| //! Representation of a float as the significant digits and exponent. |
| //! |
| //! This is adapted from [fast-float-rust](https://github.com/aldanor/fast-float-rust), |
| //! a port of [fast_float](https://github.com/fastfloat/fast_float) to Rust. |
| |
| #![doc(hidden)] |
| |
| #[cfg(feature = "nightly")] |
| use crate::fpu::set_precision; |
| use crate::num::Float; |
| |
| /// Representation of a number as the significant digits and exponent. |
| /// |
| /// This is only used if the exponent base and the significant digit |
| /// radix are the same, since we need to be able to move powers in and |
| /// out of the exponent. |
| #[derive(Clone, Copy, Debug, Default, PartialEq, Eq)] |
| pub struct Number { |
| /// The exponent of the float, scaled to the mantissa. |
| pub exponent: i32, |
| /// The significant digits of the float. |
| pub mantissa: u64, |
| /// If the significant digits were truncated. |
| pub many_digits: bool, |
| } |
| |
| impl Number { |
| /// Detect if the float can be accurately reconstructed from native floats. |
| #[inline] |
| pub fn is_fast_path<F: Float>(&self) -> bool { |
| F::MIN_EXPONENT_FAST_PATH <= self.exponent |
| && self.exponent <= F::MAX_EXPONENT_DISGUISED_FAST_PATH |
| && self.mantissa <= F::MAX_MANTISSA_FAST_PATH |
| && !self.many_digits |
| } |
| |
| /// The fast path algorithmn using machine-sized integers and floats. |
| /// |
| /// This is extracted into a separate function so that it can be attempted before constructing |
| /// a Decimal. This only works if both the mantissa and the exponent |
| /// can be exactly represented as a machine float, since IEE-754 guarantees |
| /// no rounding will occur. |
| /// |
| /// There is an exception: disguised fast-path cases, where we can shift |
| /// powers-of-10 from the exponent to the significant digits. |
| pub fn try_fast_path<F: Float>(&self) -> Option<F> { |
| // The fast path crucially depends on arithmetic being rounded to the correct number of bits |
| // without any intermediate rounding. On x86 (without SSE or SSE2) this requires the precision |
| // of the x87 FPU stack to be changed so that it directly rounds to 64/32 bit. |
| // The `set_precision` function takes care of setting the precision on architectures which |
| // require setting it by changing the global state (like the control word of the x87 FPU). |
| #[cfg(feature = "nightly")] |
| let _cw = set_precision::<F>(); |
| |
| if self.is_fast_path::<F>() { |
| let max_exponent = F::MAX_EXPONENT_FAST_PATH; |
| Some(if self.exponent <= max_exponent { |
| // normal fast path |
| let value = F::from_u64(self.mantissa); |
| if self.exponent < 0 { |
| // SAFETY: safe, since the `exponent <= max_exponent`. |
| value / unsafe { F::pow_fast_path((-self.exponent) as _) } |
| } else { |
| // SAFETY: safe, since the `exponent <= max_exponent`. |
| value * unsafe { F::pow_fast_path(self.exponent as _) } |
| } |
| } else { |
| // disguised fast path |
| let shift = self.exponent - max_exponent; |
| // SAFETY: safe, since `shift <= (max_disguised - max_exponent)`. |
| let int_power = unsafe { F::int_pow_fast_path(shift as usize, 10) }; |
| let mantissa = self.mantissa.checked_mul(int_power)?; |
| if mantissa > F::MAX_MANTISSA_FAST_PATH { |
| return None; |
| } |
| // SAFETY: safe, since the `table.len() - 1 == max_exponent`. |
| F::from_u64(mantissa) * unsafe { F::pow_fast_path(max_exponent as _) } |
| }) |
| } else { |
| None |
| } |
| } |
| } |