| // Copyright 2013 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! Complex numbers. |
| //! |
| //! ## Compatibility |
| //! |
| //! The `num-complex` crate is tested for rustc 1.60 and greater. |
| |
| #![doc(html_root_url = "https://docs.rs/num-complex/0.4")] |
| #![no_std] |
| |
| #[cfg(any(test, feature = "std"))] |
| #[cfg_attr(test, macro_use)] |
| extern crate std; |
| |
| use core::fmt; |
| #[cfg(test)] |
| use core::hash; |
| use core::iter::{Product, Sum}; |
| use core::ops::{Add, Div, Mul, Neg, Rem, Sub}; |
| use core::str::FromStr; |
| #[cfg(feature = "std")] |
| use std::error::Error; |
| |
| use num_traits::{ConstOne, ConstZero, Inv, MulAdd, Num, One, Pow, Signed, Zero}; |
| |
| use num_traits::float::FloatCore; |
| #[cfg(any(feature = "std", feature = "libm"))] |
| use num_traits::float::{Float, FloatConst}; |
| |
| mod cast; |
| mod pow; |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| mod complex_float; |
| #[cfg(any(feature = "std", feature = "libm"))] |
| pub use crate::complex_float::ComplexFloat; |
| |
| #[cfg(feature = "rand")] |
| mod crand; |
| #[cfg(feature = "rand")] |
| pub use crate::crand::ComplexDistribution; |
| |
| // FIXME #1284: handle complex NaN & infinity etc. This |
| // probably doesn't map to C's _Complex correctly. |
| |
| /// A complex number in Cartesian form. |
| /// |
| /// ## Representation and Foreign Function Interface Compatibility |
| /// |
| /// `Complex<T>` is memory layout compatible with an array `[T; 2]`. |
| /// |
| /// Note that `Complex<F>` where F is a floating point type is **only** memory |
| /// layout compatible with C's complex types, **not** necessarily calling |
| /// convention compatible. This means that for FFI you can only pass |
| /// `Complex<F>` behind a pointer, not as a value. |
| /// |
| /// ## Examples |
| /// |
| /// Example of extern function declaration. |
| /// |
| /// ``` |
| /// use num_complex::Complex; |
| /// use std::os::raw::c_int; |
| /// |
| /// extern "C" { |
| /// fn zaxpy_(n: *const c_int, alpha: *const Complex<f64>, |
| /// x: *const Complex<f64>, incx: *const c_int, |
| /// y: *mut Complex<f64>, incy: *const c_int); |
| /// } |
| /// ``` |
| #[derive(PartialEq, Eq, Copy, Clone, Hash, Debug, Default)] |
| #[repr(C)] |
| #[cfg_attr( |
| feature = "rkyv", |
| derive(rkyv::Archive, rkyv::Serialize, rkyv::Deserialize) |
| )] |
| #[cfg_attr(feature = "rkyv", archive(as = "Complex<T::Archived>"))] |
| #[cfg_attr(feature = "bytecheck", derive(bytecheck::CheckBytes))] |
| pub struct Complex<T> { |
| /// Real portion of the complex number |
| pub re: T, |
| /// Imaginary portion of the complex number |
| pub im: T, |
| } |
| |
| /// Alias for a [`Complex<f32>`] |
| pub type Complex32 = Complex<f32>; |
| |
| /// Create a new [`Complex<f32>`] with arguments that can convert [`Into<f32>`]. |
| /// |
| /// ``` |
| /// use num_complex::{c32, Complex32}; |
| /// assert_eq!(c32(1u8, 2), Complex32::new(1.0, 2.0)); |
| /// ``` |
| /// |
| /// Note: ambiguous integer literals in Rust will [default] to `i32`, which does **not** implement |
| /// `Into<f32>`, so a call like `c32(1, 2)` will result in a type error. The example above uses a |
| /// suffixed `1u8` to set its type, and then the `2` can be inferred as the same type. |
| /// |
| /// [default]: https://doc.rust-lang.org/reference/expressions/literal-expr.html#integer-literal-expressions |
| #[inline] |
| pub fn c32<T: Into<f32>>(re: T, im: T) -> Complex32 { |
| Complex::new(re.into(), im.into()) |
| } |
| |
| /// Alias for a [`Complex<f64>`] |
| pub type Complex64 = Complex<f64>; |
| |
| /// Create a new [`Complex<f64>`] with arguments that can convert [`Into<f64>`]. |
| /// |
| /// ``` |
| /// use num_complex::{c64, Complex64}; |
| /// assert_eq!(c64(1, 2), Complex64::new(1.0, 2.0)); |
| /// ``` |
| #[inline] |
| pub fn c64<T: Into<f64>>(re: T, im: T) -> Complex64 { |
| Complex::new(re.into(), im.into()) |
| } |
| |
| impl<T> Complex<T> { |
| /// Create a new `Complex` |
| #[inline] |
| pub const fn new(re: T, im: T) -> Self { |
| Complex { re, im } |
| } |
| } |
| |
| impl<T: Clone + Num> Complex<T> { |
| /// Returns the imaginary unit. |
| /// |
| /// See also [`Complex::I`]. |
| #[inline] |
| pub fn i() -> Self { |
| Self::new(T::zero(), T::one()) |
| } |
| |
| /// Returns the square of the norm (since `T` doesn't necessarily |
| /// have a sqrt function), i.e. `re^2 + im^2`. |
| #[inline] |
| pub fn norm_sqr(&self) -> T { |
| self.re.clone() * self.re.clone() + self.im.clone() * self.im.clone() |
| } |
| |
| /// Multiplies `self` by the scalar `t`. |
| #[inline] |
| pub fn scale(&self, t: T) -> Self { |
| Self::new(self.re.clone() * t.clone(), self.im.clone() * t) |
| } |
| |
| /// Divides `self` by the scalar `t`. |
| #[inline] |
| pub fn unscale(&self, t: T) -> Self { |
| Self::new(self.re.clone() / t.clone(), self.im.clone() / t) |
| } |
| |
| /// Raises `self` to an unsigned integer power. |
| #[inline] |
| pub fn powu(&self, exp: u32) -> Self { |
| Pow::pow(self, exp) |
| } |
| } |
| |
| impl<T: Clone + Num + Neg<Output = T>> Complex<T> { |
| /// Returns the complex conjugate. i.e. `re - i im` |
| #[inline] |
| pub fn conj(&self) -> Self { |
| Self::new(self.re.clone(), -self.im.clone()) |
| } |
| |
| /// Returns `1/self` |
| #[inline] |
| pub fn inv(&self) -> Self { |
| let norm_sqr = self.norm_sqr(); |
| Self::new( |
| self.re.clone() / norm_sqr.clone(), |
| -self.im.clone() / norm_sqr, |
| ) |
| } |
| |
| /// Raises `self` to a signed integer power. |
| #[inline] |
| pub fn powi(&self, exp: i32) -> Self { |
| Pow::pow(self, exp) |
| } |
| } |
| |
| impl<T: Clone + Signed> Complex<T> { |
| /// Returns the L1 norm `|re| + |im|` -- the [Manhattan distance] from the origin. |
| /// |
| /// [Manhattan distance]: https://en.wikipedia.org/wiki/Taxicab_geometry |
| #[inline] |
| pub fn l1_norm(&self) -> T { |
| self.re.abs() + self.im.abs() |
| } |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| impl<T: Float> Complex<T> { |
| /// Create a new Complex with a given phase: `exp(i * phase)`. |
| /// See [cis (mathematics)](https://en.wikipedia.org/wiki/Cis_(mathematics)). |
| #[inline] |
| pub fn cis(phase: T) -> Self { |
| Self::new(phase.cos(), phase.sin()) |
| } |
| |
| /// Calculate |self| |
| #[inline] |
| pub fn norm(self) -> T { |
| self.re.hypot(self.im) |
| } |
| /// Calculate the principal Arg of self. |
| #[inline] |
| pub fn arg(self) -> T { |
| self.im.atan2(self.re) |
| } |
| /// Convert to polar form (r, theta), such that |
| /// `self = r * exp(i * theta)` |
| #[inline] |
| pub fn to_polar(self) -> (T, T) { |
| (self.norm(), self.arg()) |
| } |
| /// Convert a polar representation into a complex number. |
| #[inline] |
| pub fn from_polar(r: T, theta: T) -> Self { |
| Self::new(r * theta.cos(), r * theta.sin()) |
| } |
| |
| /// Computes `e^(self)`, where `e` is the base of the natural logarithm. |
| #[inline] |
| pub fn exp(self) -> Self { |
| // formula: e^(a + bi) = e^a (cos(b) + i*sin(b)) = from_polar(e^a, b) |
| |
| let Complex { re, mut im } = self; |
| // Treat the corner cases +∞, -∞, and NaN |
| if re.is_infinite() { |
| if re < T::zero() { |
| if !im.is_finite() { |
| return Self::new(T::zero(), T::zero()); |
| } |
| } else if im == T::zero() || !im.is_finite() { |
| if im.is_infinite() { |
| im = T::nan(); |
| } |
| return Self::new(re, im); |
| } |
| } else if re.is_nan() && im == T::zero() { |
| return self; |
| } |
| |
| Self::from_polar(re.exp(), im) |
| } |
| |
| /// Computes the principal value of natural logarithm of `self`. |
| /// |
| /// This function has one branch cut: |
| /// |
| /// * `(-∞, 0]`, continuous from above. |
| /// |
| /// The branch satisfies `-π ≤ arg(ln(z)) ≤ π`. |
| #[inline] |
| pub fn ln(self) -> Self { |
| // formula: ln(z) = ln|z| + i*arg(z) |
| let (r, theta) = self.to_polar(); |
| Self::new(r.ln(), theta) |
| } |
| |
| /// Computes the principal value of the square root of `self`. |
| /// |
| /// This function has one branch cut: |
| /// |
| /// * `(-∞, 0)`, continuous from above. |
| /// |
| /// The branch satisfies `-π/2 ≤ arg(sqrt(z)) ≤ π/2`. |
| #[inline] |
| pub fn sqrt(self) -> Self { |
| if self.im.is_zero() { |
| if self.re.is_sign_positive() { |
| // simple positive real √r, and copy `im` for its sign |
| Self::new(self.re.sqrt(), self.im) |
| } else { |
| // √(r e^(iπ)) = √r e^(iπ/2) = i√r |
| // √(r e^(-iπ)) = √r e^(-iπ/2) = -i√r |
| let re = T::zero(); |
| let im = (-self.re).sqrt(); |
| if self.im.is_sign_positive() { |
| Self::new(re, im) |
| } else { |
| Self::new(re, -im) |
| } |
| } |
| } else if self.re.is_zero() { |
| // √(r e^(iπ/2)) = √r e^(iπ/4) = √(r/2) + i√(r/2) |
| // √(r e^(-iπ/2)) = √r e^(-iπ/4) = √(r/2) - i√(r/2) |
| let one = T::one(); |
| let two = one + one; |
| let x = (self.im.abs() / two).sqrt(); |
| if self.im.is_sign_positive() { |
| Self::new(x, x) |
| } else { |
| Self::new(x, -x) |
| } |
| } else { |
| // formula: sqrt(r e^(it)) = sqrt(r) e^(it/2) |
| let one = T::one(); |
| let two = one + one; |
| let (r, theta) = self.to_polar(); |
| Self::from_polar(r.sqrt(), theta / two) |
| } |
| } |
| |
| /// Computes the principal value of the cube root of `self`. |
| /// |
| /// This function has one branch cut: |
| /// |
| /// * `(-∞, 0)`, continuous from above. |
| /// |
| /// The branch satisfies `-π/3 ≤ arg(cbrt(z)) ≤ π/3`. |
| /// |
| /// Note that this does not match the usual result for the cube root of |
| /// negative real numbers. For example, the real cube root of `-8` is `-2`, |
| /// but the principal complex cube root of `-8` is `1 + i√3`. |
| #[inline] |
| pub fn cbrt(self) -> Self { |
| if self.im.is_zero() { |
| if self.re.is_sign_positive() { |
| // simple positive real ∛r, and copy `im` for its sign |
| Self::new(self.re.cbrt(), self.im) |
| } else { |
| // ∛(r e^(iπ)) = ∛r e^(iπ/3) = ∛r/2 + i∛r√3/2 |
| // ∛(r e^(-iπ)) = ∛r e^(-iπ/3) = ∛r/2 - i∛r√3/2 |
| let one = T::one(); |
| let two = one + one; |
| let three = two + one; |
| let re = (-self.re).cbrt() / two; |
| let im = three.sqrt() * re; |
| if self.im.is_sign_positive() { |
| Self::new(re, im) |
| } else { |
| Self::new(re, -im) |
| } |
| } |
| } else if self.re.is_zero() { |
| // ∛(r e^(iπ/2)) = ∛r e^(iπ/6) = ∛r√3/2 + i∛r/2 |
