| // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! Integer trait and functions. |
| //! |
| //! ## Compatibility |
| //! |
| //! The `num-integer` crate is tested for rustc 1.8 and greater. |
| |
| #![doc(html_root_url = "https://docs.rs/num-integer/0.1")] |
| #![no_std] |
| #[cfg(feature = "std")] |
| extern crate std; |
| |
| extern crate num_traits as traits; |
| |
| use core::mem; |
| use core::ops::Add; |
| |
| use traits::{Num, Signed, Zero}; |
| |
| mod roots; |
| pub use roots::Roots; |
| pub use roots::{cbrt, nth_root, sqrt}; |
| |
| mod average; |
| pub use average::Average; |
| pub use average::{average_ceil, average_floor}; |
| |
| pub trait Integer: Sized + Num + PartialOrd + Ord + Eq { |
| /// Floored integer division. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert!(( 8).div_floor(& 3) == 2); |
| /// assert!(( 8).div_floor(&-3) == -3); |
| /// assert!((-8).div_floor(& 3) == -3); |
| /// assert!((-8).div_floor(&-3) == 2); |
| /// |
| /// assert!(( 1).div_floor(& 2) == 0); |
| /// assert!(( 1).div_floor(&-2) == -1); |
| /// assert!((-1).div_floor(& 2) == -1); |
| /// assert!((-1).div_floor(&-2) == 0); |
| /// ~~~ |
| fn div_floor(&self, other: &Self) -> Self; |
| |
| /// Floored integer modulo, satisfying: |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// # let n = 1; let d = 1; |
| /// assert!(n.div_floor(&d) * d + n.mod_floor(&d) == n) |
| /// ~~~ |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert!(( 8).mod_floor(& 3) == 2); |
| /// assert!(( 8).mod_floor(&-3) == -1); |
| /// assert!((-8).mod_floor(& 3) == 1); |
| /// assert!((-8).mod_floor(&-3) == -2); |
| /// |
| /// assert!(( 1).mod_floor(& 2) == 1); |
| /// assert!(( 1).mod_floor(&-2) == -1); |
| /// assert!((-1).mod_floor(& 2) == 1); |
| /// assert!((-1).mod_floor(&-2) == -1); |
| /// ~~~ |
| fn mod_floor(&self, other: &Self) -> Self; |
| |
| /// Ceiled integer division. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(( 8).div_ceil( &3), 3); |
| /// assert_eq!(( 8).div_ceil(&-3), -2); |
| /// assert_eq!((-8).div_ceil( &3), -2); |
| /// assert_eq!((-8).div_ceil(&-3), 3); |
| /// |
| /// assert_eq!(( 1).div_ceil( &2), 1); |
| /// assert_eq!(( 1).div_ceil(&-2), 0); |
| /// assert_eq!((-1).div_ceil( &2), 0); |
| /// assert_eq!((-1).div_ceil(&-2), 1); |
| /// ~~~ |
| fn div_ceil(&self, other: &Self) -> Self { |
| let (q, r) = self.div_mod_floor(other); |
| if r.is_zero() { |
| q |
| } else { |
| q + Self::one() |
| } |
| } |
| |
| /// Greatest Common Divisor (GCD). |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(6.gcd(&8), 2); |
| /// assert_eq!(7.gcd(&3), 1); |
| /// ~~~ |
| fn gcd(&self, other: &Self) -> Self; |
| |
| /// Lowest Common Multiple (LCM). |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(7.lcm(&3), 21); |
| /// assert_eq!(2.lcm(&4), 4); |
| /// assert_eq!(0.lcm(&0), 0); |
| /// ~~~ |
| fn lcm(&self, other: &Self) -> Self; |
| |
| /// Greatest Common Divisor (GCD) and |
| /// Lowest Common Multiple (LCM) together. |
| /// |
| /// Potentially more efficient than calling `gcd` and `lcm` |
| /// individually for identical inputs. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(10.gcd_lcm(&4), (2, 20)); |
