blob: 2720a1acf71490a722a8e1ece84f950ff1ff55c6 [file] [log] [blame] [edit]
//! Regex matchers on character and byte streams.
//!
//! ## Overview
//!
//! The [`regex`] crate implements regular expression matching on strings and byte
//! arrays. However, in order to match the output of implementations of `fmt::Debug`
//! and `fmt::Display`, or by any code which writes to an instance of `fmt::Write`
//! or `io::Write`, it is necessary to first allocate a buffer, write to that
//! buffer, and then match the buffer against a regex.
//!
//! In cases where it is not necessary to extract substrings, but only to test whether
//! or not output matches a regex, it is not strictly necessary to allocate and
//! write this output to a buffer. This crate provides a simple interface on top of
//! the lower-level [`regex-automata`] library that implements `fmt::Write` and
//! `io::Write` for regex patterns. This may be used to test whether streaming
//! output matches a pattern without buffering that output.
//!
//! Users who need to extract substrings based on a pattern or who already have
//! buffered data should probably use the [`regex`] crate instead.
//!
//! ## Syntax
//!
//! This crate uses the same [regex syntax][syntax] of the `regex-automata` crate.
//!
//! [`regex`]: https://crates.io/crates/regex
//! [`regex-automata`]: https://crates.io/crates/regex-automata
//! [syntax]: https://docs.rs/regex-automata/0.1.7/regex_automata/#syntax
use regex_automata::{dense, DenseDFA, SparseDFA, StateID, DFA};
use std::{fmt, io, marker::PhantomData, str::FromStr};
pub use regex_automata::Error;
/// A compiled match pattern that can match multipe inputs, or return a
/// [`Matcher`] that matches a single input.
///
/// [`Matcher`]: ../struct.Matcher.html
#[derive(Debug, Clone)]
pub struct Pattern<S = usize, A = DenseDFA<Vec<S>, S>>
where
S: StateID,
A: DFA<ID = S>,
{
automaton: A,
}
/// A reference to a [`Pattern`] that matches a single input.
///
/// [`Pattern`]: ../struct.Pattern.html
#[derive(Debug, Clone)]
pub struct Matcher<'a, S = usize, A = DenseDFA<&'a [S], S>>
where
S: StateID,
A: DFA<ID = S>,
{
automaton: A,
state: S,
_lt: PhantomData<&'a ()>,
}
// === impl Pattern ===
impl Pattern {
/// Returns a new `Pattern` for the given regex, or an error if the regex
/// was invalid.
///
/// The returned `Pattern` will match occurances of the pattern which start
/// at *any* in a byte or character stream — the pattern may be preceded by
/// any number of non-matching characters. Essentially, it will behave as
/// though the regular expression started with a `.*?`, which enables a
/// match to appear anywhere. If this is not the desired behavior, use
/// [`Pattern::new_anchored`] instead.
///
/// For example:
/// ```
/// use matchers::Pattern;
///
/// // This pattern matches any number of `a`s followed by a `b`.
/// let pattern = Pattern::new("a+b").expect("regex is not invalid");
///
/// // Of course, the pattern matches an input where the entire sequence of
/// // characters matches the pattern:
/// assert!(pattern.display_matches(&"aaaaab"));
///
/// // And, since the pattern is unanchored, it will also match the
/// // sequence when it's followed by non-matching characters:
/// assert!(pattern.display_matches(&"hello world! aaaaab"));
/// ```
pub fn new(pattern: &str) -> Result<Self, Error> {
let automaton = DenseDFA::new(pattern)?;
Ok(Pattern { automaton })
}
/// Returns a new `Pattern` anchored at the beginning of the input stream,
/// or an error if the regex was invalid.
///
/// The returned `Pattern` will *only* match an occurence of the pattern in
/// an input sequence if the first character or byte in the input matches
/// the pattern. If this is not the desired behavior, use [`Pattern::new`]
/// instead.
///
/// For example:
/// ```
/// use matchers::Pattern;
///
/// // This pattern matches any number of `a`s followed by a `b`.
/// let pattern = Pattern::new_anchored("a+b")
/// .expect("regex is not invalid");
///
/// // The pattern matches an input where the entire sequence of
/// // characters matches the pattern:
/// assert!(pattern.display_matches(&"aaaaab"));
///
/// // Since the pattern is anchored, it will *not* match an input that
/// // begins with non-matching characters:
/// assert!(!pattern.display_matches(&"hello world! aaaaab"));
///
/// // ...however, if we create a pattern beginning with `.*?`, it will:
/// let pattern2 = Pattern::new_anchored(".*?a+b")
/// .expect("regex is not invalid");
/// assert!(pattern2.display_matches(&"hello world! aaaaab"));
/// ```
pub fn new_anchored(pattern: &str) -> Result<Self, Error> {
let automaton = dense::Builder::new().anchored(true).build(pattern)?;
Ok(Pattern { automaton })
}
}
impl FromStr for Pattern {
type Err = Error;
fn from_str(s: &str) -> Result<Self, Self::Err> {
Self::new(s)
}
}
impl<S, A> Pattern<S, A>
where
S: StateID,
A: DFA<ID = S>,
Self: for<'a> ToMatcher<'a, S>,
{
/// Returns `true` if this pattern matches the given string.