| // ∛(r e^(-iπ/2)) = ∛r e^(-iπ/6) = ∛r√3/2 - i∛r/2 |
| let one = T::one(); |
| let two = one + one; |
| let three = two + one; |
| let im = self.im.abs().cbrt() / two; |
| let re = three.sqrt() * im; |
| if self.im.is_sign_positive() { |
| Self::new(re, im) |
| } else { |
| Self::new(re, -im) |
| } |
| } else { |
| // formula: cbrt(r e^(it)) = cbrt(r) e^(it/3) |
| let one = T::one(); |
| let three = one + one + one; |
| let (r, theta) = self.to_polar(); |
| Self::from_polar(r.cbrt(), theta / three) |
| } |
| } |
| |
| /// Raises `self` to a floating point power. |
| #[inline] |
| pub fn powf(self, exp: T) -> Self { |
| if exp.is_zero() { |
| return Self::one(); |
| } |
| // formula: x^y = (ρ e^(i θ))^y = ρ^y e^(i θ y) |
| // = from_polar(ρ^y, θ y) |
| let (r, theta) = self.to_polar(); |
| Self::from_polar(r.powf(exp), theta * exp) |
| } |
| |
| /// Returns the logarithm of `self` with respect to an arbitrary base. |
| #[inline] |
| pub fn log(self, base: T) -> Self { |
| // formula: log_y(x) = log_y(ρ e^(i θ)) |
| // = log_y(ρ) + log_y(e^(i θ)) = log_y(ρ) + ln(e^(i θ)) / ln(y) |
| // = log_y(ρ) + i θ / ln(y) |
| let (r, theta) = self.to_polar(); |
| Self::new(r.log(base), theta / base.ln()) |
| } |
| |
| /// Raises `self` to a complex power. |
| #[inline] |
| pub fn powc(self, exp: Self) -> Self { |
| if exp.is_zero() { |
| return Self::one(); |
| } |
| // formula: x^y = exp(y * ln(x)) |
| (exp * self.ln()).exp() |
| } |
| |
| /// Raises a floating point number to the complex power `self`. |
| #[inline] |
| pub fn expf(self, base: T) -> Self { |
| // formula: x^(a+bi) = x^a x^bi = x^a e^(b ln(x) i) |
| // = from_polar(x^a, b ln(x)) |
| Self::from_polar(base.powf(self.re), self.im * base.ln()) |
| } |
| |
| /// Computes the sine of `self`. |
| #[inline] |
| pub fn sin(self) -> Self { |
| // formula: sin(a + bi) = sin(a)cosh(b) + i*cos(a)sinh(b) |
| Self::new( |
| self.re.sin() * self.im.cosh(), |
| self.re.cos() * self.im.sinh(), |
| ) |
| } |
| |
| /// Computes the cosine of `self`. |
| #[inline] |
| pub fn cos(self) -> Self { |
| // formula: cos(a + bi) = cos(a)cosh(b) - i*sin(a)sinh(b) |
| Self::new( |
| self.re.cos() * self.im.cosh(), |
| -self.re.sin() * self.im.sinh(), |
| ) |
| } |
| |
| /// Computes the tangent of `self`. |
| #[inline] |
| pub fn tan(self) -> Self { |
| // formula: tan(a + bi) = (sin(2a) + i*sinh(2b))/(cos(2a) + cosh(2b)) |
| let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
| Self::new(two_re.sin(), two_im.sinh()).unscale(two_re.cos() + two_im.cosh()) |
| } |
| |
| /// Computes the principal value of the inverse sine of `self`. |
| /// |
| /// This function has two branch cuts: |
| /// |
| /// * `(-∞, -1)`, continuous from above. |
| /// * `(1, ∞)`, continuous from below. |
| /// |
| /// The branch satisfies `-π/2 ≤ Re(asin(z)) ≤ π/2`. |
| #[inline] |
| pub fn asin(self) -> Self { |
| // formula: arcsin(z) = -i ln(sqrt(1-z^2) + iz) |
| let i = Self::i(); |
| -i * ((Self::one() - self * self).sqrt() + i * self).ln() |
| } |
| |
| /// Computes the principal value of the inverse cosine of `self`. |
| /// |
| /// This function has two branch cuts: |
| /// |
| /// * `(-∞, -1)`, continuous from above. |
| /// * `(1, ∞)`, continuous from below. |
| /// |
| /// The branch satisfies `0 ≤ Re(acos(z)) ≤ π`. |
| #[inline] |
| pub fn acos(self) -> Self { |
| // formula: arccos(z) = -i ln(i sqrt(1-z^2) + z) |
| let i = Self::i(); |
| -i * (i * (Self::one() - self * self).sqrt() + self).ln() |
| } |
| |
| /// Computes the principal value of the inverse tangent of `self`. |
| /// |
| /// This function has two branch cuts: |
| /// |
| /// * `(-∞i, -i]`, continuous from the left. |
| /// * `[i, ∞i)`, continuous from the right. |
| /// |
| /// The branch satisfies `-π/2 ≤ Re(atan(z)) ≤ π/2`. |
| #[inline] |
| pub fn atan(self) -> Self { |
| // formula: arctan(z) = (ln(1+iz) - ln(1-iz))/(2i) |
| let i = Self::i(); |
| let one = Self::one(); |
| let two = one + one; |
| if self == i { |
| return Self::new(T::zero(), T::infinity()); |
| } else if self == -i { |
| return Self::new(T::zero(), -T::infinity()); |
| } |
| ((one + i * self).ln() - (one - i * self).ln()) / (two * i) |
| } |
| |
| /// Computes the hyperbolic sine of `self`. |
| #[inline] |
| pub fn sinh(self) -> Self { |
| // formula: sinh(a + bi) = sinh(a)cos(b) + i*cosh(a)sin(b) |
| Self::new( |
| self.re.sinh() * self.im.cos(), |
| self.re.cosh() * self.im.sin(), |
| ) |
| } |
| |
| /// Computes the hyperbolic cosine of `self`. |
| #[inline] |
| pub fn cosh(self) -> Self { |
| // formula: cosh(a + bi) = cosh(a)cos(b) + i*sinh(a)sin(b) |
| Self::new( |
| self.re.cosh() * self.im.cos(), |
| self.re.sinh() * self.im.sin(), |
| ) |
| } |
| |
| /// Computes the hyperbolic tangent of `self`. |
| #[inline] |
| pub fn tanh(self) -> Self { |
| // formula: tanh(a + bi) = (sinh(2a) + i*sin(2b))/(cosh(2a) + cos(2b)) |
| let (two_re, two_im) = (self.re + self.re, self.im + self.im); |
| Self::new(two_re.sinh(), two_im.sin()).unscale(two_re.cosh() + two_im.cos()) |
| } |
| |
| /// Computes the principal value of inverse hyperbolic sine of `self`. |
| /// |
| /// This function has two branch cuts: |
| /// |
| /// * `(-∞i, -i)`, continuous from the left. |
| /// * `(i, ∞i)`, continuous from the right. |
| /// |
| /// The branch satisfies `-π/2 ≤ Im(asinh(z)) ≤ π/2`. |
| #[inline] |
| pub fn asinh(self) -> Self { |
| // formula: arcsinh(z) = ln(z + sqrt(1+z^2)) |
| let one = Self::one(); |
| (self + (one + self * self).sqrt()).ln() |
| } |
| |
| /// Computes the principal value of inverse hyperbolic cosine of `self`. |
| /// |
| /// This function has one branch cut: |
| /// |
| /// * `(-∞, 1)`, continuous from above. |
| /// |
| /// The branch satisfies `-π ≤ Im(acosh(z)) ≤ π` and `0 ≤ Re(acosh(z)) < ∞`. |
| #[inline] |
| pub fn acosh(self) -> Self { |
| // formula: arccosh(z) = 2 ln(sqrt((z+1)/2) + sqrt((z-1)/2)) |
| let one = Self::one(); |
| let two = one + one; |
| two * (((self + one) / two).sqrt() + ((self - one) / two).sqrt()).ln() |
| } |
| |
| /// Computes the principal value of inverse hyperbolic tangent of `self`. |
| /// |
| /// This function has two branch cuts: |
| /// |
| /// * `(-∞, -1]`, continuous from above. |
| /// * `[1, ∞)`, continuous from below. |
| /// |
| /// The branch satisfies `-π/2 ≤ Im(atanh(z)) ≤ π/2`. |
| #[inline] |
| pub fn atanh(self) -> Self { |
| // formula: arctanh(z) = (ln(1+z) - ln(1-z))/2 |
| let one = Self::one(); |
| let two = one + one; |
| if self == one { |
| return Self::new(T::infinity(), T::zero()); |
| } else if self == -one { |
| return Self::new(-T::infinity(), T::zero()); |
| } |
| ((one + self).ln() - (one - self).ln()) / two |
| } |
| |
| /// Returns `1/self` using floating-point operations. |
| /// |
| /// This may be more accurate than the generic `self.inv()` in cases |
| /// where `self.norm_sqr()` would overflow to ∞ or underflow to 0. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_complex::Complex64; |
| /// let c = Complex64::new(1e300, 1e300); |
| /// |
| /// // The generic `inv()` will overflow. |
| /// assert!(!c.inv().is_normal()); |
| /// |
| /// // But we can do better for `Float` types. |
| /// let inv = c.finv(); |
| /// assert!(inv.is_normal()); |
| /// println!("{:e}", inv); |
| /// |
| /// let expected = Complex64::new(5e-301, -5e-301); |
| /// assert!((inv - expected).norm() < 1e-315); |
| /// ``` |
| #[inline] |
| pub fn finv(self) -> Complex<T> { |
| let norm = self.norm(); |
| self.conj() / norm / norm |
| } |
| |
| /// Returns `self/other` using floating-point operations. |
| /// |
| /// This may be more accurate than the generic `Div` implementation in cases |
| /// where `other.norm_sqr()` would overflow to ∞ or underflow to 0. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_complex::Complex64; |
| /// let a = Complex64::new(2.0, 3.0); |
| /// let b = Complex64::new(1e300, 1e300); |
| /// |
| /// // Generic division will overflow. |
| /// assert!(!(a / b).is_normal()); |
| /// |
| /// // But we can do better for `Float` types. |
| /// let quotient = a.fdiv(b); |
| /// assert!(quotient.is_normal()); |
| /// println!("{:e}", quotient); |
| /// |
| /// let expected = Complex64::new(2.5e-300, 5e-301); |
| /// assert!((quotient - expected).norm() < 1e-315); |
| /// ``` |
| #[inline] |
| pub fn fdiv(self, other: Complex<T>) -> Complex<T> { |
| self * other.finv() |
| } |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| impl<T: Float + FloatConst> Complex<T> { |
| /// Computes `2^(self)`. |
| #[inline] |
| pub fn exp2(self) -> Self { |
| // formula: 2^(a + bi) = 2^a (cos(b*log2) + i*sin(b*log2)) |
| // = from_polar(2^a, b*log2) |
| Self::from_polar(self.re.exp2(), self.im * T::LN_2()) |
| } |
| |
| /// Computes the principal value of log base 2 of `self`. |
| #[inline] |
| pub fn log2(self) -> Self { |
| Self::ln(self) / T::LN_2() |
| } |
| |
| /// Computes the principal value of log base 10 of `self`. |
| #[inline] |
| pub fn log10(self) -> Self { |
| Self::ln(self) / T::LN_10() |
| } |
| } |
| |
| impl<T: FloatCore> Complex<T> { |
| /// Checks if the given complex number is NaN |
| #[inline] |
| pub fn is_nan(self) -> bool { |
| self.re.is_nan() || self.im.is_nan() |
| } |
| |
| /// Checks if the given complex number is infinite |
| #[inline] |
| pub fn is_infinite(self) -> bool { |
| !self.is_nan() && (self.re.is_infinite() || self.im.is_infinite()) |
| } |
| |
| /// Checks if the given complex number is finite |
| #[inline] |
| pub fn is_finite(self) -> bool { |
| self.re.is_finite() && self.im.is_finite() |
| } |
| |
| /// Checks if the given complex number is normal |
| #[inline] |
| pub fn is_normal(self) -> bool { |
| self.re.is_normal() && self.im.is_normal() |
| } |
| } |
| |
| // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
| // can guarantee it contains no *added* padding. Thus, if `T: Zeroable`, |
| // `Complex<T>` is also `Zeroable` |
| #[cfg(feature = "bytemuck")] |
| unsafe impl<T: bytemuck::Zeroable> bytemuck::Zeroable for Complex<T> {} |
| |
| // Safety: `Complex<T>` is `repr(C)` and contains only instances of `T`, so we |
| // can guarantee it contains no *added* padding. Thus, if `T: Pod`, |
| // `Complex<T>` is also `Pod` |