| /// assert_eq!(8.gcd_lcm(&9), (1, 72)); |
| /// ~~~ |
| #[inline] |
| fn gcd_lcm(&self, other: &Self) -> (Self, Self) { |
| (self.gcd(other), self.lcm(other)) |
| } |
| |
| /// Greatest common divisor and Bézout coefficients. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # extern crate num_integer; |
| /// # extern crate num_traits; |
| /// # fn main() { |
| /// # use num_integer::{ExtendedGcd, Integer}; |
| /// # use num_traits::NumAssign; |
| /// fn check<A: Copy + Integer + NumAssign>(a: A, b: A) -> bool { |
| /// let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b); |
| /// gcd == x * a + y * b |
| /// } |
| /// assert!(check(10isize, 4isize)); |
| /// assert!(check(8isize, 9isize)); |
| /// # } |
| /// ~~~ |
| #[inline] |
| fn extended_gcd(&self, other: &Self) -> ExtendedGcd<Self> |
| where |
| Self: Clone, |
| { |
| let mut s = (Self::zero(), Self::one()); |
| let mut t = (Self::one(), Self::zero()); |
| let mut r = (other.clone(), self.clone()); |
| |
| while !r.0.is_zero() { |
| let q = r.1.clone() / r.0.clone(); |
| let f = |mut r: (Self, Self)| { |
| mem::swap(&mut r.0, &mut r.1); |
| r.0 = r.0 - q.clone() * r.1.clone(); |
| r |
| }; |
| r = f(r); |
| s = f(s); |
| t = f(t); |
| } |
| |
| if r.1 >= Self::zero() { |
| ExtendedGcd { |
| gcd: r.1, |
| x: s.1, |
| y: t.1, |
| _hidden: (), |
| } |
| } else { |
| ExtendedGcd { |
| gcd: Self::zero() - r.1, |
| x: Self::zero() - s.1, |
| y: Self::zero() - t.1, |
| _hidden: (), |
| } |
| } |
| } |
| |
| /// Greatest common divisor, least common multiple, and Bézout coefficients. |
| #[inline] |
| fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) |
| where |
| Self: Clone + Signed, |
| { |
| (self.extended_gcd(other), self.lcm(other)) |
| } |
| |
| /// Deprecated, use `is_multiple_of` instead. |
| fn divides(&self, other: &Self) -> bool; |
| |
| /// Returns `true` if `self` is a multiple of `other`. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(9.is_multiple_of(&3), true); |
| /// assert_eq!(3.is_multiple_of(&9), false); |
| /// ~~~ |
| fn is_multiple_of(&self, other: &Self) -> bool; |
| |
| /// Returns `true` if the number is even. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(3.is_even(), false); |
| /// assert_eq!(4.is_even(), true); |
| /// ~~~ |
| fn is_even(&self) -> bool; |
| |
| /// Returns `true` if the number is odd. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(3.is_odd(), true); |
| /// assert_eq!(4.is_odd(), false); |
| /// ~~~ |
| fn is_odd(&self) -> bool; |
| |
| /// Simultaneous truncated integer division and modulus. |
| /// Returns `(quotient, remainder)`. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(( 8).div_rem( &3), ( 2, 2)); |
| /// assert_eq!(( 8).div_rem(&-3), (-2, 2)); |
| /// assert_eq!((-8).div_rem( &3), (-2, -2)); |
| /// assert_eq!((-8).div_rem(&-3), ( 2, -2)); |
| /// |
| /// assert_eq!(( 1).div_rem( &2), ( 0, 1)); |
| /// assert_eq!(( 1).div_rem(&-2), ( 0, 1)); |
| /// assert_eq!((-1).div_rem( &2), ( 0, -1)); |
| /// assert_eq!((-1).div_rem(&-2), ( 0, -1)); |
| /// ~~~ |
| fn div_rem(&self, other: &Self) -> (Self, Self); |
| |
| /// Simultaneous floored integer division and modulus. |
