt(), f64::consts::FRAC_PI_3), |
| (-3.0_f64.sqrt() / 3.0, -f64::consts::FRAC_PI_6), |
| (-1.0, -f64::consts::FRAC_PI_4), |
| (-3.0_f64.sqrt(), -f64::consts::FRAC_PI_3), |
| ] |
| .iter() |
| { |
| assert!( |
| (atan(*input) - answer) / answer < 1e-5, |
| "\natan({:.4}/16) = {:.4}, actual: {}", |
| input * 16.0, |
| answer, |
| atan(*input) |
| ); |
| } |
| } |
| |
| #[test] |
| fn zero() { |
| assert_eq!(atan(0.0), 0.0); |
| } |
| |
| #[test] |
| fn infinity() { |
| assert_eq!(atan(f64::INFINITY), f64::consts::FRAC_PI_2); |
| } |
| |
| #[test] |
| fn minus_infinity() { |
| assert_eq!(atan(f64::NEG_INFINITY), -f64::consts::FRAC_PI_2); |
| } |
| |
| #[test] |
| fn nan() { |
| assert!(atan(f64::NAN).is_nan()); |
| } |
| } |