| #[cfg(feature = "bytemuck")] |
| unsafe impl<T: bytemuck::Pod> bytemuck::Pod for Complex<T> {} |
| |
| impl<T: Clone + Num> From<T> for Complex<T> { |
| #[inline] |
| fn from(re: T) -> Self { |
| Self::new(re, T::zero()) |
| } |
| } |
| |
| impl<'a, T: Clone + Num> From<&'a T> for Complex<T> { |
| #[inline] |
| fn from(re: &T) -> Self { |
| From::from(re.clone()) |
| } |
| } |
| |
| macro_rules! forward_ref_ref_binop { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, 'b, T: Clone + Num> $imp<&'b Complex<T>> for &'a Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn $method(self, other: &Complex<T>) -> Self::Output { |
| self.clone().$method(other.clone()) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! forward_ref_val_binop { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, T: Clone + Num> $imp<Complex<T>> for &'a Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn $method(self, other: Complex<T>) -> Self::Output { |
| self.clone().$method(other) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! forward_val_ref_binop { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, T: Clone + Num> $imp<&'a Complex<T>> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn $method(self, other: &Complex<T>) -> Self::Output { |
| self.$method(other.clone()) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! forward_all_binop { |
| (impl $imp:ident, $method:ident) => { |
| forward_ref_ref_binop!(impl $imp, $method); |
| forward_ref_val_binop!(impl $imp, $method); |
| forward_val_ref_binop!(impl $imp, $method); |
| }; |
| } |
| |
| // arithmetic |
| forward_all_binop!(impl Add, add); |
| |
| // (a + i b) + (c + i d) == (a + c) + i (b + d) |
| impl<T: Clone + Num> Add<Complex<T>> for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn add(self, other: Self) -> Self::Output { |
| Self::Output::new(self.re + other.re, self.im + other.im) |
| } |
| } |
| |
| forward_all_binop!(impl Sub, sub); |
| |
| // (a + i b) - (c + i d) == (a - c) + i (b - d) |
| impl<T: Clone + Num> Sub<Complex<T>> for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn sub(self, other: Self) -> Self::Output { |
| Self::Output::new(self.re - other.re, self.im - other.im) |
| } |
| } |
| |
| forward_all_binop!(impl Mul, mul); |
| |
| // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
| impl<T: Clone + Num> Mul<Complex<T>> for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn mul(self, other: Self) -> Self::Output { |
| let re = self.re.clone() * other.re.clone() - self.im.clone() * other.im.clone(); |
| let im = self.re * other.im + self.im * other.re; |
| Self::Output::new(re, im) |
| } |
| } |
| |
| // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (a*d + (b*c + f)) |
| impl<T: Clone + Num + MulAdd<Output = T>> MulAdd<Complex<T>> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn mul_add(self, other: Complex<T>, add: Complex<T>) -> Complex<T> { |
| let re = self.re.clone().mul_add(other.re.clone(), add.re) |
| - (self.im.clone() * other.im.clone()); // FIXME: use mulsub when available in rust |
| let im = self.re.mul_add(other.im, self.im.mul_add(other.re, add.im)); |
| Complex::new(re, im) |
| } |
| } |
| impl<'a, 'b, T: Clone + Num + MulAdd<Output = T>> MulAdd<&'b Complex<T>> for &'a Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn mul_add(self, other: &Complex<T>, add: &Complex<T>) -> Complex<T> { |
| self.clone().mul_add(other.clone(), add.clone()) |
| } |
| } |
| |
| forward_all_binop!(impl Div, div); |
| |
| // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
| // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
| impl<T: Clone + Num> Div<Complex<T>> for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn div(self, other: Self) -> Self::Output { |
| let norm_sqr = other.norm_sqr(); |
| let re = self.re.clone() * other.re.clone() + self.im.clone() * other.im.clone(); |
| let im = self.im * other.re - self.re * other.im; |
| Self::Output::new(re / norm_sqr.clone(), im / norm_sqr) |
| } |
| } |
| |
| forward_all_binop!(impl Rem, rem); |
| |
| impl<T: Clone + Num> Complex<T> { |
| /// Find the gaussian integer corresponding to the true ratio rounded towards zero. |
| fn div_trunc(&self, divisor: &Self) -> Self { |
| let Complex { re, im } = self / divisor; |
| Complex::new(re.clone() - re % T::one(), im.clone() - im % T::one()) |
| } |
| } |
| |
| impl<T: Clone + Num> Rem<Complex<T>> for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn rem(self, modulus: Self) -> Self::Output { |
| let gaussian = self.div_trunc(&modulus); |
| self - modulus * gaussian |
| } |
| } |
| |
| // Op Assign |
| |
| mod opassign { |
| use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
| |
| use num_traits::{MulAddAssign, NumAssign}; |
| |
| use crate::Complex; |
| |
| impl<T: Clone + NumAssign> AddAssign for Complex<T> { |
| fn add_assign(&mut self, other: Self) { |
| self.re += other.re; |
| self.im += other.im; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> SubAssign for Complex<T> { |
| fn sub_assign(&mut self, other: Self) { |
| self.re -= other.re; |
| self.im -= other.im; |
| } |
| } |
| |
| // (a + i b) * (c + i d) == (a*c - b*d) + i (a*d + b*c) |
| impl<T: Clone + NumAssign> MulAssign for Complex<T> { |
| fn mul_assign(&mut self, other: Self) { |
| let a = self.re.clone(); |
| |
| self.re *= other.re.clone(); |
| self.re -= self.im.clone() * other.im.clone(); |
| |
| self.im *= other.re; |
| self.im += a * other.im; |
| } |
| } |
| |
| // (a + i b) * (c + i d) + (e + i f) == ((a*c + e) - b*d) + i (b*c + (a*d + f)) |
| impl<T: Clone + NumAssign + MulAddAssign> MulAddAssign for Complex<T> { |
| fn mul_add_assign(&mut self, other: Complex<T>, add: Complex<T>) { |
| let a = self.re.clone(); |
| |
| self.re.mul_add_assign(other.re.clone(), add.re); // (a*c + e) |
| self.re -= self.im.clone() * other.im.clone(); // ((a*c + e) - b*d) |
| |
| let mut adf = a; |
| adf.mul_add_assign(other.im, add.im); // (a*d + f) |
| self.im.mul_add_assign(other.re, adf); // (b*c + (a*d + f)) |
| } |
| } |
| |
| impl<'a, 'b, T: Clone + NumAssign + MulAddAssign> MulAddAssign<&'a Complex<T>, &'b Complex<T>> |
| for Complex<T> |
| { |
| fn mul_add_assign(&mut self, other: &Complex<T>, add: &Complex<T>) { |
| self.mul_add_assign(other.clone(), add.clone()); |
| } |
| } |
| |
| // (a + i b) / (c + i d) == [(a + i b) * (c - i d)] / (c*c + d*d) |
| // == [(a*c + b*d) / (c*c + d*d)] + i [(b*c - a*d) / (c*c + d*d)] |
| impl<T: Clone + NumAssign> DivAssign for Complex<T> { |
| fn div_assign(&mut self, other: Self) { |
| let a = self.re.clone(); |
| let norm_sqr = other.norm_sqr(); |
| |
| self.re *= other.re.clone(); |
| self.re += self.im.clone() * other.im.clone(); |
| self.re /= norm_sqr.clone(); |
| |
| self.im *= other.re; |
| self.im -= a * other.im; |
| self.im /= norm_sqr; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> RemAssign for Complex<T> { |
| fn rem_assign(&mut self, modulus: Self) { |
| let gaussian = self.div_trunc(&modulus); |
| *self -= modulus * gaussian; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> AddAssign<T> for Complex<T> { |
| fn add_assign(&mut self, other: T) { |
| self.re += other; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> SubAssign<T> for Complex<T> { |
| fn sub_assign(&mut self, other: T) { |
| self.re -= other; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> MulAssign<T> for Complex<T> { |
| fn mul_assign(&mut self, other: T) { |
| self.re *= other.clone(); |
| self.im *= other; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> DivAssign<T> for Complex<T> { |
| fn div_assign(&mut self, other: T) { |
| self.re /= other.clone(); |
| self.im /= other; |
| } |
| } |
| |
| impl<T: Clone + NumAssign> RemAssign<T> for Complex<T> { |
| fn rem_assign(&mut self, other: T) { |
| self.re %= other.clone(); |
| self.im %= other; |
| } |
| } |
| |
| macro_rules! forward_op_assign { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, T: Clone + NumAssign> $imp<&'a Complex<T>> for Complex<T> { |
| #[inline] |
| fn $method(&mut self, other: &Self) { |
| self.$method(other.clone()) |
| } |
| } |
| impl<'a, T: Clone + NumAssign> $imp<&'a T> for Complex<T> { |
| #[inline] |
| fn $method(&mut self, other: &T) { |
| self.$method(other.clone()) |
| } |
| } |
| }; |
| } |
| |
| forward_op_assign!(impl AddAssign, add_assign); |
| forward_op_assign!(impl SubAssign, sub_assign); |
| forward_op_assign!(impl MulAssign, mul_assign); |
| forward_op_assign!(impl DivAssign, div_assign); |
| forward_op_assign!(impl RemAssign, rem_assign); |
| } |
| |
| impl<T: Clone + Num + Neg<Output = T>> Neg for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn neg(self) -> Self::Output { |
| Self::Output::new(-self.re, -self.im) |
| } |
| } |
| |
| impl<'a, T: Clone + Num + Neg<Output = T>> Neg for &'a Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn neg(self) -> Self::Output { |
| -self.clone() |
| } |
| } |
| |
| impl<T: Clone + Num + Neg<Output = T>> Inv for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn inv(self) -> Self::Output { |
| Complex::inv(&self) |
| } |
| } |
| |
| impl<'a, T: Clone + Num + Neg<Output = T>> Inv for &'a Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn inv(self) -> Self::Output { |
| Complex::inv(self) |
| } |
| } |
| |
| macro_rules! real_arithmetic { |
| (@forward $imp:ident::$method:ident for $($real:ident),*) => ( |
| impl<'a, T: Clone + Num> $imp<&'a T> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn $method(self, other: &T) -> Self::Output { |
| self.$method(other.clone()) |
| } |
| } |
| impl<'a, T: Clone + Num> $imp<T> for &'a Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn $method(self, other: T) -> Self::Output { |
| self.clone().$method(other) |
| } |
| } |
| impl<'a, 'b, T: Clone + Num> $imp<&'a T> for &'b Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn $method(self, other: &T) -> Self::Output { |
| self.clone().$method(other.clone()) |
| } |
| } |
| $( |
| impl<'a> $imp<&'a Complex<$real>> for $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
| self.$method(other.clone()) |
| } |
| } |
| impl<'a> $imp<Complex<$real>> for &'a $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn $method(self, other: Complex<$real>) -> Complex<$real> { |