| /// Returns `(quotient, remainder)`. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(( 8).div_mod_floor( &3), ( 2, 2)); |
| /// assert_eq!(( 8).div_mod_floor(&-3), (-3, -1)); |
| /// assert_eq!((-8).div_mod_floor( &3), (-3, 1)); |
| /// assert_eq!((-8).div_mod_floor(&-3), ( 2, -2)); |
| /// |
| /// assert_eq!(( 1).div_mod_floor( &2), ( 0, 1)); |
| /// assert_eq!(( 1).div_mod_floor(&-2), (-1, -1)); |
| /// assert_eq!((-1).div_mod_floor( &2), (-1, 1)); |
| /// assert_eq!((-1).div_mod_floor(&-2), ( 0, -1)); |
| /// ~~~ |
| fn div_mod_floor(&self, other: &Self) -> (Self, Self) { |
| (self.div_floor(other), self.mod_floor(other)) |
| } |
| |
| /// Rounds up to nearest multiple of argument. |
| /// |
| /// # Notes |
| /// |
| /// For signed types, `a.next_multiple_of(b) = a.prev_multiple_of(b.neg())`. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(( 16).next_multiple_of(& 8), 16); |
| /// assert_eq!(( 23).next_multiple_of(& 8), 24); |
| /// assert_eq!(( 16).next_multiple_of(&-8), 16); |
| /// assert_eq!(( 23).next_multiple_of(&-8), 16); |
| /// assert_eq!((-16).next_multiple_of(& 8), -16); |
| /// assert_eq!((-23).next_multiple_of(& 8), -16); |
| /// assert_eq!((-16).next_multiple_of(&-8), -16); |
| /// assert_eq!((-23).next_multiple_of(&-8), -24); |
| /// ~~~ |
| #[inline] |
| fn next_multiple_of(&self, other: &Self) -> Self |
| where |
| Self: Clone, |
| { |
| let m = self.mod_floor(other); |
| self.clone() |
| + if m.is_zero() { |
| Self::zero() |
| } else { |
| other.clone() - m |
| } |
| } |
| |
| /// Rounds down to nearest multiple of argument. |
| /// |
| /// # Notes |
| /// |
| /// For signed types, `a.prev_multiple_of(b) = a.next_multiple_of(b.neg())`. |
| /// |
| /// # Examples |
| /// |
| /// ~~~ |
| /// # use num_integer::Integer; |
| /// assert_eq!(( 16).prev_multiple_of(& 8), 16); |
| /// assert_eq!(( 23).prev_multiple_of(& 8), 16); |
| /// assert_eq!(( 16).prev_multiple_of(&-8), 16); |
| /// assert_eq!(( 23).prev_multiple_of(&-8), 24); |
| /// assert_eq!((-16).prev_multiple_of(& 8), -16); |
| /// assert_eq!((-23).prev_multiple_of(& 8), -24); |
| /// assert_eq!((-16).prev_multiple_of(&-8), -16); |
| /// assert_eq!((-23).prev_multiple_of(&-8), -16); |
| /// ~~~ |
| #[inline] |
| fn prev_multiple_of(&self, other: &Self) -> Self |
| where |
| Self: Clone, |
| { |
| self.clone() - self.mod_floor(other) |
| } |
| } |
| |
| /// Greatest common divisor and Bézout coefficients |
| /// |
| /// ```no_build |
| /// let e = isize::extended_gcd(a, b); |
| /// assert_eq!(e.gcd, e.x*a + e.y*b); |
| /// ``` |
| #[derive(Debug, Clone, Copy, PartialEq, Eq)] |
| pub struct ExtendedGcd<A> { |
| pub gcd: A, |
| pub x: A, |
| pub y: A, |
| _hidden: (), |
| } |
| |
| /// Simultaneous integer division and modulus |
| #[inline] |
| pub fn div_rem<T: Integer>(x: T, y: T) -> (T, T) { |
| x.div_rem(&y) |
| } |
| /// Floored integer division |
| #[inline] |
| pub fn div_floor<T: Integer>(x: T, y: T) -> T { |
| x.div_floor(&y) |
| } |
| /// Floored integer modulus |
| #[inline] |
| pub fn mod_floor<T: Integer>(x: T, y: T) -> T { |
| x.mod_floor(&y) |
| } |
| /// Simultaneous floored integer division and modulus |
| #[inline] |
| pub fn div_mod_floor<T: Integer>(x: T, y: T) -> (T, T) { |
| x.div_mod_floor(&y) |