#[inline]
pub fn matches(&self, s: &impl AsRef<str>) -> bool {
self.matcher().matches(s)
}
/// Returns `true` if this pattern matches the formatted output of the given
/// type implementing `fmt::Debug`.
///
/// For example:
/// ```rust
/// use matchers::Pattern;
///
/// #[derive(Debug)]
/// pub struct Hello {
/// to: &'static str,
/// }
///
/// let pattern = Pattern::new(r#"Hello \{ to: "W[^"]*" \}"#).unwrap();
///
/// let hello_world = Hello { to: "World" };
/// assert!(pattern.debug_matches(&hello_world));
///
/// let hello_sf = Hello { to: "San Francisco" };
/// assert_eq!(pattern.debug_matches(&hello_sf), false);
///
/// let hello_washington = Hello { to: "Washington" };
/// assert!(pattern.debug_matches(&hello_washington));
/// ```
#[inline]
pub fn debug_matches(&self, d: &impl fmt::Debug) -> bool {
self.matcher().debug_matches(d)
}
/// Returns `true` if this pattern matches the formatted output of the given
/// type implementing `fmt::Display`.
///
/// For example:
/// ```rust
/// # use std::fmt;
/// use matchers::Pattern;
///
/// #[derive(Debug)]
/// pub struct Hello {
/// to: &'static str,
/// }
///
/// impl fmt::Display for Hello {
/// fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
/// write!(f, "Hello {}", self.to)
/// }
/// }
///
/// let pattern = Pattern::new("Hello [Ww].+").unwrap();
///
/// let hello_world = Hello { to: "world" };
/// assert!(pattern.display_matches(&hello_world));
/// assert_eq!(pattern.debug_matches(&hello_world), false);
///
/// let hello_sf = Hello { to: "San Francisco" };
/// assert_eq!(pattern.display_matches(&hello_sf), false);
///
/// let hello_washington = Hello { to: "Washington" };
/// assert!(pattern.display_matches(&hello_washington));
/// ```
#[inline]
pub fn display_matches(&self, d: &impl fmt::Display) -> bool {
self.matcher().display_matches(d)
}
/// Returns either a `bool` indicating whether or not this pattern matches the
/// data read from the provided `io::Read` stream, or an `io::Error` if an
/// error occurred reading from the stream.
#[inline]
pub fn read_matches(&self, io: impl io::Read) -> io::Result<bool> {
self.matcher().read_matches(io)
}
}
// === impl Matcher ===
impl<'a, S, A> Matcher<'a, S, A>
where
S: StateID,
A: DFA<ID = S>,
{
fn new(automaton: A) -> Self {
let state = automaton.start_state();
Self {
automaton,
state,
_lt: PhantomData,
}
}
#[inline]
fn advance(&mut self, input: u8) {
self.state = unsafe {
// It's safe to call `next_state_unchecked` since the matcher may
// only be constructed by a `Pattern`, which, in turn,can only be
// constructed with a valid DFA.
self.automaton.next_state_unchecked(self.state, input)
};
}
/// Returns `true` if this `Matcher` has matched any input that has been
/// provided.
#[inline]
pub fn is_matched(&self) -> bool {
self.automaton.is_match_state(self.state)
}
/// Returns `true` if this pattern matches the formatted output of the given
/// type implementing `fmt::Debug`.
pub fn matches(mut self, s: &impl AsRef<str>) -> bool {
for &byte in s.as_ref().as_bytes() {
self.advance(byte);
if self.automaton.is_dead_state(self.state) {
return false;
}
}
self.is_matched()
}
/// Returns `true` if this pattern matches the formatted output of the given
/// type implementing `fmt::Debug`.
pub fn debug_matches(mut self, d: &impl fmt::Debug) -> bool {
use std::fmt::Write;
write!(&mut self, "{:?}", d).expect("matcher write impl should not fail");
self.is_matched()
}
/// Returns `true` if this pattern matches the formatted output of the given
/// type implementing `fmt::Display`.