| self.clone().$method(other) |
| } |
| } |
| impl<'a, 'b> $imp<&'a Complex<$real>> for &'b $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn $method(self, other: &Complex<$real>) -> Complex<$real> { |
| self.clone().$method(other.clone()) |
| } |
| } |
| )* |
| ); |
| ($($real:ident),*) => ( |
| real_arithmetic!(@forward Add::add for $($real),*); |
| real_arithmetic!(@forward Sub::sub for $($real),*); |
| real_arithmetic!(@forward Mul::mul for $($real),*); |
| real_arithmetic!(@forward Div::div for $($real),*); |
| real_arithmetic!(@forward Rem::rem for $($real),*); |
| |
| $( |
| impl Add<Complex<$real>> for $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn add(self, other: Complex<$real>) -> Self::Output { |
| Self::Output::new(self + other.re, other.im) |
| } |
| } |
| |
| impl Sub<Complex<$real>> for $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn sub(self, other: Complex<$real>) -> Self::Output { |
| Self::Output::new(self - other.re, $real::zero() - other.im) |
| } |
| } |
| |
| impl Mul<Complex<$real>> for $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn mul(self, other: Complex<$real>) -> Self::Output { |
| Self::Output::new(self * other.re, self * other.im) |
| } |
| } |
| |
| impl Div<Complex<$real>> for $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn div(self, other: Complex<$real>) -> Self::Output { |
| // a / (c + i d) == [a * (c - i d)] / (c*c + d*d) |
| let norm_sqr = other.norm_sqr(); |
| Self::Output::new(self * other.re / norm_sqr.clone(), |
| $real::zero() - self * other.im / norm_sqr) |
| } |
| } |
| |
| impl Rem<Complex<$real>> for $real { |
| type Output = Complex<$real>; |
| |
| #[inline] |
| fn rem(self, other: Complex<$real>) -> Self::Output { |
| Self::Output::new(self, Self::zero()) % other |
| } |
| } |
| )* |
| ); |
| } |
| |
| impl<T: Clone + Num> Add<T> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn add(self, other: T) -> Self::Output { |
| Self::Output::new(self.re + other, self.im) |
| } |
| } |
| |
| impl<T: Clone + Num> Sub<T> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn sub(self, other: T) -> Self::Output { |
| Self::Output::new(self.re - other, self.im) |
| } |
| } |
| |
| impl<T: Clone + Num> Mul<T> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn mul(self, other: T) -> Self::Output { |
| Self::Output::new(self.re * other.clone(), self.im * other) |
| } |
| } |
| |
| impl<T: Clone + Num> Div<T> for Complex<T> { |
| type Output = Self; |
| |
| #[inline] |
| fn div(self, other: T) -> Self::Output { |
| Self::Output::new(self.re / other.clone(), self.im / other) |
| } |
| } |
| |
| impl<T: Clone + Num> Rem<T> for Complex<T> { |
| type Output = Complex<T>; |
| |
| #[inline] |
| fn rem(self, other: T) -> Self::Output { |
| Self::Output::new(self.re % other.clone(), self.im % other) |
| } |
| } |
| |
| real_arithmetic!(usize, u8, u16, u32, u64, u128, isize, i8, i16, i32, i64, i128, f32, f64); |
| |
| // constants |
| impl<T: ConstZero> Complex<T> { |
| /// A constant `Complex` 0. |
| pub const ZERO: Self = Self::new(T::ZERO, T::ZERO); |
| } |
| |
| impl<T: Clone + Num + ConstZero> ConstZero for Complex<T> { |
| const ZERO: Self = Self::ZERO; |
| } |
| |
| impl<T: Clone + Num> Zero for Complex<T> { |
| #[inline] |
| fn zero() -> Self { |
| Self::new(Zero::zero(), Zero::zero()) |
| } |
| |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.re.is_zero() && self.im.is_zero() |
| } |
| |
| #[inline] |
| fn set_zero(&mut self) { |
| self.re.set_zero(); |
| self.im.set_zero(); |
| } |
| } |
| |
| impl<T: ConstOne + ConstZero> Complex<T> { |
| /// A constant `Complex` 1. |
| pub const ONE: Self = Self::new(T::ONE, T::ZERO); |
| |
| /// A constant `Complex` _i_, the imaginary unit. |
| pub const I: Self = Self::new(T::ZERO, T::ONE); |
| } |
| |
| impl<T: Clone + Num + ConstOne + ConstZero> ConstOne for Complex<T> { |
| const ONE: Self = Self::ONE; |
| } |
| |
| impl<T: Clone + Num> One for Complex<T> { |
| #[inline] |
| fn one() -> Self { |
| Self::new(One::one(), Zero::zero()) |
| } |
| |
| #[inline] |
| fn is_one(&self) -> bool { |
| self.re.is_one() && self.im.is_zero() |
| } |
| |
| #[inline] |
| fn set_one(&mut self) { |
| self.re.set_one(); |
| self.im.set_zero(); |
| } |
| } |
| |
| macro_rules! write_complex { |
| ($f:ident, $t:expr, $prefix:expr, $re:expr, $im:expr, $T:ident) => {{ |
| let abs_re = if $re < Zero::zero() { |
| $T::zero() - $re.clone() |
| } else { |
| $re.clone() |
| }; |
| let abs_im = if $im < Zero::zero() { |
| $T::zero() - $im.clone() |
| } else { |
| $im.clone() |
| }; |
| |
| return if let Some(prec) = $f.precision() { |
| fmt_re_im( |
| $f, |
| $re < $T::zero(), |
| $im < $T::zero(), |
| format_args!(concat!("{:.1$", $t, "}"), abs_re, prec), |
| format_args!(concat!("{:.1$", $t, "}"), abs_im, prec), |
| ) |
| } else { |
| fmt_re_im( |
| $f, |
| $re < $T::zero(), |
| $im < $T::zero(), |
| format_args!(concat!("{:", $t, "}"), abs_re), |
| format_args!(concat!("{:", $t, "}"), abs_im), |
| ) |
| }; |
| |
| fn fmt_re_im( |
| f: &mut fmt::Formatter<'_>, |
| re_neg: bool, |
| im_neg: bool, |
| real: fmt::Arguments<'_>, |
| imag: fmt::Arguments<'_>, |
| ) -> fmt::Result { |
| let prefix = if f.alternate() { $prefix } else { "" }; |
| let sign = if re_neg { |
| "-" |
| } else if f.sign_plus() { |
| "+" |
| } else { |
| "" |
| }; |
| |
| if im_neg { |
| fmt_complex( |
| f, |
| format_args!( |
| "{}{pre}{re}-{pre}{im}i", |
| sign, |
| re = real, |
| im = imag, |
| pre = prefix |
| ), |
| ) |
| } else { |
| fmt_complex( |
| f, |
| format_args!( |
| "{}{pre}{re}+{pre}{im}i", |
| sign, |
| re = real, |
| im = imag, |
| pre = prefix |
| ), |
| ) |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| // Currently, we can only apply width using an intermediate `String` (and thus `std`) |
| fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
| use std::string::ToString; |
| if let Some(width) = f.width() { |
| write!(f, "{0: >1$}", complex.to_string(), width) |
| } else { |
| write!(f, "{}", complex) |
| } |
| } |
| |
| #[cfg(not(feature = "std"))] |
| fn fmt_complex(f: &mut fmt::Formatter<'_>, complex: fmt::Arguments<'_>) -> fmt::Result { |
| write!(f, "{}", complex) |
| } |
| }}; |
| } |
| |
| // string conversions |
| impl<T> fmt::Display for Complex<T> |
| where |
| T: fmt::Display + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "", "", self.re, self.im, T) |
| } |
| } |
| |
| impl<T> fmt::LowerExp for Complex<T> |
| where |
| T: fmt::LowerExp + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "e", "", self.re, self.im, T) |
| } |
| } |
| |
| impl<T> fmt::UpperExp for Complex<T> |
| where |
| T: fmt::UpperExp + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "E", "", self.re, self.im, T) |
| } |
| } |
| |
| impl<T> fmt::LowerHex for Complex<T> |
| where |
| T: fmt::LowerHex + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "x", "0x", self.re, self.im, T) |
| } |
| } |
| |
| impl<T> fmt::UpperHex for Complex<T> |
| where |
| T: fmt::UpperHex + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "X", "0x", self.re, self.im, T) |
| } |
| } |
| |
| impl<T> fmt::Octal for Complex<T> |
| where |
| T: fmt::Octal + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "o", "0o", self.re, self.im, T) |
| } |
| } |
| |
| impl<T> fmt::Binary for Complex<T> |
| where |
| T: fmt::Binary + Num + PartialOrd + Clone, |
| { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| write_complex!(f, "b", "0b", self.re, self.im, T) |
| } |
| } |
| |
| fn from_str_generic<T, E, F>(s: &str, from: F) -> Result<Complex<T>, ParseComplexError<E>> |
| where |
| F: Fn(&str) -> Result<T, E>, |
| T: Clone + Num, |
| { |
| let imag = match s.rfind('j') { |
| None => 'i', |
| _ => 'j', |
| }; |
| |
| let mut neg_b = false; |
| let mut a = s; |
| let mut b = ""; |
| |
| for (i, w) in s.as_bytes().windows(2).enumerate() { |
| let p = w[0]; |
| let c = w[1]; |
| |
| // ignore '+'/'-' if part of an exponent |
| if (c == b'+' || c == b'-') && !(p == b'e' || p == b'E') { |
| // trim whitespace around the separator |
| a = s[..=i].trim_end_matches(char::is_whitespace); |
| b = s[i + 2..].trim_start_matches(char::is_whitespace); |
| neg_b = c == b'-'; |
| |
| if b.is_empty() || (neg_b && b.starts_with('-')) { |
| return Err(ParseComplexError::expr_error()); |
| } |
| break; |
| } |
| } |
| |
| // split off real and imaginary parts |
| if b.is_empty() { |
| // input was either pure real or pure imaginary |
| b = if a.ends_with(imag) { "0" } else { "0i" }; |
| } |
| |
| let re; |
| let neg_re; |
| let im; |
| let neg_im; |
| if a.ends_with(imag) { |
| im = a; |
| neg_im = false; |
| re = b; |
| neg_re = neg_b; |
| } else if b.ends_with(imag) { |
| re = a; |
| neg_re = false; |
| im = b; |
| neg_im = neg_b; |
| } else { |
| return Err(ParseComplexError::expr_error()); |
| } |
| |
| // parse re |
| let re = from(re).map_err(ParseComplexError::from_error)?; |
| let re = if neg_re { T::zero() - re } else { re }; |
| |
| // pop imaginary unit off |
| let mut im = &im[..im.len() - 1]; |
| // handle im == "i" or im == "-i" |
| if im.is_empty() || im == "+" { |
| im = "1"; |
| } else if im == "-" { |
| im = "-1"; |
| } |
| |
| // parse im |
| let im = from(im).map_err(ParseComplexError::from_error)?; |
| let im = if neg_im { T::zero() - im } else { im }; |
| |
| Ok(Complex::new(re, im)) |
| } |
| |
| impl<T> FromStr for Complex<T> |
| where |
| T: FromStr + Num + Clone, |
| { |
| type Err = ParseComplexError<T::Err>; |
| |
| /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
| fn from_str(s: &str) -> Result<Self, Self::Err> { |
| from_str_generic(s, T::from_str) |
| } |
| } |
| |
| impl<T: Num + Clone> Num for Complex<T> { |
| type FromStrRadixErr = ParseComplexError<T::FromStrRadixErr>; |
| |
| /// Parses `a +/- bi`; `ai +/- b`; `a`; or `bi` where `a` and `b` are of type `T` |
| /// |
| /// `radix` must be <= 18; larger radix would include *i* and *j* as digits, |
| /// which cannot be supported. |
| /// |
| /// The conversion returns an error if 18 <= radix <= 36; it panics if radix > 36. |
| /// |
| /// The elements of `T` are parsed using `Num::from_str_radix` too, and errors |
| /// (or panics) from that are reflected here as well. |