| } |
| /// Ceiled integer division |
| #[inline] |
| pub fn div_ceil<T: Integer>(x: T, y: T) -> T { |
| x.div_ceil(&y) |
| } |
| |
| /// Calculates the Greatest Common Divisor (GCD) of the number and `other`. The |
| /// result is always positive. |
| #[inline(always)] |
| pub fn gcd<T: Integer>(x: T, y: T) -> T { |
| x.gcd(&y) |
| } |
| /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. |
| #[inline(always)] |
| pub fn lcm<T: Integer>(x: T, y: T) -> T { |
| x.lcm(&y) |
| } |
| |
| /// Calculates the Greatest Common Divisor (GCD) and |
| /// Lowest Common Multiple (LCM) of the number and `other`. |
| #[inline(always)] |
| pub fn gcd_lcm<T: Integer>(x: T, y: T) -> (T, T) { |
| x.gcd_lcm(&y) |
| } |
| |
| macro_rules! impl_integer_for_isize { |
| ($T:ty, $test_mod:ident) => { |
| impl Integer for $T { |
| /// Floored integer division |
| #[inline] |
| fn div_floor(&self, other: &Self) -> Self { |
| // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, |
| // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) |
| let (d, r) = self.div_rem(other); |
| if (r > 0 && *other < 0) || (r < 0 && *other > 0) { |
| d - 1 |
| } else { |
| d |
| } |
| } |
| |
| /// Floored integer modulo |
| #[inline] |
| fn mod_floor(&self, other: &Self) -> Self { |
| // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, |
| // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) |
| let r = *self % *other; |
| if (r > 0 && *other < 0) || (r < 0 && *other > 0) { |
| r + *other |
| } else { |
| r |
| } |
| } |
| |
| /// Calculates `div_floor` and `mod_floor` simultaneously |
| #[inline] |
| fn div_mod_floor(&self, other: &Self) -> (Self, Self) { |
| // Algorithm from [Daan Leijen. _Division and Modulus for Computer Scientists_, |
| // December 2001](http://research.microsoft.com/pubs/151917/divmodnote-letter.pdf) |
| let (d, r) = self.div_rem(other); |
| if (r > 0 && *other < 0) || (r < 0 && *other > 0) { |
| (d - 1, r + *other) |
| } else { |
| (d, r) |
| } |
| } |
| |
| #[inline] |
| fn div_ceil(&self, other: &Self) -> Self { |
| let (d, r) = self.div_rem(other); |
| if (r > 0 && *other > 0) || (r < 0 && *other < 0) { |
| d + 1 |
| } else { |
| d |
| } |
| } |
| |
| /// Calculates the Greatest Common Divisor (GCD) of the number and |
| /// `other`. The result is always positive. |
| #[inline] |
| fn gcd(&self, other: &Self) -> Self { |
| // Use Stein's algorithm |
| let mut m = *self; |
| let mut n = *other; |
| if m == 0 || n == 0 { |
| return (m | n).abs(); |
| } |
| |
| // find common factors of 2 |
| let shift = (m | n).trailing_zeros(); |
| |
| // The algorithm needs positive numbers, but the minimum value |
| // can't be represented as a positive one. |
| // It's also a power of two, so the gcd can be |
| // calculated by bitshifting in that case |
| |
| // Assuming two's complement, the number created by the shift |
| // is positive for all numbers except gcd = abs(min value) |
| // The call to .abs() causes a panic in debug mode |
| if m == Self::min_value() || n == Self::min_value() { |
| return (1 << shift).abs(); |
| } |
| |
| // guaranteed to be positive now, rest like unsigned algorithm |
| m = m.abs(); |
| n = n.abs(); |
| |
