| /* origin: FreeBSD /usr/src/lib/msun/src/e_log10.c */ |
| /* |
| * ==================================================== |
| * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| * |
| * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| * Permission to use, copy, modify, and distribute this |
| * software is freely granted, provided that this notice |
| * is preserved. |
| * ==================================================== |
| */ |
| /* |
| * Return the base 10 logarithm of x. See log.c for most comments. |
| * |
| * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2 |
| * as in log.c, then combine and scale in extra precision: |
| * log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2) |
| */ |
| |
| use core::f64; |
| |
| const IVLN10HI: f64 = 4.34294481878168880939e-01; /* 0x3fdbcb7b, 0x15200000 */ |
| const IVLN10LO: f64 = 2.50829467116452752298e-11; /* 0x3dbb9438, 0xca9aadd5 */ |
| const LOG10_2HI: f64 = 3.01029995663611771306e-01; /* 0x3FD34413, 0x509F6000 */ |
| const LOG10_2LO: f64 = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */ |
| const LG1: f64 = 6.666666666666735130e-01; /* 3FE55555 55555593 */ |
| const LG2: f64 = 3.999999999940941908e-01; /* 3FD99999 9997FA04 */ |
| const LG3: f64 = 2.857142874366239149e-01; /* 3FD24924 94229359 */ |
| const LG4: f64 = 2.222219843214978396e-01; /* 3FCC71C5 1D8E78AF */ |
| const LG5: f64 = 1.818357216161805012e-01; /* 3FC74664 96CB03DE */ |
| const LG6: f64 = 1.531383769920937332e-01; /* 3FC39A09 D078C69F */ |
| const LG7: f64 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */ |
| |
| #[inline] |
| #[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)] |
| pub fn log10(mut x: f64) -> f64 { |
| let x1p54 = f64::from_bits(0x4350000000000000); // 0x1p54 === 2 ^ 54 |
| |
| let mut ui: u64 = x.to_bits(); |
| let hfsq: f64; |
| let f: f64; |
| let s: f64; |
| let z: f64; |
| let r: f64; |
| let mut w: f64; |
| let t1: f64; |
| let t2: f64; |
| let dk: f64; |
| let y: f64; |
| let mut hi: f64; |
| let lo: f64; |
| let mut val_hi: f64; |
| let mut val_lo: f64; |
| let mut hx: u32; |
| let mut k: i32; |
| |
| hx = (ui >> 32) as u32; |
| k = 0; |
| if hx < 0x00100000 || (hx >> 31) > 0 { |
| if ui << 1 == 0 { |
| return -1. / (x * x); /* log(+-0)=-inf */ |
| } |
| if (hx >> 31) > 0 { |
| return (x - x) / 0.0; /* log(-#) = NaN */ |
| } |
| /* subnormal number, scale x up */ |
| k -= 54; |
| x *= x1p54; |
| ui = x.to_bits(); |
| hx = (ui >> 32) as u32; |
| } else if hx >= 0x7ff00000 { |
| return x; |
| } else if hx == 0x3ff00000 && ui << 32 == 0 { |
| return 0.; |
| } |
| |
| /* reduce x into [sqrt(2)/2, sqrt(2)] */ |
| hx += 0x3ff00000 - 0x3fe6a09e; |
| k += (hx >> 20) as i32 - 0x3ff; |
| hx = (hx & 0x000fffff) + 0x3fe6a09e; |
| ui = (hx as u64) << 32 | (ui & 0xffffffff); |
| x = f64::from_bits(ui); |
| |
| f = x - 1.0; |
| hfsq = 0.5 * f * f; |
| s = f / (2.0 + f); |
| z = s * s; |
| w = z * z; |
| t1 = w * (LG2 + w * (LG4 + w * LG6)); |
| t2 = z * (LG1 + w * (LG3 + w * (LG5 + w * LG7))); |
| r = t2 + t1; |
| |
| /* See log2.c for details. */ |
| /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */ |
| hi = f - hfsq; |
| ui = hi.to_bits(); |
| ui &= (-1i64 as u64) << 32; |
| hi = f64::from_bits(ui); |
| lo = f - hi - hfsq + s * (hfsq + r); |
| |
| /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */ |
| val_hi = hi * IVLN10HI; |
| dk = k as f64; |
| y = dk * LOG10_2HI; |
| val_lo = dk * LOG10_2LO + (lo + hi) * IVLN10LO + lo * IVLN10HI; |
| |
| /* |
| * Extra precision in for adding y is not strictly needed |
| * since there is no very large cancellation near x = sqrt(2) or |
| * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs |
| * with some parallelism and it reduces the error for many args. |
| */ |
| w = y + val_hi; |
| val_lo += (y - w) + val_hi; |
| val_hi = w; |
| |
| val_lo + val_hi |
| } |