| //! Execution scheduling |
| //! |
| //! See Also |
| //! [sched.h](https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/sched.h.html) |
| use crate::{Errno, Result}; |
| |
| #[cfg(linux_android)] |
| pub use self::sched_linux_like::*; |
| |
| #[cfg(linux_android)] |
| mod sched_linux_like { |
| use crate::errno::Errno; |
| use crate::unistd::Pid; |
| use crate::Result; |
| use libc::{self, c_int, c_void}; |
| use std::mem; |
| use std::option::Option; |
| use std::os::unix::io::{AsFd, AsRawFd}; |
| |
| // For some functions taking with a parameter of type CloneFlags, |
| // only a subset of these flags have an effect. |
| libc_bitflags! { |
| /// Options for use with [`clone`] |
| pub struct CloneFlags: c_int { |
| /// The calling process and the child process run in the same |
| /// memory space. |
| CLONE_VM; |
| /// The caller and the child process share the same filesystem |
| /// information. |
| CLONE_FS; |
| /// The calling process and the child process share the same file |
| /// descriptor table. |
| CLONE_FILES; |
| /// The calling process and the child process share the same table |
| /// of signal handlers. |
| CLONE_SIGHAND; |
| /// If the calling process is being traced, then trace the child |
| /// also. |
| CLONE_PTRACE; |
| /// The execution of the calling process is suspended until the |
| /// child releases its virtual memory resources via a call to |
| /// execve(2) or _exit(2) (as with vfork(2)). |
| CLONE_VFORK; |
| /// The parent of the new child (as returned by getppid(2)) |
| /// will be the same as that of the calling process. |
| CLONE_PARENT; |
| /// The child is placed in the same thread group as the calling |
| /// process. |
| CLONE_THREAD; |
| /// The cloned child is started in a new mount namespace. |
| CLONE_NEWNS; |
| /// The child and the calling process share a single list of System |
| /// V semaphore adjustment values |
| CLONE_SYSVSEM; |
| // Not supported by Nix due to lack of varargs support in Rust FFI |
| // CLONE_SETTLS; |
| // Not supported by Nix due to lack of varargs support in Rust FFI |
| // CLONE_PARENT_SETTID; |
| // Not supported by Nix due to lack of varargs support in Rust FFI |
| // CLONE_CHILD_CLEARTID; |
| /// Unused since Linux 2.6.2 |
| #[deprecated(since = "0.23.0", note = "Deprecated by Linux 2.6.2")] |
| CLONE_DETACHED; |
| /// A tracing process cannot force `CLONE_PTRACE` on this child |
| /// process. |
| CLONE_UNTRACED; |
| // Not supported by Nix due to lack of varargs support in Rust FFI |
| // CLONE_CHILD_SETTID; |
| /// Create the process in a new cgroup namespace. |
| CLONE_NEWCGROUP; |
| /// Create the process in a new UTS namespace. |
| CLONE_NEWUTS; |
| /// Create the process in a new IPC namespace. |
| CLONE_NEWIPC; |
| /// Create the process in a new user namespace. |
| CLONE_NEWUSER; |
| /// Create the process in a new PID namespace. |
| CLONE_NEWPID; |
| /// Create the process in a new network namespace. |
| CLONE_NEWNET; |
| /// The new process shares an I/O context with the calling process. |
| CLONE_IO; |
| } |
| } |
| |
| /// Type for the function executed by [`clone`]. |
| pub type CloneCb<'a> = Box<dyn FnMut() -> isize + 'a>; |
| |
| /// `clone` create a child process |
| /// ([`clone(2)`](https://man7.org/linux/man-pages/man2/clone.2.html)) |
| /// |
| /// `stack` is a reference to an array which will hold the stack of the new |