| // divide n and m by 2 until odd |
| m >>= m.trailing_zeros(); |
| n >>= n.trailing_zeros(); |
| |
| while m != n { |
| if m > n { |
| m -= n; |
| m >>= m.trailing_zeros(); |
| } else { |
| n -= m; |
| n >>= n.trailing_zeros(); |
| } |
| } |
| m << shift |
| } |
| |
| #[inline] |
| fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) { |
| let egcd = self.extended_gcd(other); |
| // should not have to recalculate abs |
| let lcm = if egcd.gcd.is_zero() { |
| Self::zero() |
| } else { |
| (*self * (*other / egcd.gcd)).abs() |
| }; |
| (egcd, lcm) |
| } |
| |
| /// Calculates the Lowest Common Multiple (LCM) of the number and |
| /// `other`. |
| #[inline] |
| fn lcm(&self, other: &Self) -> Self { |
| self.gcd_lcm(other).1 |
| } |
| |
| /// Calculates the Greatest Common Divisor (GCD) and |
| /// Lowest Common Multiple (LCM) of the number and `other`. |
| #[inline] |
| fn gcd_lcm(&self, other: &Self) -> (Self, Self) { |
| if self.is_zero() && other.is_zero() { |
| return (Self::zero(), Self::zero()); |
| } |
| let gcd = self.gcd(other); |
| // should not have to recalculate abs |
| let lcm = (*self * (*other / gcd)).abs(); |
| (gcd, lcm) |
| } |
| |
| /// Deprecated, use `is_multiple_of` instead. |
| #[inline] |
| fn divides(&self, other: &Self) -> bool { |
| self.is_multiple_of(other) |
| } |
| |
| /// Returns `true` if the number is a multiple of `other`. |
| #[inline] |
| fn is_multiple_of(&self, other: &Self) -> bool { |
| *self % *other == 0 |
| } |
| |
| /// Returns `true` if the number is divisible by `2` |
| #[inline] |
| fn is_even(&self) -> bool { |
| (*self) & 1 == 0 |
| } |
| |
| /// Returns `true` if the number is not divisible by `2` |
| #[inline] |
| fn is_odd(&self) -> bool { |
| !self.is_even() |
| } |
| |
| /// Simultaneous truncated integer division and modulus. |
| #[inline] |
| fn div_rem(&self, other: &Self) -> (Self, Self) { |
| (*self / *other, *self % *other) |
| } |
| } |
| |
| #[cfg(test)] |
| mod $test_mod { |
| use core::mem; |
| use Integer; |
| |
| /// Checks that the division rule holds for: |
| /// |
| /// - `n`: numerator (dividend) |
| /// - `d`: denominator (divisor) |
| /// - `qr`: quotient and remainder |
| #[cfg(test)] |
| fn test_division_rule((n, d): ($T, $T), (q, r): ($T, $T)) { |
| assert_eq!(d * q + r, n); |
| } |
| |
| #[test] |
| fn test_div_rem() { |
| fn test_nd_dr(nd: ($T, $T), qr: ($T, $T)) { |
| let (n, d) = nd; |
| let separate_div_rem = (n / d, n % d); |
| let combined_div_rem = n.div_rem(&d); |
| |
| assert_eq!(separate_div_rem, qr); |
| assert_eq!(combined_div_rem, qr); |
| |
| test_division_rule(nd, separate_div_rem); |
| test_division_rule(nd, combined_div_rem); |
| } |
| |
| test_nd_dr((8, 3), (2, 2)); |
| test_nd_dr((8, -3), (-2, 2)); |
| test_nd_dr((-8, 3), (-2, -2)); |
| test_nd_dr((-8, -3), (2, -2)); |
| |
| test_nd_dr((1, 2), (0, 1)); |
| test_nd_dr((1, -2), (0, 1)); |
| test_nd_dr((-1, 2), (0, -1)); |
| test_nd_dr((-1, -2), (0, -1)); |
| } |
| |
| #[test] |
| fn test_div_mod_floor() { |
| fn test_nd_dm(nd: ($T, $T), dm: ($T, $T)) { |
| let (n, d) = nd; |
| let separate_div_mod_floor = (n.div_floor(&d), n.mod_floor(&d)); |
| let combined_div_mod_floor = n.div_mod_floor(&d); |
| |