pub fn display_matches(mut self, d: &impl fmt::Display) -> bool {
use std::fmt::Write;
write!(&mut self, "{}", d).expect("matcher write impl should not fail");
self.is_matched()
}
/// Returns either a `bool` indicating whether or not this pattern matches the
/// data read from the provided `io::Read` stream, or an `io::Error` if an
/// error occurred reading from the stream.
pub fn read_matches(mut self, io: impl io::Read + Sized) -> io::Result<bool> {
for r in io.bytes() {
self.advance(r?);
if self.automaton.is_dead_state(self.state) {
return Ok(false);
}
}
Ok(self.is_matched())
}
}
impl<'a, S, A> fmt::Write for Matcher<'a, S, A>
where
S: StateID,
A: DFA<ID = S>,
{
fn write_str(&mut self, s: &str) -> fmt::Result {
for &byte in s.as_bytes() {
self.advance(byte);
if self.automaton.is_dead_state(self.state) {
break;
}
}
Ok(())
}
}
impl<'a, S, A> io::Write for Matcher<'a, S, A>
where
S: StateID,
A: DFA<ID = S>,
{
fn write(&mut self, bytes: &[u8]) -> Result<usize, io::Error> {
let mut i = 0;
for &byte in bytes {
self.advance(byte);
i += 1;
if self.automaton.is_dead_state(self.state) {
break;
}
}
Ok(i)
}
fn flush(&mut self) -> Result<(), io::Error> {
Ok(())
}
}
pub trait ToMatcher<'a, S>
where
Self: crate::sealed::Sealed,
S: StateID + 'a,
{
type Automaton: DFA<ID = S>;
fn matcher(&'a self) -> Matcher<'a, S, Self::Automaton>;
}
impl<S> crate::sealed::Sealed for Pattern<S, DenseDFA<Vec<S>, S>> where S: StateID {}
impl<'a, S> ToMatcher<'a, S> for Pattern<S, DenseDFA<Vec<S>, S>>
where
S: StateID + 'a,
{
type Automaton = DenseDFA<&'a [S], S>;
fn matcher(&'a self) -> Matcher<'a, S, Self::Automaton> {
Matcher::new(self.automaton.as_ref())
}
}
impl<'a, S> ToMatcher<'a, S> for Pattern<S, SparseDFA<Vec<u8>, S>>
where
S: StateID + 'a,
{
type Automaton = SparseDFA<&'a [u8], S>;
fn matcher(&'a self) -> Matcher<'a, S, Self::Automaton> {
Matcher::new(self.automaton.as_ref())
}
}
impl<S> crate::sealed::Sealed for Pattern<S, SparseDFA<Vec<u8>, S>> where S: StateID {}
mod sealed {
pub trait Sealed {}
}
#[cfg(test)]
mod test {
use super::*;
struct Str<'a>(&'a str);
struct ReadStr<'a>(io::Cursor<&'a [u8]>);
impl<'a> fmt::Debug for Str<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<'a> fmt::Display for Str<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "{}", self.0)
}
}
impl<'a> io::Read for ReadStr<'a> {
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
self.0.read(buf)
}
}
impl Str<'static> {
fn hello_world() -> Self {
Self::new("hello world")
}
}
impl<'a> Str<'a> {
fn new(s: &'a str) -> Self {
Str(s)
}
fn to_reader(self) -> ReadStr<'a> {
ReadStr(io::Cursor::new(self.0.as_bytes()))
}
}
fn test_debug_matches(new_pattern: impl Fn(&str) -> Result<Pattern, Error>) {
let pat = new_pattern("hello world").unwrap();
assert!(pat.debug_matches(&Str::hello_world()));
let pat = new_pattern("hel+o w[orl]{3}d").unwrap();
assert!(pat.debug_matches(&Str::hello_world()));
let pat = new_pattern("goodbye world").unwrap();
assert_eq!(pat.debug_matches(&Str::hello_world()), false);
}
fn test_display_matches(new_pattern: impl Fn(&str) -> Result<Pattern, Error>) {
let pat = new_pattern("hello world").unwrap();
assert!(pat.display_matches(&Str::hello_world()));
let pat = new_pattern("hel+o w[orl]{3}d").unwrap();
assert!(pat.display_matches(&Str::hello_world()));
let pat = new_pattern("goodbye world").unwrap();
assert_eq!(pat.display_matches(&Str::hello_world()), false);
}
fn test_reader_matches(new_pattern: impl Fn(&str) -> Result<Pattern, Error>) {
let pat = new_pattern("hello world").unwrap();
assert!(pat
.read_matches(Str::hello_world().to_reader())
.expect("no io error should occur"));
let pat = new_pattern("hel+o w[orl]{3}d").unwrap();
assert!(pat
.read_matches(Str::hello_world().to_reader())
.expect("no io error should occur"));
let pat = new_pattern("goodbye world").unwrap();
assert_eq!(
pat.read_matches(Str::hello_world().to_reader())
.expect("no io error should occur"),
false
);
}
fn test_debug_rep_patterns(new_pattern: impl Fn(&str) -> Result<Pattern, Error>) {
let pat = new_pattern("a+b").unwrap();
assert!(pat.debug_matches(&Str::new("ab")));
assert!(pat.debug_matches(&Str::new("aaaab")));
assert!(pat.debug_matches(&Str::new("aaaaaaaaaab")));
assert_eq!(pat.debug_matches(&Str::new("b")), false);
assert_eq!(pat.debug_matches(&Str::new("abb")), false);
assert_eq!(pat.debug_matches(&Str::new("aaaaabb")), false);
}
mod anchored {
use super::*;
#[test]
fn debug_matches() {
test_debug_matches(Pattern::new_anchored)
}
#[test]
fn display_matches() {
test_display_matches(Pattern::new_anchored)
}
#[test]
fn reader_matches() {
test_reader_matches(Pattern::new_anchored)
}
#[test]
fn debug_rep_patterns() {
test_debug_rep_patterns(Pattern::new_anchored)
}
// === anchored behavior =============================================
// Tests that anchored patterns match each input type only beginning at
// the first character.