| /// process. Unlike when calling `clone(2)` from C, the provided stack |
| /// address need not be the highest address of the region. Nix will take |
| /// care of that requirement. The user only needs to provide a reference to |
| /// a normally allocated buffer. |
| /// |
| /// # Safety |
| /// |
| /// Because `clone` creates a child process with its stack located in |
| /// `stack` without specifying the size of the stack, special care must be |
| /// taken to ensure that the child process does not overflow the provided |
| /// stack space. |
| /// |
| /// See [`fork`](crate::unistd::fork) for additional safety concerns related |
| /// to executing child processes. |
| pub unsafe fn clone( |
| mut cb: CloneCb, |
| stack: &mut [u8], |
| flags: CloneFlags, |
| signal: Option<c_int>, |
| ) -> Result<Pid> { |
| extern "C" fn callback(data: *mut CloneCb) -> c_int { |
| let cb: &mut CloneCb = unsafe { &mut *data }; |
| (*cb)() as c_int |
| } |
| |
| let combined = flags.bits() | signal.unwrap_or(0); |
| let res = unsafe { |
| let ptr = stack.as_mut_ptr().add(stack.len()); |
| let ptr_aligned = ptr.sub(ptr as usize % 16); |
| libc::clone( |
| mem::transmute( |
| callback |
| as extern "C" fn(*mut Box<dyn FnMut() -> isize>) -> i32, |
| ), |
| ptr_aligned as *mut c_void, |
| combined, |
| &mut cb as *mut _ as *mut c_void, |
| ) |
| }; |
| |
| Errno::result(res).map(Pid::from_raw) |
| } |
| |
| /// disassociate parts of the process execution context |
| /// |
| /// See also [unshare(2)](https://man7.org/linux/man-pages/man2/unshare.2.html) |
| pub fn unshare(flags: CloneFlags) -> Result<()> { |
| let res = unsafe { libc::unshare(flags.bits()) }; |
| |
| Errno::result(res).map(drop) |
| } |
| |
| /// reassociate thread with a namespace |
| /// |
| /// See also [setns(2)](https://man7.org/linux/man-pages/man2/setns.2.html) |
| pub fn setns<Fd: AsFd>(fd: Fd, nstype: CloneFlags) -> Result<()> { |
| let res = unsafe { libc::setns(fd.as_fd().as_raw_fd(), nstype.bits()) }; |
| |
| Errno::result(res).map(drop) |
| } |
| } |
| |
| #[cfg(any(linux_android, freebsdlike))] |
| pub use self::sched_affinity::*; |
| |
| #[cfg(any(linux_android, freebsdlike))] |
| mod sched_affinity { |
| use crate::errno::Errno; |
| use crate::unistd::Pid; |
| use crate::Result; |
| use std::mem; |
| |
| /// CpuSet represent a bit-mask of CPUs. |
| /// CpuSets are used by sched_setaffinity and |
| /// sched_getaffinity for example. |
| /// |
| /// This is a wrapper around `libc::cpu_set_t`. |
| #[repr(transparent)] |
| #[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)] |
| pub struct CpuSet { |
| #[cfg(not(target_os = "freebsd"))] |
| cpu_set: libc::cpu_set_t, |
| #[cfg(target_os = "freebsd")] |
| cpu_set: libc::cpuset_t, |
| } |
| |
| impl CpuSet { |
| /// Create a new and empty CpuSet. |
| pub fn new() -> CpuSet { |
| CpuSet { |
| cpu_set: unsafe { mem::zeroed() }, |
| } |
| } |
| |
| /// Test to see if a CPU is in the CpuSet. |
| /// `field` is the CPU id to test |
| pub fn is_set(&self, field: usize) -> Result<bool> { |
| if field >= CpuSet::count() { |
| Err(Errno::EINVAL) |
| } else { |
| Ok(unsafe { libc::CPU_ISSET(field, &self.cpu_set) }) |
| } |
| } |
| |
| /// Add a CPU to CpuSet. |
| /// `field` is the CPU id to add |
| pub fn set(&mut self, field: usize) -> Result<()> { |
| if field >= CpuSet::count() { |
| Err(Errno::EINVAL) |
| } else { |
| unsafe { |