| assert_eq!(separate_div_mod_floor, dm); |
| assert_eq!(combined_div_mod_floor, dm); |
| |
| test_division_rule(nd, separate_div_mod_floor); |
| test_division_rule(nd, combined_div_mod_floor); |
| } |
| |
| test_nd_dm((8, 3), (2, 2)); |
| test_nd_dm((8, -3), (-3, -1)); |
| test_nd_dm((-8, 3), (-3, 1)); |
| test_nd_dm((-8, -3), (2, -2)); |
| |
| test_nd_dm((1, 2), (0, 1)); |
| test_nd_dm((1, -2), (-1, -1)); |
| test_nd_dm((-1, 2), (-1, 1)); |
| test_nd_dm((-1, -2), (0, -1)); |
| } |
| |
| #[test] |
| fn test_gcd() { |
| assert_eq!((10 as $T).gcd(&2), 2 as $T); |
| assert_eq!((10 as $T).gcd(&3), 1 as $T); |
| assert_eq!((0 as $T).gcd(&3), 3 as $T); |
| assert_eq!((3 as $T).gcd(&3), 3 as $T); |
| assert_eq!((56 as $T).gcd(&42), 14 as $T); |
| assert_eq!((3 as $T).gcd(&-3), 3 as $T); |
| assert_eq!((-6 as $T).gcd(&3), 3 as $T); |
| assert_eq!((-4 as $T).gcd(&-2), 2 as $T); |
| } |
| |
| #[test] |
| fn test_gcd_cmp_with_euclidean() { |
| fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { |
| while m != 0 { |
| mem::swap(&mut m, &mut n); |
| m %= n; |
| } |
| |
| n.abs() |
| } |
| |
| // gcd(-128, b) = 128 is not representable as positive value |
| // for i8 |
| for i in -127..127 { |
| for j in -127..127 { |
| assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); |
| } |
| } |
| |
| // last value |
| // FIXME: Use inclusive ranges for above loop when implemented |
| let i = 127; |
| for j in -127..127 { |
| assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); |
| } |
| assert_eq!(127.gcd(&127), 127); |
| } |
| |
| #[test] |
| fn test_gcd_min_val() { |
| let min = <$T>::min_value(); |
| let max = <$T>::max_value(); |
| let max_pow2 = max / 2 + 1; |
| assert_eq!(min.gcd(&max), 1 as $T); |
| assert_eq!(max.gcd(&min), 1 as $T); |
| assert_eq!(min.gcd(&max_pow2), max_pow2); |
| assert_eq!(max_pow2.gcd(&min), max_pow2); |
| assert_eq!(min.gcd(&42), 2 as $T); |
| assert_eq!((42 as $T).gcd(&min), 2 as $T); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_gcd_min_val_min_val() { |
| let min = <$T>::min_value(); |
| assert!(min.gcd(&min) >= 0); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_gcd_min_val_0() { |
| let min = <$T>::min_value(); |
| assert!(min.gcd(&0) >= 0); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_gcd_0_min_val() { |
| let min = <$T>::min_value(); |
| assert!((0 as $T).gcd(&min) >= 0); |
| } |
| |
| #[test] |
| fn test_lcm() { |
| assert_eq!((1 as $T).lcm(&0), 0 as $T); |
| assert_eq!((0 as $T).lcm(&1), 0 as $T); |
| assert_eq!((1 as $T).lcm(&1), 1 as $T); |
| assert_eq!((-1 as $T).lcm(&1), 1 as $T); |
| assert_eq!((1 as $T).lcm(&-1), 1 as $T); |
| assert_eq!((-1 as $T).lcm(&-1), 1 as $T); |
| assert_eq!((8 as $T).lcm(&9), 72 as $T); |
| assert_eq!((11 as $T).lcm(&5), 55 as $T); |
| } |
| |
| #[test] |
| fn test_gcd_lcm() { |
| use core::iter::once; |
| for i in once(0) |
| .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) |
| .chain(once(-128)) |
| { |
| for j in once(0) |
| .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) |
| .chain(once(-128)) |
| { |
| assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j))); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_extended_gcd_lcm() { |
| use core::fmt::Debug; |