| fn from_str_radix(s: &str, radix: u32) -> Result<Self, Self::FromStrRadixErr> { |
| assert!( |
| radix <= 36, |
| "from_str_radix: radix is too high (maximum 36)" |
| ); |
| |
| // larger radix would include 'i' and 'j' as digits, which cannot be supported |
| if radix > 18 { |
| return Err(ParseComplexError::unsupported_radix()); |
| } |
| |
| from_str_generic(s, |x| -> Result<T, T::FromStrRadixErr> { |
| T::from_str_radix(x, radix) |
| }) |
| } |
| } |
| |
| impl<T: Num + Clone> Sum for Complex<T> { |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::zero(), |acc, c| acc + c) |
| } |
| } |
| |
| impl<'a, T: 'a + Num + Clone> Sum<&'a Complex<T>> for Complex<T> { |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Complex<T>>, |
| { |
| iter.fold(Self::zero(), |acc, c| acc + c) |
| } |
| } |
| |
| impl<T: Num + Clone> Product for Complex<T> { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Self>, |
| { |
| iter.fold(Self::one(), |acc, c| acc * c) |
| } |
| } |
| |
| impl<'a, T: 'a + Num + Clone> Product<&'a Complex<T>> for Complex<T> { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Complex<T>>, |
| { |
| iter.fold(Self::one(), |acc, c| acc * c) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<T> serde::Serialize for Complex<T> |
| where |
| T: serde::Serialize, |
| { |
| fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| where |
| S: serde::Serializer, |
| { |
| (&self.re, &self.im).serialize(serializer) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<'de, T> serde::Deserialize<'de> for Complex<T> |
| where |
| T: serde::Deserialize<'de>, |
| { |
| fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| where |
| D: serde::Deserializer<'de>, |
| { |
| let (re, im) = serde::Deserialize::deserialize(deserializer)?; |
| Ok(Self::new(re, im)) |
| } |
| } |
| |
| #[derive(Debug, PartialEq)] |
| pub struct ParseComplexError<E> { |
| kind: ComplexErrorKind<E>, |
| } |
| |
| #[derive(Debug, PartialEq)] |
| enum ComplexErrorKind<E> { |
| ParseError(E), |
| ExprError, |
| UnsupportedRadix, |
| } |
| |
| impl<E> ParseComplexError<E> { |
| fn expr_error() -> Self { |
| ParseComplexError { |
| kind: ComplexErrorKind::ExprError, |
| } |
| } |
| |
| fn unsupported_radix() -> Self { |
| ParseComplexError { |
| kind: ComplexErrorKind::UnsupportedRadix, |
| } |
| } |
| |
| fn from_error(error: E) -> Self { |
| ParseComplexError { |
| kind: ComplexErrorKind::ParseError(error), |
| } |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| impl<E: Error> Error for ParseComplexError<E> { |
| #[allow(deprecated)] |
| fn description(&self) -> &str { |
| match self.kind { |
| ComplexErrorKind::ParseError(ref e) => e.description(), |
| ComplexErrorKind::ExprError => "invalid or unsupported complex expression", |
| ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion", |
| } |
| } |
| } |
| |
| impl<E: fmt::Display> fmt::Display for ParseComplexError<E> { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| match self.kind { |
| ComplexErrorKind::ParseError(ref e) => e.fmt(f), |
| ComplexErrorKind::ExprError => "invalid or unsupported complex expression".fmt(f), |
| ComplexErrorKind::UnsupportedRadix => "unsupported radix for conversion".fmt(f), |
| } |
| } |
| } |
| |
| #[cfg(test)] |
| fn hash<T: hash::Hash>(x: &T) -> u64 { |
| use std::collections::hash_map::RandomState; |
| use std::hash::{BuildHasher, Hasher}; |
| let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
| x.hash(&mut hasher); |
| hasher.finish() |
| } |
| |
| #[cfg(test)] |
| pub(crate) mod test { |
| #![allow(non_upper_case_globals)] |
| |
| use super::{Complex, Complex64}; |
| use super::{ComplexErrorKind, ParseComplexError}; |
| use core::f64; |
| use core::str::FromStr; |
| |
| use std::string::{String, ToString}; |
| |
| use num_traits::{Num, One, Zero}; |
| |
| pub const _0_0i: Complex64 = Complex::new(0.0, 0.0); |
| pub const _1_0i: Complex64 = Complex::new(1.0, 0.0); |
| pub const _1_1i: Complex64 = Complex::new(1.0, 1.0); |
| pub const _0_1i: Complex64 = Complex::new(0.0, 1.0); |
| pub const _neg1_1i: Complex64 = Complex::new(-1.0, 1.0); |
| pub const _05_05i: Complex64 = Complex::new(0.5, 0.5); |
| pub const all_consts: [Complex64; 5] = [_0_0i, _1_0i, _1_1i, _neg1_1i, _05_05i]; |
| pub const _4_2i: Complex64 = Complex::new(4.0, 2.0); |
| pub const _1_infi: Complex64 = Complex::new(1.0, f64::INFINITY); |
| pub const _neg1_infi: Complex64 = Complex::new(-1.0, f64::INFINITY); |
| pub const _1_nani: Complex64 = Complex::new(1.0, f64::NAN); |
| pub const _neg1_nani: Complex64 = Complex::new(-1.0, f64::NAN); |
| pub const _inf_0i: Complex64 = Complex::new(f64::INFINITY, 0.0); |
| pub const _neginf_1i: Complex64 = Complex::new(f64::NEG_INFINITY, 1.0); |
| pub const _neginf_neg1i: Complex64 = Complex::new(f64::NEG_INFINITY, -1.0); |
| pub const _inf_1i: Complex64 = Complex::new(f64::INFINITY, 1.0); |
| pub const _inf_neg1i: Complex64 = Complex::new(f64::INFINITY, -1.0); |
| pub const _neginf_infi: Complex64 = Complex::new(f64::NEG_INFINITY, f64::INFINITY); |
| pub const _inf_infi: Complex64 = Complex::new(f64::INFINITY, f64::INFINITY); |
| pub const _neginf_nani: Complex64 = Complex::new(f64::NEG_INFINITY, f64::NAN); |
| pub const _inf_nani: Complex64 = Complex::new(f64::INFINITY, f64::NAN); |
| pub const _nan_0i: Complex64 = Complex::new(f64::NAN, 0.0); |
| pub const _nan_1i: Complex64 = Complex::new(f64::NAN, 1.0); |
| pub const _nan_neg1i: Complex64 = Complex::new(f64::NAN, -1.0); |
| pub const _nan_nani: Complex64 = Complex::new(f64::NAN, f64::NAN); |
| |
| #[test] |
| fn test_consts() { |
| // check our constants are what Complex::new creates |
| fn test(c: Complex64, r: f64, i: f64) { |
| assert_eq!(c, Complex::new(r, i)); |
| } |
| test(_0_0i, 0.0, 0.0); |
| test(_1_0i, 1.0, 0.0); |
| test(_1_1i, 1.0, 1.0); |
| test(_neg1_1i, -1.0, 1.0); |
| test(_05_05i, 0.5, 0.5); |
| |
| assert_eq!(_0_0i, Zero::zero()); |
| assert_eq!(_1_0i, One::one()); |
| } |
| |
| #[test] |
| fn test_scale_unscale() { |
| assert_eq!(_05_05i.scale(2.0), _1_1i); |
| assert_eq!(_1_1i.unscale(2.0), _05_05i); |
| for &c in all_consts.iter() { |
| assert_eq!(c.scale(2.0).unscale(2.0), c); |
| } |
| } |
| |
| #[test] |
| fn test_conj() { |
| for &c in all_consts.iter() { |
| assert_eq!(c.conj(), Complex::new(c.re, -c.im)); |
| assert_eq!(c.conj().conj(), c); |
| } |
| } |
| |
| #[test] |
| fn test_inv() { |
| assert_eq!(_1_1i.inv(), _05_05i.conj()); |
| assert_eq!(_1_0i.inv(), _1_0i.inv()); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_divide_by_zero_natural() { |
| let n = Complex::new(2, 3); |
| let d = Complex::new(0, 0); |
| let _x = n / d; |
| } |
| |
| #[test] |
| fn test_inv_zero() { |
| // FIXME #20: should this really fail, or just NaN? |
| assert!(_0_0i.inv().is_nan()); |
| } |
| |
| #[test] |
| #[allow(clippy::float_cmp)] |
| fn test_l1_norm() { |
| assert_eq!(_0_0i.l1_norm(), 0.0); |
| assert_eq!(_1_0i.l1_norm(), 1.0); |
| assert_eq!(_1_1i.l1_norm(), 2.0); |
| assert_eq!(_0_1i.l1_norm(), 1.0); |
| assert_eq!(_neg1_1i.l1_norm(), 2.0); |
| assert_eq!(_05_05i.l1_norm(), 1.0); |
| assert_eq!(_4_2i.l1_norm(), 6.0); |
| } |
| |
| #[test] |
| fn test_pow() { |
| for c in all_consts.iter() { |
| assert_eq!(c.powi(0), _1_0i); |
| let mut pos = _1_0i; |
| let mut neg = _1_0i; |
| for i in 1i32..20 { |
| pos *= c; |
| assert_eq!(pos, c.powi(i)); |
| if c.is_zero() { |
| assert!(c.powi(-i).is_nan()); |
| } else { |
| neg /= c; |
| assert_eq!(neg, c.powi(-i)); |
| } |
| } |
| } |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| pub(crate) mod float { |
| |
| use core::f64::INFINITY; |
| |
| use super::*; |
| use num_traits::{Float, Pow}; |
| |
| #[test] |
| fn test_cis() { |
| assert!(close(Complex::cis(0.0 * f64::consts::PI), _1_0i)); |
| assert!(close(Complex::cis(0.5 * f64::consts::PI), _0_1i)); |
| assert!(close(Complex::cis(1.0 * f64::consts::PI), -_1_0i)); |
| assert!(close(Complex::cis(1.5 * f64::consts::PI), -_0_1i)); |
| assert!(close(Complex::cis(2.0 * f64::consts::PI), _1_0i)); |
| } |
| |
| #[test] |
| #[cfg_attr(target_arch = "x86", ignore)] |
| // FIXME #7158: (maybe?) currently failing on x86. |
| #[allow(clippy::float_cmp)] |
| fn test_norm() { |
| fn test(c: Complex64, ns: f64) { |
| assert_eq!(c.norm_sqr(), ns); |
| assert_eq!(c.norm(), ns.sqrt()) |
| } |
| test(_0_0i, 0.0); |
| test(_1_0i, 1.0); |
| test(_1_1i, 2.0); |
| test(_neg1_1i, 2.0); |
| test(_05_05i, 0.5); |
| } |
| |
| #[test] |
| fn test_arg() { |
| fn test(c: Complex64, arg: f64) { |
| assert!((c.arg() - arg).abs() < 1.0e-6) |
| } |
| test(_1_0i, 0.0); |
| test(_1_1i, 0.25 * f64::consts::PI); |
| test(_neg1_1i, 0.75 * f64::consts::PI); |
| test(_05_05i, 0.25 * f64::consts::PI); |
| } |
| |
| #[test] |
| fn test_polar_conv() { |
| fn test(c: Complex64) { |
| let (r, theta) = c.to_polar(); |
| assert!((c - Complex::from_polar(r, theta)).norm() < 1e-6); |
| } |
| for &c in all_consts.iter() { |
| test(c); |
| } |
| } |
| |
| pub(crate) fn close(a: Complex64, b: Complex64) -> bool { |
| close_to_tol(a, b, 1e-10) |
| } |
| |
| fn close_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
| // returns true if a and b are reasonably close |
| let close = (a == b) || (a - b).norm() < tol; |
| if !close { |
| println!("{:?} != {:?}", a, b); |
| } |
| close |
| } |
| |
| // Version that also works if re or im are +inf, -inf, or nan |
| fn close_naninf(a: Complex64, b: Complex64) -> bool { |
| close_naninf_to_tol(a, b, 1.0e-10) |
| } |
| |
| fn close_naninf_to_tol(a: Complex64, b: Complex64, tol: f64) -> bool { |
| let mut close = true; |
| |
| // Compare the real parts |
| if a.re.is_finite() { |
| if b.re.is_finite() { |
| close = (a.re == b.re) || (a.re - b.re).abs() < tol; |
| } else { |
| close = false; |
| } |
| } else if (a.re.is_nan() && !b.re.is_nan()) |
| || (a.re.is_infinite() |
| && a.re.is_sign_positive() |
| && !(b.re.is_infinite() && b.re.is_sign_positive())) |
| || (a.re.is_infinite() |
| && a.re.is_sign_negative() |
| && !(b.re.is_infinite() && b.re.is_sign_negative())) |
| { |
| close = false; |
| } |
| |
| // Compare the imaginary parts |
| if a.im.is_finite() { |
| if b.im.is_finite() { |
| close &= (a.im == b.im) || (a.im - b.im).abs() < tol; |
| } else { |
| close = false; |
| } |
| } else if (a.im.is_nan() && !b.im.is_nan()) |