| libc::CPU_SET(field, &mut self.cpu_set); |
| } |
| Ok(()) |
| } |
| } |
| |
| /// Remove a CPU from CpuSet. |
| /// `field` is the CPU id to remove |
| pub fn unset(&mut self, field: usize) -> Result<()> { |
| if field >= CpuSet::count() { |
| Err(Errno::EINVAL) |
| } else { |
| unsafe { |
| libc::CPU_CLR(field, &mut self.cpu_set); |
| } |
| Ok(()) |
| } |
| } |
| |
| /// Return the maximum number of CPU in CpuSet |
| pub const fn count() -> usize { |
| #[cfg(not(target_os = "freebsd"))] |
| let bytes = mem::size_of::<libc::cpu_set_t>(); |
| #[cfg(target_os = "freebsd")] |
| let bytes = mem::size_of::<libc::cpuset_t>(); |
| |
| 8 * bytes |
| } |
| } |
| |
| impl Default for CpuSet { |
| fn default() -> Self { |
| Self::new() |
| } |
| } |
| |
| /// `sched_setaffinity` set a thread's CPU affinity mask |
| /// ([`sched_setaffinity(2)`](https://man7.org/linux/man-pages/man2/sched_setaffinity.2.html)) |
| /// |
| /// `pid` is the thread ID to update. |
| /// If pid is zero, then the calling thread is updated. |
| /// |
| /// The `cpuset` argument specifies the set of CPUs on which the thread |
| /// will be eligible to run. |
| /// |
| /// # Example |
| /// |
| /// Binding the current thread to CPU 0 can be done as follows: |
| /// |
| /// ```rust,no_run |
| /// use nix::sched::{CpuSet, sched_setaffinity}; |
| /// use nix::unistd::Pid; |
| /// |
| /// let mut cpu_set = CpuSet::new(); |
| /// cpu_set.set(0).unwrap(); |
| /// sched_setaffinity(Pid::from_raw(0), &cpu_set).unwrap(); |
| /// ``` |
| pub fn sched_setaffinity(pid: Pid, cpuset: &CpuSet) -> Result<()> { |
| let res = unsafe { |
| libc::sched_setaffinity( |
| pid.into(), |
| mem::size_of::<CpuSet>() as libc::size_t, |
| &cpuset.cpu_set, |
| ) |
| }; |
| |
| Errno::result(res).map(drop) |
| } |
| |
| /// `sched_getaffinity` get a thread's CPU affinity mask |
| /// ([`sched_getaffinity(2)`](https://man7.org/linux/man-pages/man2/sched_getaffinity.2.html)) |
| /// |
| /// `pid` is the thread ID to check. |
| /// If pid is zero, then the calling thread is checked. |
| /// |
| /// Returned `cpuset` is the set of CPUs on which the thread |
| /// is eligible to run. |
| /// |
| /// # Example |
| /// |
| /// Checking if the current thread can run on CPU 0 can be done as follows: |
| /// |
| /// ```rust,no_run |
| /// use nix::sched::sched_getaffinity; |
| /// use nix::unistd::Pid; |
| /// |
| /// let cpu_set = sched_getaffinity(Pid::from_raw(0)).unwrap(); |
| /// if cpu_set.is_set(0).unwrap() { |
| /// println!("Current thread can run on CPU 0"); |
| /// } |
| /// ``` |
| pub fn sched_getaffinity(pid: Pid) -> Result<CpuSet> { |
| let mut cpuset = CpuSet::new(); |
| let res = unsafe { |
| libc::sched_getaffinity( |
| pid.into(), |
| mem::size_of::<CpuSet>() as libc::size_t, |
| &mut cpuset.cpu_set, |
| ) |
| }; |
| |
| Errno::result(res).and(Ok(cpuset)) |
| } |
| |
| /// Determines the CPU on which the calling thread is running. |
| pub fn sched_getcpu() -> Result<usize> { |
| let res = unsafe { libc::sched_getcpu() }; |
| |
| Errno::result(res).map(|int| int as usize) |
| } |
| } |
| |
| /// Explicitly yield the processor to other threads. |
| /// |
| /// [Further reading](https://pubs.opengroup.org/onlinepubs/9699919799/functions/sched_yield.html) |
| pub fn sched_yield() -> Result<()> { |
| let res = unsafe { libc::sched_yield() }; |
| |
| Errno::result(res).map(drop) |
| } |