| use traits::NumAssign; |
| use ExtendedGcd; |
| |
| fn check<A: Copy + Debug + Integer + NumAssign>(a: A, b: A) { |
| let ExtendedGcd { gcd, x, y, .. } = a.extended_gcd(&b); |
| assert_eq!(gcd, x * a + y * b); |
| } |
| |
| use core::iter::once; |
| for i in once(0) |
| .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) |
| .chain(once(-128)) |
| { |
| for j in once(0) |
| .chain((1..).take(127).flat_map(|a| once(a).chain(once(-a)))) |
| .chain(once(-128)) |
| { |
| check(i, j); |
| let (ExtendedGcd { gcd, .. }, lcm) = i.extended_gcd_lcm(&j); |
| assert_eq!((gcd, lcm), (i.gcd(&j), i.lcm(&j))); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_even() { |
| assert_eq!((-4 as $T).is_even(), true); |
| assert_eq!((-3 as $T).is_even(), false); |
| assert_eq!((-2 as $T).is_even(), true); |
| assert_eq!((-1 as $T).is_even(), false); |
| assert_eq!((0 as $T).is_even(), true); |
| assert_eq!((1 as $T).is_even(), false); |
| assert_eq!((2 as $T).is_even(), true); |
| assert_eq!((3 as $T).is_even(), false); |
| assert_eq!((4 as $T).is_even(), true); |
| } |
| |
| #[test] |
| fn test_odd() { |
| assert_eq!((-4 as $T).is_odd(), false); |
| assert_eq!((-3 as $T).is_odd(), true); |
| assert_eq!((-2 as $T).is_odd(), false); |
| assert_eq!((-1 as $T).is_odd(), true); |
| assert_eq!((0 as $T).is_odd(), false); |
| assert_eq!((1 as $T).is_odd(), true); |
| assert_eq!((2 as $T).is_odd(), false); |
| assert_eq!((3 as $T).is_odd(), true); |
| assert_eq!((4 as $T).is_odd(), false); |
| } |
| } |
| }; |
| } |
| |
| impl_integer_for_isize!(i8, test_integer_i8); |
| impl_integer_for_isize!(i16, test_integer_i16); |
| impl_integer_for_isize!(i32, test_integer_i32); |
| impl_integer_for_isize!(i64, test_integer_i64); |
| impl_integer_for_isize!(isize, test_integer_isize); |
| #[cfg(has_i128)] |
| impl_integer_for_isize!(i128, test_integer_i128); |
| |
| macro_rules! impl_integer_for_usize { |
| ($T:ty, $test_mod:ident) => { |
| impl Integer for $T { |
| /// Unsigned integer division. Returns the same result as `div` (`/`). |
| #[inline] |
| fn div_floor(&self, other: &Self) -> Self { |
| *self / *other |
| } |
| |
| /// Unsigned integer modulo operation. Returns the same result as `rem` (`%`). |
| #[inline] |
| fn mod_floor(&self, other: &Self) -> Self { |
| *self % *other |
| } |
| |
| #[inline] |
| fn div_ceil(&self, other: &Self) -> Self { |
| *self / *other + (0 != *self % *other) as Self |
| } |
| |
| /// Calculates the Greatest Common Divisor (GCD) of the number and `other` |
| #[inline] |
| fn gcd(&self, other: &Self) -> Self { |
| // Use Stein's algorithm |
| let mut m = *self; |
| let mut n = *other; |
| if m == 0 || n == 0 { |
| return m | n; |
| } |
| |
| // find common factors of 2 |
| let shift = (m | n).trailing_zeros(); |
| |
| // divide n and m by 2 until odd |
| m >>= m.trailing_zeros(); |
| n >>= n.trailing_zeros(); |
| |
| while m != n { |
| if m > n { |
| m -= n; |
| m >>= m.trailing_zeros(); |
| } else { |
| n -= m; |
| n >>= n.trailing_zeros(); |
| } |
| } |
| m << shift |
| } |
| |
| #[inline] |
| fn extended_gcd_lcm(&self, other: &Self) -> (ExtendedGcd<Self>, Self) { |
| let egcd = self.extended_gcd(other); |
| // should not have to recalculate abs |