| || (a.im.is_infinite() |
| && a.im.is_sign_positive() |
| && !(b.im.is_infinite() && b.im.is_sign_positive())) |
| || (a.im.is_infinite() |
| && a.im.is_sign_negative() |
| && !(b.im.is_infinite() && b.im.is_sign_negative())) |
| { |
| close = false; |
| } |
| |
| if close == false { |
| println!("{:?} != {:?}", a, b); |
| } |
| close |
| } |
| |
| #[test] |
| fn test_exp2() { |
| assert!(close(_0_0i.exp2(), _1_0i)); |
| } |
| |
| #[test] |
| fn test_exp() { |
| assert!(close(_1_0i.exp(), _1_0i.scale(f64::consts::E))); |
| assert!(close(_0_0i.exp(), _1_0i)); |
| assert!(close(_0_1i.exp(), Complex::new(1.0.cos(), 1.0.sin()))); |
| assert!(close(_05_05i.exp() * _05_05i.exp(), _1_1i.exp())); |
| assert!(close( |
| _0_1i.scale(-f64::consts::PI).exp(), |
| _1_0i.scale(-1.0) |
| )); |
| for &c in all_consts.iter() { |
| // e^conj(z) = conj(e^z) |
| assert!(close(c.conj().exp(), c.exp().conj())); |
| // e^(z + 2 pi i) = e^z |
| assert!(close( |
| c.exp(), |
| (c + _0_1i.scale(f64::consts::PI * 2.0)).exp() |
| )); |
| } |
| |
| // The test values below were taken from https://en.cppreference.com/w/cpp/numeric/complex/exp |
| assert!(close_naninf(_1_infi.exp(), _nan_nani)); |
| assert!(close_naninf(_neg1_infi.exp(), _nan_nani)); |
| assert!(close_naninf(_1_nani.exp(), _nan_nani)); |
| assert!(close_naninf(_neg1_nani.exp(), _nan_nani)); |
| assert!(close_naninf(_inf_0i.exp(), _inf_0i)); |
| assert!(close_naninf(_neginf_1i.exp(), 0.0 * Complex::cis(1.0))); |
| assert!(close_naninf(_neginf_neg1i.exp(), 0.0 * Complex::cis(-1.0))); |
| assert!(close_naninf( |
| _inf_1i.exp(), |
| f64::INFINITY * Complex::cis(1.0) |
| )); |
| assert!(close_naninf( |
| _inf_neg1i.exp(), |
| f64::INFINITY * Complex::cis(-1.0) |
| )); |
| assert!(close_naninf(_neginf_infi.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
| assert!(close_naninf(_inf_infi.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
| assert!(close_naninf(_neginf_nani.exp(), _0_0i)); // Note: ±0±0i: signs of zeros are unspecified |
| assert!(close_naninf(_inf_nani.exp(), _inf_nani)); // Note: ±∞+NaN*i: sign of the real part is unspecified |
| assert!(close_naninf(_nan_0i.exp(), _nan_0i)); |
| assert!(close_naninf(_nan_1i.exp(), _nan_nani)); |
| assert!(close_naninf(_nan_neg1i.exp(), _nan_nani)); |
| assert!(close_naninf(_nan_nani.exp(), _nan_nani)); |
| } |
| |
| #[test] |
| fn test_ln() { |
| assert!(close(_1_0i.ln(), _0_0i)); |
| assert!(close(_0_1i.ln(), _0_1i.scale(f64::consts::PI / 2.0))); |
| assert!(close(_0_0i.ln(), Complex::new(f64::neg_infinity(), 0.0))); |
| assert!(close( |
| (_neg1_1i * _05_05i).ln(), |
| _neg1_1i.ln() + _05_05i.ln() |
| )); |
| for &c in all_consts.iter() { |
| // ln(conj(z() = conj(ln(z)) |
| assert!(close(c.conj().ln(), c.ln().conj())); |
| // for this branch, -pi <= arg(ln(z)) <= pi |
| assert!(-f64::consts::PI <= c.ln().arg() && c.ln().arg() <= f64::consts::PI); |
| } |
| } |
| |
| #[test] |
| fn test_powc() { |
| let a = Complex::new(2.0, -3.0); |
| let b = Complex::new(3.0, 0.0); |
| assert!(close(a.powc(b), a.powf(b.re))); |
| assert!(close(b.powc(a), a.expf(b.re))); |
| let c = Complex::new(1.0 / 3.0, 0.1); |
| assert!(close_to_tol( |
| a.powc(c), |
| Complex::new(1.65826, -0.33502), |
| 1e-5 |
| )); |
| let z = Complex::new(0.0, 0.0); |
| assert!(close(z.powc(b), z)); |
| assert!(z.powc(Complex64::new(0., INFINITY)).is_nan()); |
| assert!(z.powc(Complex64::new(10., INFINITY)).is_nan()); |
| assert!(z.powc(Complex64::new(INFINITY, INFINITY)).is_nan()); |
| assert!(close(z.powc(Complex64::new(INFINITY, 0.)), z)); |
| assert!(z.powc(Complex64::new(-1., 0.)).re.is_infinite()); |
| assert!(z.powc(Complex64::new(-1., 0.)).im.is_nan()); |
| |
| for c in all_consts.iter() { |
| assert_eq!(c.powc(_0_0i), _1_0i); |
| } |
| assert_eq!(_nan_nani.powc(_0_0i), _1_0i); |
| } |
| |
| #[test] |
| fn test_powf() { |
| let c = Complex64::new(2.0, -1.0); |
| let expected = Complex64::new(-0.8684746, -16.695934); |
| assert!(close_to_tol(c.powf(3.5), expected, 1e-5)); |
| assert!(close_to_tol(Pow::pow(c, 3.5_f64), expected, 1e-5)); |
| assert!(close_to_tol(Pow::pow(c, 3.5_f32), expected, 1e-5)); |
| |
| for c in all_consts.iter() { |
| assert_eq!(c.powf(0.0), _1_0i); |
| } |
| assert_eq!(_nan_nani.powf(0.0), _1_0i); |
| } |
| |
| #[test] |
| fn test_log() { |
| let c = Complex::new(2.0, -1.0); |
| let r = c.log(10.0); |
| assert!(close_to_tol(r, Complex::new(0.349485, -0.20135958), 1e-5)); |
| } |
| |
| #[test] |
| fn test_log2() { |
| assert!(close(_1_0i.log2(), _0_0i)); |
| } |
| |
| #[test] |
| fn test_log10() { |
| assert!(close(_1_0i.log10(), _0_0i)); |
| } |
| |
| #[test] |
| fn test_some_expf_cases() { |
| let c = Complex::new(2.0, -1.0); |
| let r = c.expf(10.0); |
| assert!(close_to_tol(r, Complex::new(-66.82015, -74.39803), 1e-5)); |
| |
| let c = Complex::new(5.0, -2.0); |
| let r = c.expf(3.4); |
| assert!(close_to_tol(r, Complex::new(-349.25, -290.63), 1e-2)); |
| |
| let c = Complex::new(-1.5, 2.0 / 3.0); |
| let r = c.expf(1.0 / 3.0); |
| assert!(close_to_tol(r, Complex::new(3.8637, -3.4745), 1e-2)); |
| } |
| |
| #[test] |
| fn test_sqrt() { |
| assert!(close(_0_0i.sqrt(), _0_0i)); |
| assert!(close(_1_0i.sqrt(), _1_0i)); |
| assert!(close(Complex::new(-1.0, 0.0).sqrt(), _0_1i)); |
| assert!(close(Complex::new(-1.0, -0.0).sqrt(), _0_1i.scale(-1.0))); |
| assert!(close(_0_1i.sqrt(), _05_05i.scale(2.0.sqrt()))); |
| for &c in all_consts.iter() { |
| // sqrt(conj(z() = conj(sqrt(z)) |
| assert!(close(c.conj().sqrt(), c.sqrt().conj())); |
| // for this branch, -pi/2 <= arg(sqrt(z)) <= pi/2 |
| assert!( |
| -f64::consts::FRAC_PI_2 <= c.sqrt().arg() |
| && c.sqrt().arg() <= f64::consts::FRAC_PI_2 |
| ); |
| // sqrt(z) * sqrt(z) = z |
| assert!(close(c.sqrt() * c.sqrt(), c)); |
| } |
| } |
| |
| #[test] |
| fn test_sqrt_real() { |
| for n in (0..100).map(f64::from) { |
| // √(n² + 0i) = n + 0i |
| let n2 = n * n; |
| assert_eq!(Complex64::new(n2, 0.0).sqrt(), Complex64::new(n, 0.0)); |
| // √(-n² + 0i) = 0 + ni |
| assert_eq!(Complex64::new(-n2, 0.0).sqrt(), Complex64::new(0.0, n)); |
| // √(-n² - 0i) = 0 - ni |
| assert_eq!(Complex64::new(-n2, -0.0).sqrt(), Complex64::new(0.0, -n)); |
| } |
| } |
| |
| #[test] |
| fn test_sqrt_imag() { |
| for n in (0..100).map(f64::from) { |
| // √(0 + n²i) = n e^(iπ/4) |
| let n2 = n * n; |
| assert!(close( |
| Complex64::new(0.0, n2).sqrt(), |
| Complex64::from_polar(n, f64::consts::FRAC_PI_4) |
| )); |
| // √(0 - n²i) = n e^(-iπ/4) |
| assert!(close( |
| Complex64::new(0.0, -n2).sqrt(), |
| Complex64::from_polar(n, -f64::consts::FRAC_PI_4) |
| )); |
| } |
| } |
| |
| #[test] |
| fn test_cbrt() { |
| assert!(close(_0_0i.cbrt(), _0_0i)); |
| assert!(close(_1_0i.cbrt(), _1_0i)); |
| assert!(close( |
| Complex::new(-1.0, 0.0).cbrt(), |
| Complex::new(0.5, 0.75.sqrt()) |
| )); |
| assert!(close( |
| Complex::new(-1.0, -0.0).cbrt(), |
| Complex::new(0.5, -(0.75.sqrt())) |
| )); |
| assert!(close(_0_1i.cbrt(), Complex::new(0.75.sqrt(), 0.5))); |
| assert!(close(_0_1i.conj().cbrt(), Complex::new(0.75.sqrt(), -0.5))); |
| for &c in all_consts.iter() { |
| // cbrt(conj(z() = conj(cbrt(z)) |
| assert!(close(c.conj().cbrt(), c.cbrt().conj())); |
| // for this branch, -pi/3 <= arg(cbrt(z)) <= pi/3 |
| assert!( |
| -f64::consts::FRAC_PI_3 <= c.cbrt().arg() |
| && c.cbrt().arg() <= f64::consts::FRAC_PI_3 |
| ); |
| // cbrt(z) * cbrt(z) cbrt(z) = z |
| assert!(close(c.cbrt() * c.cbrt() * c.cbrt(), c)); |
| } |
| } |
| |
| #[test] |
| fn test_cbrt_real() { |
| for n in (0..100).map(f64::from) { |
| // ∛(n³ + 0i) = n + 0i |
| let n3 = n * n * n; |
| assert!(close( |
| Complex64::new(n3, 0.0).cbrt(), |
| Complex64::new(n, 0.0) |
| )); |
| // ∛(-n³ + 0i) = n e^(iπ/3) |
| assert!(close( |
| Complex64::new(-n3, 0.0).cbrt(), |
| Complex64::from_polar(n, f64::consts::FRAC_PI_3) |
| )); |
| // ∛(-n³ - 0i) = n e^(-iπ/3) |
| assert!(close( |
| Complex64::new(-n3, -0.0).cbrt(), |
| Complex64::from_polar(n, -f64::consts::FRAC_PI_3) |
| )); |
| } |
| } |
| |
| #[test] |
| fn test_cbrt_imag() { |
| for n in (0..100).map(f64::from) { |
| // ∛(0 + n³i) = n e^(iπ/6) |
| let n3 = n * n * n; |
| assert!(close( |
| Complex64::new(0.0, n3).cbrt(), |
| Complex64::from_polar(n, f64::consts::FRAC_PI_6) |
| )); |
| // ∛(0 - n³i) = n e^(-iπ/6) |
| assert!(close( |
| Complex64::new(0.0, -n3).cbrt(), |
| Complex64::from_polar(n, -f64::consts::FRAC_PI_6) |
| )); |
| } |
| } |
| |
| #[test] |
| fn test_sin() { |
| assert!(close(_0_0i.sin(), _0_0i)); |
| assert!(close(_1_0i.scale(f64::consts::PI * 2.0).sin(), _0_0i)); |
| assert!(close(_0_1i.sin(), _0_1i.scale(1.0.sinh()))); |
| for &c in all_consts.iter() { |
| // sin(conj(z)) = conj(sin(z)) |
| assert!(close(c.conj().sin(), c.sin().conj())); |
| // sin(-z) = -sin(z) |
| assert!(close(c.scale(-1.0).sin(), c.sin().scale(-1.0))); |
| } |
| } |
| |
| #[test] |
| fn test_cos() { |
| assert!(close(_0_0i.cos(), _1_0i)); |
| assert!(close(_1_0i.scale(f64::consts::PI * 2.0).cos(), _1_0i)); |
| assert!(close(_0_1i.cos(), _1_0i.scale(1.0.cosh()))); |
| for &c in all_consts.iter() { |
| // cos(conj(z)) = conj(cos(z)) |
| assert!(close(c.conj().cos(), c.cos().conj())); |
| // cos(-z) = cos(z) |
| assert!(close(c.scale(-1.0).cos(), c.cos())); |
| } |
| } |
| |
| #[test] |
| fn test_tan() { |
| assert!(close(_0_0i.tan(), _0_0i)); |
| assert!(close(_1_0i.scale(f64::consts::PI / 4.0).tan(), _1_0i)); |
| assert!(close(_1_0i.scale(f64::consts::PI).tan(), _0_0i)); |
| for &c in all_consts.iter() { |
| // tan(conj(z)) = conj(tan(z)) |
| assert!(close(c.conj().tan(), c.tan().conj())); |
| // tan(-z) = -tan(z) |
| assert!(close(c.scale(-1.0).tan(), c.tan().scale(-1.0))); |
| } |
| } |
| |
| #[test] |
| fn test_asin() { |
| assert!(close(_0_0i.asin(), _0_0i)); |
| assert!(close(_1_0i.asin(), _1_0i.scale(f64::consts::PI / 2.0))); |
| assert!(close( |
| _1_0i.scale(-1.0).asin(), |
| _1_0i.scale(-f64::consts::PI / 2.0) |
| )); |
| assert!(close(_0_1i.asin(), _0_1i.scale((1.0 + 2.0.sqrt()).ln()))); |
| for &c in all_consts.iter() { |
| // asin(conj(z)) = conj(asin(z)) |
| assert!(close(c.conj().asin(), c.asin().conj())); |
| // asin(-z) = -asin(z) |
| assert!(close(c.scale(-1.0).asin(), c.asin().scale(-1.0))); |