fn test_is_anchored(f: impl Fn(&Pattern, Str) -> bool) {
let pat = Pattern::new_anchored("a+b").unwrap();
assert!(f(&pat, Str::new("ab")));
assert!(f(&pat, Str::new("aaaab")));
assert!(f(&pat, Str::new("aaaaaaaaaab")));
assert!(!f(&pat, Str::new("bab")));
assert!(!f(&pat, Str::new("ffab")));
assert!(!f(&pat, Str::new("qqqqqqqaaaaab")));
}
#[test]
fn debug_is_anchored() {
test_is_anchored(|pat, input| pat.debug_matches(&input))
}
#[test]
fn display_is_anchored() {
test_is_anchored(|pat, input| pat.display_matches(&input));
}
#[test]
fn reader_is_anchored() {
test_is_anchored(|pat, input| {
pat.read_matches(input.to_reader())
.expect("no io error occurs")
});
}
// === explicitly unanchored =========================================
// Tests that if an "anchored" pattern begins with `.*?`, it matches as
// though it was unanchored.
fn test_explicitly_unanchored(f: impl Fn(&Pattern, Str) -> bool) {
let pat = Pattern::new_anchored(".*?a+b").unwrap();
assert!(f(&pat, Str::new("ab")));
assert!(f(&pat, Str::new("aaaab")));
assert!(f(&pat, Str::new("aaaaaaaaaab")));
assert!(f(&pat, Str::new("bab")));
assert!(f(&pat, Str::new("ffab")));
assert!(f(&pat, Str::new("qqqqqqqaaaaab")));
}
#[test]
fn debug_explicitly_unanchored() {
test_explicitly_unanchored(|pat, input| pat.debug_matches(&input))
}
#[test]
fn display_explicitly_unanchored() {
test_explicitly_unanchored(|pat, input| pat.display_matches(&input));
}
#[test]
fn reader_explicitly_unanchored() {
test_explicitly_unanchored(|pat, input| {
pat.read_matches(input.to_reader())
.expect("no io error occurs")
});
}
}
mod unanchored {
use super::*;
#[test]
fn debug_matches() {
test_debug_matches(Pattern::new)
}
#[test]
fn display_matches() {
test_display_matches(Pattern::new)
}
#[test]
fn reader_matches() {
test_reader_matches(Pattern::new)
}
#[test]
fn debug_rep_patterns() {
test_debug_rep_patterns(Pattern::new)
}
// === anchored behavior =============================================
// Tests that unanchored patterns match anywhere in the input stream.
fn test_is_unanchored(f: impl Fn(&Pattern, Str) -> bool) {
let pat = Pattern::new("a+b").unwrap();
assert!(f(&pat, Str::new("ab")));
assert!(f(&pat, Str::new("aaaab")));
assert!(f(&pat, Str::new("aaaaaaaaaab")));
assert!(f(&pat, Str::new("bab")));
assert!(f(&pat, Str::new("ffab")));
assert!(f(&pat, Str::new("qqqfqqqqaaaaab")));
}
#[test]
fn debug_is_unanchored() {
test_is_unanchored(|pat, input| pat.debug_matches(&input))
}
#[test]
fn display_is_unanchored() {
test_is_unanchored(|pat, input| pat.display_matches(&input));
}
#[test]
fn reader_is_unanchored() {
test_is_unanchored(|pat, input| {
pat.read_matches(input.to_reader())
.expect("no io error occurs")
});
}
}
}