| // for this branch, -pi/2 <= asin(z).re <= pi/2 |
| assert!( |
| -f64::consts::PI / 2.0 <= c.asin().re && c.asin().re <= f64::consts::PI / 2.0 |
| ); |
| } |
| } |
| |
| #[test] |
| fn test_acos() { |
| assert!(close(_0_0i.acos(), _1_0i.scale(f64::consts::PI / 2.0))); |
| assert!(close(_1_0i.acos(), _0_0i)); |
| assert!(close( |
| _1_0i.scale(-1.0).acos(), |
| _1_0i.scale(f64::consts::PI) |
| )); |
| assert!(close( |
| _0_1i.acos(), |
| Complex::new(f64::consts::PI / 2.0, (2.0.sqrt() - 1.0).ln()) |
| )); |
| for &c in all_consts.iter() { |
| // acos(conj(z)) = conj(acos(z)) |
| assert!(close(c.conj().acos(), c.acos().conj())); |
| // for this branch, 0 <= acos(z).re <= pi |
| assert!(0.0 <= c.acos().re && c.acos().re <= f64::consts::PI); |
| } |
| } |
| |
| #[test] |
| fn test_atan() { |
| assert!(close(_0_0i.atan(), _0_0i)); |
| assert!(close(_1_0i.atan(), _1_0i.scale(f64::consts::PI / 4.0))); |
| assert!(close( |
| _1_0i.scale(-1.0).atan(), |
| _1_0i.scale(-f64::consts::PI / 4.0) |
| )); |
| assert!(close(_0_1i.atan(), Complex::new(0.0, f64::infinity()))); |
| for &c in all_consts.iter() { |
| // atan(conj(z)) = conj(atan(z)) |
| assert!(close(c.conj().atan(), c.atan().conj())); |
| // atan(-z) = -atan(z) |
| assert!(close(c.scale(-1.0).atan(), c.atan().scale(-1.0))); |
| // for this branch, -pi/2 <= atan(z).re <= pi/2 |
| assert!( |
| -f64::consts::PI / 2.0 <= c.atan().re && c.atan().re <= f64::consts::PI / 2.0 |
| ); |
| } |
| } |
| |
| #[test] |
| fn test_sinh() { |
| assert!(close(_0_0i.sinh(), _0_0i)); |
| assert!(close( |
| _1_0i.sinh(), |
| _1_0i.scale((f64::consts::E - 1.0 / f64::consts::E) / 2.0) |
| )); |
| assert!(close(_0_1i.sinh(), _0_1i.scale(1.0.sin()))); |
| for &c in all_consts.iter() { |
| // sinh(conj(z)) = conj(sinh(z)) |
| assert!(close(c.conj().sinh(), c.sinh().conj())); |
| // sinh(-z) = -sinh(z) |
| assert!(close(c.scale(-1.0).sinh(), c.sinh().scale(-1.0))); |
| } |
| } |
| |
| #[test] |
| fn test_cosh() { |
| assert!(close(_0_0i.cosh(), _1_0i)); |
| assert!(close( |
| _1_0i.cosh(), |
| _1_0i.scale((f64::consts::E + 1.0 / f64::consts::E) / 2.0) |
| )); |
| assert!(close(_0_1i.cosh(), _1_0i.scale(1.0.cos()))); |
| for &c in all_consts.iter() { |
| // cosh(conj(z)) = conj(cosh(z)) |
| assert!(close(c.conj().cosh(), c.cosh().conj())); |
| // cosh(-z) = cosh(z) |
| assert!(close(c.scale(-1.0).cosh(), c.cosh())); |
| } |
| } |
| |
| #[test] |
| fn test_tanh() { |
| assert!(close(_0_0i.tanh(), _0_0i)); |
| assert!(close( |
| _1_0i.tanh(), |
| _1_0i.scale((f64::consts::E.powi(2) - 1.0) / (f64::consts::E.powi(2) + 1.0)) |
| )); |
| assert!(close(_0_1i.tanh(), _0_1i.scale(1.0.tan()))); |
| for &c in all_consts.iter() { |
| // tanh(conj(z)) = conj(tanh(z)) |
| assert!(close(c.conj().tanh(), c.conj().tanh())); |
| // tanh(-z) = -tanh(z) |
| assert!(close(c.scale(-1.0).tanh(), c.tanh().scale(-1.0))); |
| } |
| } |
| |
| #[test] |
| fn test_asinh() { |
| assert!(close(_0_0i.asinh(), _0_0i)); |
| assert!(close(_1_0i.asinh(), _1_0i.scale(1.0 + 2.0.sqrt()).ln())); |
| assert!(close(_0_1i.asinh(), _0_1i.scale(f64::consts::PI / 2.0))); |
| assert!(close( |
| _0_1i.asinh().scale(-1.0), |
| _0_1i.scale(-f64::consts::PI / 2.0) |
| )); |
| for &c in all_consts.iter() { |
| // asinh(conj(z)) = conj(asinh(z)) |
| assert!(close(c.conj().asinh(), c.conj().asinh())); |
| // asinh(-z) = -asinh(z) |
| assert!(close(c.scale(-1.0).asinh(), c.asinh().scale(-1.0))); |
| // for this branch, -pi/2 <= asinh(z).im <= pi/2 |
| assert!( |
| -f64::consts::PI / 2.0 <= c.asinh().im && c.asinh().im <= f64::consts::PI / 2.0 |
| ); |
| } |
| } |
| |
| #[test] |
| fn test_acosh() { |
| assert!(close(_0_0i.acosh(), _0_1i.scale(f64::consts::PI / 2.0))); |
| assert!(close(_1_0i.acosh(), _0_0i)); |
| assert!(close( |
| _1_0i.scale(-1.0).acosh(), |
| _0_1i.scale(f64::consts::PI) |
| )); |
| for &c in all_consts.iter() { |
| // acosh(conj(z)) = conj(acosh(z)) |
| assert!(close(c.conj().acosh(), c.conj().acosh())); |
| // for this branch, -pi <= acosh(z).im <= pi and 0 <= acosh(z).re |
| assert!( |
| -f64::consts::PI <= c.acosh().im |
| && c.acosh().im <= f64::consts::PI |
| && 0.0 <= c.cosh().re |
| ); |
| } |
| } |
| |
| #[test] |
| fn test_atanh() { |
| assert!(close(_0_0i.atanh(), _0_0i)); |
| assert!(close(_0_1i.atanh(), _0_1i.scale(f64::consts::PI / 4.0))); |
| assert!(close(_1_0i.atanh(), Complex::new(f64::infinity(), 0.0))); |
| for &c in all_consts.iter() { |
| // atanh(conj(z)) = conj(atanh(z)) |
| assert!(close(c.conj().atanh(), c.conj().atanh())); |
| // atanh(-z) = -atanh(z) |
| assert!(close(c.scale(-1.0).atanh(), c.atanh().scale(-1.0))); |
| // for this branch, -pi/2 <= atanh(z).im <= pi/2 |
| assert!( |
| -f64::consts::PI / 2.0 <= c.atanh().im && c.atanh().im <= f64::consts::PI / 2.0 |
| ); |
| } |
| } |
| |
| #[test] |
| fn test_exp_ln() { |
| for &c in all_consts.iter() { |
| // e^ln(z) = z |
| assert!(close(c.ln().exp(), c)); |
| } |
| } |
| |
| #[test] |
| fn test_exp2_log() { |
| for &c in all_consts.iter() { |
| // 2^log2(z) = z |
| assert!(close(c.log2().exp2(), c)); |
| } |
| } |
| |
| #[test] |
| fn test_trig_to_hyperbolic() { |
| for &c in all_consts.iter() { |
| // sin(iz) = i sinh(z) |
| assert!(close((_0_1i * c).sin(), _0_1i * c.sinh())); |
| // cos(iz) = cosh(z) |
| assert!(close((_0_1i * c).cos(), c.cosh())); |
| // tan(iz) = i tanh(z) |
| assert!(close((_0_1i * c).tan(), _0_1i * c.tanh())); |
| } |
| } |
| |
| #[test] |
| fn test_trig_identities() { |
| for &c in all_consts.iter() { |
| // tan(z) = sin(z)/cos(z) |
| assert!(close(c.tan(), c.sin() / c.cos())); |
| // sin(z)^2 + cos(z)^2 = 1 |
| assert!(close(c.sin() * c.sin() + c.cos() * c.cos(), _1_0i)); |
| |
| // sin(asin(z)) = z |
| assert!(close(c.asin().sin(), c)); |
| // cos(acos(z)) = z |
| assert!(close(c.acos().cos(), c)); |
| // tan(atan(z)) = z |
| // i and -i are branch points |
| if c != _0_1i && c != _0_1i.scale(-1.0) { |
| assert!(close(c.atan().tan(), c)); |
| } |
| |
| // sin(z) = (e^(iz) - e^(-iz))/(2i) |
| assert!(close( |
| ((_0_1i * c).exp() - (_0_1i * c).exp().inv()) / _0_1i.scale(2.0), |
| c.sin() |
| )); |
| // cos(z) = (e^(iz) + e^(-iz))/2 |
| assert!(close( |
| ((_0_1i * c).exp() + (_0_1i * c).exp().inv()).unscale(2.0), |
| c.cos() |
| )); |
| // tan(z) = i (1 - e^(2iz))/(1 + e^(2iz)) |
| assert!(close( |
| _0_1i * (_1_0i - (_0_1i * c).scale(2.0).exp()) |
| / (_1_0i + (_0_1i * c).scale(2.0).exp()), |
| c.tan() |
| )); |
| } |
| } |
| |
| #[test] |
| fn test_hyperbolic_identites() { |
| for &c in all_consts.iter() { |
| // tanh(z) = sinh(z)/cosh(z) |
| assert!(close(c.tanh(), c.sinh() / c.cosh())); |
| // cosh(z)^2 - sinh(z)^2 = 1 |
| assert!(close(c.cosh() * c.cosh() - c.sinh() * c.sinh(), _1_0i)); |
| |
| // sinh(asinh(z)) = z |
| assert!(close(c.asinh().sinh(), c)); |
| // cosh(acosh(z)) = z |
| assert!(close(c.acosh().cosh(), c)); |
| // tanh(atanh(z)) = z |
| // 1 and -1 are branch points |
| if c != _1_0i && c != _1_0i.scale(-1.0) { |
| assert!(close(c.atanh().tanh(), c)); |
| } |
| |
| // sinh(z) = (e^z - e^(-z))/2 |
| assert!(close((c.exp() - c.exp().inv()).unscale(2.0), c.sinh())); |
| // cosh(z) = (e^z + e^(-z))/2 |
| assert!(close((c.exp() + c.exp().inv()).unscale(2.0), c.cosh())); |
| // tanh(z) = ( e^(2z) - 1)/(e^(2z) + 1) |
| assert!(close( |
| (c.scale(2.0).exp() - _1_0i) / (c.scale(2.0).exp() + _1_0i), |
| c.tanh() |
| )); |
| } |
| } |
| } |
| |
| // Test both a + b and a += b |
| macro_rules! test_a_op_b { |
| ($a:ident + $b:expr, $answer:expr) => { |
| assert_eq!($a + $b, $answer); |
| assert_eq!( |
| { |
| let mut x = $a; |
| x += $b; |
| x |
| }, |
| $answer |
| ); |
| }; |
| ($a:ident - $b:expr, $answer:expr) => { |
| assert_eq!($a - $b, $answer); |
| assert_eq!( |
| { |
| let mut x = $a; |
| x -= $b; |
| x |
| }, |
| $answer |
| ); |
| }; |
| ($a:ident * $b:expr, $answer:expr) => { |
| assert_eq!($a * $b, $answer); |
| assert_eq!( |
| { |
| let mut x = $a; |
| x *= $b; |
| x |
| }, |
| $answer |
| ); |
| }; |
| ($a:ident / $b:expr, $answer:expr) => { |
| assert_eq!($a / $b, $answer); |
| assert_eq!( |
| { |
| let mut x = $a; |
| x /= $b; |
| x |
| }, |
| $answer |
| ); |
| }; |
| ($a:ident % $b:expr, $answer:expr) => { |
| assert_eq!($a % $b, $answer); |
| assert_eq!( |
| { |
| let mut x = $a; |
| x %= $b; |
| x |
| }, |
| $answer |
| ); |
| }; |
| } |
| |
| // Test both a + b and a + &b |
| macro_rules! test_op { |
| ($a:ident $op:tt $b:expr, $answer:expr) => { |
| test_a_op_b!($a $op $b, $answer); |
| test_a_op_b!($a $op &$b, $answer); |
| }; |
| } |
| |
| mod complex_arithmetic { |
| use super::{_05_05i, _0_0i, _0_1i, _1_0i, _1_1i, _4_2i, _neg1_1i, all_consts}; |
| use num_traits::{MulAdd, MulAddAssign, Zero}; |
| |
| #[test] |
| fn test_add() { |
| test_op!(_05_05i + _05_05i, _1_1i); |
| test_op!(_0_1i + _1_0i, _1_1i); |
| test_op!(_1_0i + _neg1_1i, _0_1i); |
| |
| for &c in all_consts.iter() { |
| test_op!(_0_0i + c, c); |
| test_op!(c + _0_0i, c); |
| } |
| } |
| |
| #[test] |
| fn test_sub() { |
| test_op!(_05_05i - _05_05i, _0_0i); |
| test_op!(_0_1i - _1_0i, _neg1_1i); |
| test_op!(_0_1i - _neg1_1i, _1_0i); |
| |
| for &c in all_consts.iter() { |
| test_op!(c - _0_0i, c); |
| test_op!(c - c, _0_0i); |
| } |
| } |
| |
| #[test] |
| fn test_mul() { |
| test_op!(_05_05i * _05_05i, _0_1i.unscale(2.0)); |
| test_op!(_1_1i * _0_1i, _neg1_1i); |
| |
| // i^2 & i^4 |
| test_op!(_0_1i * _0_1i, -_1_0i); |
| assert_eq!(_0_1i * _0_1i * _0_1i * _0_1i, _1_0i); |
| |
| for &c in all_consts.iter() { |
| test_op!(c * _1_0i, c); |
| test_op!(_1_0i * c, c); |
| } |
| } |
| |
| #[test] |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn test_mul_add_float() { |
| assert_eq!(_05_05i.mul_add(_05_05i, _0_0i), _05_05i * _05_05i + _0_0i); |
| assert_eq!(_05_05i * _05_05i + _0_0i, _05_05i.mul_add(_05_05i, _0_0i)); |
| assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
| assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
| assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
| |
| let mut x = _1_0i; |
| x.mul_add_assign(_1_0i, _1_0i); |
| assert_eq!(x, _1_0i * _1_0i + _1_0i); |
| |
| for &a in &all_consts { |
| for &b in &all_consts { |
| for &c in &all_consts { |
| let abc = a * b + c; |
| assert_eq!(a.mul_add(b, c), abc); |
| let mut x = a; |
| x.mul_add_assign(b, c); |
| assert_eq!(x, abc); |
| } |
| } |
| } |
| } |
| |
| #[test] |
| fn test_mul_add() { |
| use super::Complex; |
| const _0_0i: Complex<i32> = Complex { re: 0, im: 0 }; |
| const _1_0i: Complex<i32> = Complex { re: 1, im: 0 }; |
| const _1_1i: Complex<i32> = Complex { re: 1, im: 1 }; |
| const _0_1i: Complex<i32> = Complex { re: 0, im: 1 }; |
| const _neg1_1i: Complex<i32> = Complex { re: -1, im: 1 }; |
| const all_consts: [Complex<i32>; 5] = [_0_0i, _1_0i, _1_1i, _0_1i, _neg1_1i]; |
| |
| assert_eq!(_1_0i.mul_add(_1_0i, _0_0i), _1_0i * _1_0i + _0_0i); |
| assert_eq!(_1_0i * _1_0i + _0_0i, _1_0i.mul_add(_1_0i, _0_0i)); |
| assert_eq!(_0_1i.mul_add(_0_1i, _0_1i), _neg1_1i); |
| assert_eq!(_1_0i.mul_add(_1_0i, _1_0i), _1_0i * _1_0i + _1_0i); |
| assert_eq!(_1_0i * _1_0i + _1_0i, _1_0i.mul_add(_1_0i, _1_0i)); |
| |
| let mut x = _1_0i; |
| x.mul_add_assign(_1_0i, _1_0i); |
| assert_eq!(x, _1_0i * _1_0i + _1_0i); |
| |
| for &a in &all_consts { |
| for &b in &all_consts { |
| for &c in &all_consts { |
| let abc = a * b + c; |
| assert_eq!(a.mul_add(b, c), abc); |
| let mut x = a; |
| x.mul_add_assign(b, c); |
| assert_eq!(x, abc); |
| } |
| } |
| } |
| } |
| |
| #[test] |
| fn test_div() { |
| test_op!(_neg1_1i / _0_1i, _1_1i); |
| for &c in all_consts.iter() { |
| if c != Zero::zero() { |
| test_op!(c / c, _1_0i); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_rem() { |
| test_op!(_neg1_1i % _0_1i, _0_0i); |
| test_op!(_4_2i % _0_1i, _0_0i); |
| test_op!(_05_05i % _0_1i, _05_05i); |
| test_op!(_05_05i % _1_1i, _05_05i); |
| assert_eq!((_4_2i + _05_05i) % _0_1i, _05_05i); |
| assert_eq!((_4_2i + _05_05i) % _1_1i, _05_05i); |
| } |
| |
| #[test] |
| fn test_neg() { |
| assert_eq!(-_1_0i + _0_1i, _neg1_1i); |
| assert_eq!((-_0_1i) * _0_1i, _1_0i); |
| for &c in all_consts.iter() { |
| assert_eq!(-(-c), c); |
| } |
| } |
| } |
| |
| mod real_arithmetic { |
| use super::super::Complex; |
| use super::{_4_2i, _neg1_1i}; |
| |
| #[test] |
| fn test_add() { |
| test_op!(_4_2i + 0.5, Complex::new(4.5, 2.0)); |
| assert_eq!(0.5 + _4_2i, Complex::new(4.5, 2.0)); |
| } |
| |
| #[test] |
| fn test_sub() { |
| test_op!(_4_2i - 0.5, Complex::new(3.5, 2.0)); |
| assert_eq!(0.5 - _4_2i, Complex::new(-3.5, -2.0)); |
| } |
| |
| #[test] |
| fn test_mul() { |
| assert_eq!(_4_2i * 0.5, Complex::new(2.0, 1.0)); |
| assert_eq!(0.5 * _4_2i, Complex::new(2.0, 1.0)); |
| } |
| |
| #[test] |
| fn test_div() { |
| assert_eq!(_4_2i / 0.5, Complex::new(8.0, 4.0)); |
| assert_eq!(0.5 / _4_2i, Complex::new(0.1, -0.05)); |
| } |
| |
| #[test] |
| fn test_rem() { |
| assert_eq!(_4_2i % 2.0, Complex::new(0.0, 0.0)); |
| assert_eq!(_4_2i % 3.0, Complex::new(1.0, 2.0)); |
| assert_eq!(3.0 % _4_2i, Complex::new(3.0, 0.0)); |
| assert_eq!(_neg1_1i % 2.0, _neg1_1i); |
| assert_eq!(-_4_2i % 3.0, Complex::new(-1.0, -2.0)); |
| } |
| |
| #[test] |
| fn test_div_rem_gaussian() { |
| // These would overflow with `norm_sqr` division. |
| let max = Complex::new(255u8, 255u8); |
| assert_eq!(max / 200, Complex::new(1, 1)); |
| assert_eq!(max % 200, Complex::new(55, 55)); |
| } |
| } |
| |
| #[test] |
| fn test_to_string() { |
| fn test(c: Complex64, s: String) { |
| assert_eq!(c.to_string(), s); |
| } |
| test(_0_0i, "0+0i".to_string()); |
| test(_1_0i, "1+0i".to_string()); |
| test(_0_1i, "0+1i".to_string()); |
| test(_1_1i, "1+1i".to_string()); |
| test(_neg1_1i, "-1+1i".to_string()); |
| test(-_neg1_1i, "1-1i".to_string()); |
| test(_05_05i, "0.5+0.5i".to_string()); |
| } |
| |
| #[test] |
| fn test_string_formatting() { |
| let a = Complex::new(1.23456, 123.456); |
| assert_eq!(format!("{}", a), "1.23456+123.456i"); |
| assert_eq!(format!("{:.2}", a), "1.23+123.46i"); |
| assert_eq!(format!("{:.2e}", a), "1.23e0+1.23e2i"); |
| assert_eq!(format!("{:+.2E}", a), "+1.23E0+1.23E2i"); |
| #[cfg(feature = "std")] |
| assert_eq!(format!("{:+20.2E}", a), " +1.23E0+1.23E2i"); |
| |
| let b = Complex::new(0x80, 0xff); |
| assert_eq!(format!("{:X}", b), "80+FFi"); |
| assert_eq!(format!("{:#x}", b), "0x80+0xffi"); |
| assert_eq!(format!("{:+#b}", b), "+0b10000000+0b11111111i"); |
| assert_eq!(format!("{:+#o}", b), "+0o200+0o377i"); |
| #[cfg(feature = "std")] |
| assert_eq!(format!("{:+#16o}", b), " +0o200+0o377i"); |
| |
| let c = Complex::new(-10, -10000); |
| assert_eq!(format!("{}", c), "-10-10000i"); |
| #[cfg(feature = "std")] |
| assert_eq!(format!("{:16}", c), " -10-10000i"); |
| } |
| |
| #[test] |
| fn test_hash() { |
| let a = Complex::new(0i32, 0i32); |
| let b = Complex::new(1i32, 0i32); |
| let c = Complex::new(0i32, 1i32); |
| assert!(crate::hash(&a) != crate::hash(&b)); |
| assert!(crate::hash(&b) != crate::hash(&c)); |
| assert!(crate::hash(&c) != crate::hash(&a)); |
| } |
| |
| #[test] |
| fn test_hashset() { |
| use std::collections::HashSet; |
| let a = Complex::new(0i32, 0i32); |
| let b = Complex::new(1i32, 0i32); |
| let c = Complex::new(0i32, 1i32); |
| |
| let set: HashSet<_> = [a, b, c].iter().cloned().collect(); |
| assert!(set.contains(&a)); |
| assert!(set.contains(&b)); |
| assert!(set.contains(&c)); |
| assert!(!set.contains(&(a + b + c))); |
| } |
| |
| #[test] |
| fn test_is_nan() { |
| assert!(!_1_1i.is_nan()); |
| let a = Complex::new(f64::NAN, f64::NAN); |
| assert!(a.is_nan()); |
| } |
| |
| #[test] |
| fn test_is_nan_special_cases() { |
| let a = Complex::new(0f64, f64::NAN); |
| let b = Complex::new(f64::NAN, 0f64); |
| assert!(a.is_nan()); |
| assert!(b.is_nan()); |
| } |
| |
| #[test] |
| fn test_is_infinite() { |
| let a = Complex::new(2f64, f64::INFINITY); |
| assert!(a.is_infinite()); |
| } |
| |
| #[test] |
| fn test_is_finite() { |
| assert!(_1_1i.is_finite()) |
| } |
| |
| #[test] |
| fn test_is_normal() { |
| let a = Complex::new(0f64, f64::NAN); |
| let b = Complex::new(2f64, f64::INFINITY); |
| assert!(!a.is_normal()); |
| assert!(!b.is_normal()); |
| assert!(_1_1i.is_normal()); |
| } |
| |
| #[test] |
| fn test_from_str() { |
| fn test(z: Complex64, s: &str) { |
| assert_eq!(FromStr::from_str(s), Ok(z)); |
| } |
| test(_0_0i, "0 + 0i"); |
| test(_0_0i, "0+0j"); |
| test(_0_0i, "0 - 0j"); |
| test(_0_0i, "0-0i"); |
| test(_0_0i, "0i + 0"); |
| test(_0_0i, "0"); |
| test(_0_0i, "-0"); |
| test(_0_0i, "0i"); |
| test(_0_0i, "0j"); |
| test(_0_0i, "+0j"); |
| test(_0_0i, "-0i"); |
| |
| test(_1_0i, "1 + 0i"); |
| test(_1_0i, "1+0j"); |
| test(_1_0i, "1 - 0j"); |
| test(_1_0i, "+1-0i"); |
| test(_1_0i, "-0j+1"); |
| test(_1_0i, "1"); |
| |
| test(_1_1i, "1 + i"); |
| test(_1_1i, "1+j"); |
| test(_1_1i, "1 + 1j"); |
| test(_1_1i, "1+1i"); |
| test(_1_1i, "i + 1"); |
| test(_1_1i, "1i+1"); |
| test(_1_1i, "+j+1"); |
| |
| test(_0_1i, "0 + i"); |
| test(_0_1i, "0+j"); |
| test(_0_1i, "-0 + j"); |
| test(_0_1i, "-0+i"); |
| test(_0_1i, "0 + 1i"); |
| test(_0_1i, "0+1j"); |
| test(_0_1i, "-0 + 1j"); |
| test(_0_1i, "-0+1i"); |
| test(_0_1i, "j + 0"); |
| test(_0_1i, "i"); |
| test(_0_1i, "j"); |
| test(_0_1i, "1j"); |
| |
| test(_neg1_1i, "-1 + i"); |
| test(_neg1_1i, "-1+j"); |
| test(_neg1_1i, "-1 + 1j"); |
| test(_neg1_1i, "-1+1i"); |
| test(_neg1_1i, "1i-1"); |
| test(_neg1_1i, "j + -1"); |
| |
| test(_05_05i, "0.5 + 0.5i"); |
| test(_05_05i, "0.5+0.5j"); |
| test(_05_05i, "5e-1+0.5j"); |
| test(_05_05i, "5E-1 + 0.5j"); |
| test(_05_05i, "5E-1i + 0.5"); |
| test(_05_05i, "0.05e+1j + 50E-2"); |
| } |
| |
| #[test] |
| fn test_from_str_radix() { |
| fn test(z: Complex64, s: &str, radix: u32) { |
| let res: Result<Complex64, <Complex64 as Num>::FromStrRadixErr> = |
| Num::from_str_radix(s, radix); |
| assert_eq!(res.unwrap(), z) |
| } |
| test(_4_2i, "4+2i", 10); |
| test(Complex::new(15.0, 32.0), "F+20i", 16); |
| test(Complex::new(15.0, 32.0), "1111+100000i", 2); |
| test(Complex::new(-15.0, -32.0), "-F-20i", 16); |
| test(Complex::new(-15.0, -32.0), "-1111-100000i", 2); |
| |
| fn test_error(s: &str, radix: u32) -> ParseComplexError<<f64 as Num>::FromStrRadixErr> { |
| let res = Complex64::from_str_radix(s, radix); |
| |
| res.expect_err(&format!("Expected failure on input {:?}", s)) |
| } |
| |
| let err = test_error("1ii", 19); |
| if let ComplexErrorKind::UnsupportedRadix = err.kind { |
| /* pass */ |
| } else { |
| panic!("Expected failure on invalid radix, got {:?}", err); |
| } |
| |
| let err = test_error("1 + 0", 16); |
| if let ComplexErrorKind::ExprError = err.kind { |
| /* pass */ |
| } else { |
| panic!("Expected failure on expr error, got {:?}", err); |
| } |
| } |
| |
| #[test] |
| #[should_panic(expected = "radix is too high")] |
| fn test_from_str_radix_fail() { |
| // ensure we preserve the underlying panic on radix > 36 |
| let _complex = Complex64::from_str_radix("1", 37); |
| } |
| |
| #[test] |
| fn test_from_str_fail() { |
| fn test(s: &str) { |
| let complex: Result<Complex64, _> = FromStr::from_str(s); |
| assert!( |
| complex.is_err(), |
| "complex {:?} -> {:?} should be an error", |
| s, |
| complex |
| ); |
| } |
| test("foo"); |
| test("6E"); |
| test("0 + 2.718"); |
| test("1 - -2i"); |
| test("314e-2ij"); |
| test("4.3j - i"); |
| test("1i - 2i"); |
| test("+ 1 - 3.0i"); |
| } |
| |
| #[test] |
| fn test_sum() { |
| let v = vec![_0_1i, _1_0i]; |
| assert_eq!(v.iter().sum::<Complex64>(), _1_1i); |
| assert_eq!(v.into_iter().sum::<Complex64>(), _1_1i); |
| } |
| |
| #[test] |
| fn test_prod() { |
| let v = vec![_0_1i, _1_0i]; |
| assert_eq!(v.iter().product::<Complex64>(), _0_1i); |
| assert_eq!(v.into_iter().product::<Complex64>(), _0_1i); |
| } |
| |
| #[test] |
| fn test_zero() { |
| let zero = Complex64::zero(); |
| assert!(zero.is_zero()); |
| |
| let mut c = Complex::new(1.23, 4.56); |
| assert!(!c.is_zero()); |
| assert_eq!(c + zero, c); |
| |
| c.set_zero(); |
| assert!(c.is_zero()); |
| } |
| |
| #[test] |
| fn test_one() { |
| let one = Complex64::one(); |
| assert!(one.is_one()); |
| |
| let mut c = Complex::new(1.23, 4.56); |
| assert!(!c.is_one()); |
| assert_eq!(c * one, c); |
| |
| c.set_one(); |
| assert!(c.is_one()); |
| } |
| |
| #[test] |
| #[allow(clippy::float_cmp)] |
| fn test_const() { |
| const R: f64 = 12.3; |
| const I: f64 = -4.5; |
| const C: Complex64 = Complex::new(R, I); |
| |
| assert_eq!(C.re, 12.3); |
| assert_eq!(C.im, -4.5); |
| } |
| } |