| let lcm = if egcd.gcd.is_zero() { |
| Self::zero() |
| } else { |
| *self * (*other / egcd.gcd) |
| }; |
| (egcd, lcm) |
| } |
| |
| /// Calculates the Lowest Common Multiple (LCM) of the number and `other`. |
| #[inline] |
| fn lcm(&self, other: &Self) -> Self { |
| self.gcd_lcm(other).1 |
| } |
| |
| /// Calculates the Greatest Common Divisor (GCD) and |
| /// Lowest Common Multiple (LCM) of the number and `other`. |
| #[inline] |
| fn gcd_lcm(&self, other: &Self) -> (Self, Self) { |
| if self.is_zero() && other.is_zero() { |
| return (Self::zero(), Self::zero()); |
| } |
| let gcd = self.gcd(other); |
| let lcm = *self * (*other / gcd); |
| (gcd, lcm) |
| } |
| |
| /// Deprecated, use `is_multiple_of` instead. |
| #[inline] |
| fn divides(&self, other: &Self) -> bool { |
| self.is_multiple_of(other) |
| } |
| |
| /// Returns `true` if the number is a multiple of `other`. |
| #[inline] |
| fn is_multiple_of(&self, other: &Self) -> bool { |
| *self % *other == 0 |
| } |
| |
| /// Returns `true` if the number is divisible by `2`. |
| #[inline] |
| fn is_even(&self) -> bool { |
| *self % 2 == 0 |
| } |
| |
| /// Returns `true` if the number is not divisible by `2`. |
| #[inline] |
| fn is_odd(&self) -> bool { |
| !self.is_even() |
| } |
| |
| /// Simultaneous truncated integer division and modulus. |
| #[inline] |
| fn div_rem(&self, other: &Self) -> (Self, Self) { |
| (*self / *other, *self % *other) |
| } |
| } |
| |
| #[cfg(test)] |
| mod $test_mod { |
| use core::mem; |
| use Integer; |
| |
| #[test] |
| fn test_div_mod_floor() { |
| assert_eq!((10 as $T).div_floor(&(3 as $T)), 3 as $T); |
| assert_eq!((10 as $T).mod_floor(&(3 as $T)), 1 as $T); |
| assert_eq!((10 as $T).div_mod_floor(&(3 as $T)), (3 as $T, 1 as $T)); |
| assert_eq!((5 as $T).div_floor(&(5 as $T)), 1 as $T); |
| assert_eq!((5 as $T).mod_floor(&(5 as $T)), 0 as $T); |
| assert_eq!((5 as $T).div_mod_floor(&(5 as $T)), (1 as $T, 0 as $T)); |
| assert_eq!((3 as $T).div_floor(&(7 as $T)), 0 as $T); |
| assert_eq!((3 as $T).mod_floor(&(7 as $T)), 3 as $T); |
| assert_eq!((3 as $T).div_mod_floor(&(7 as $T)), (0 as $T, 3 as $T)); |
| } |
| |
| #[test] |
| fn test_gcd() { |
| assert_eq!((10 as $T).gcd(&2), 2 as $T); |
| assert_eq!((10 as $T).gcd(&3), 1 as $T); |
| assert_eq!((0 as $T).gcd(&3), 3 as $T); |
| assert_eq!((3 as $T).gcd(&3), 3 as $T); |
| assert_eq!((56 as $T).gcd(&42), 14 as $T); |
| } |
| |
| #[test] |
| fn test_gcd_cmp_with_euclidean() { |
| fn euclidean_gcd(mut m: $T, mut n: $T) -> $T { |
| while m != 0 { |
| mem::swap(&mut m, &mut n); |
| m %= n; |
| } |
| n |
| } |
| |
| for i in 0..255 { |
| for j in 0..255 { |
| assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); |
| } |
| } |
| |
| // last value |
| // FIXME: Use inclusive ranges for above loop when implemented |
| let i = 255; |
| for j in 0..255 { |
| assert_eq!(euclidean_gcd(i, j), i.gcd(&j)); |
| } |
| assert_eq!(255.gcd(&255), 255); |
| } |
| |
| #[test] |
| fn test_lcm() { |
| assert_eq!((1 as $T).lcm(&0), 0 as $T); |
| assert_eq!((0 as $T).lcm(&1), 0 as $T); |
| assert_eq!((1 as $T).lcm(&1), 1 as $T); |
| assert_eq!((8 as $T).lcm(&9), 72 as $T); |
| assert_eq!((11 as $T).lcm(&5), 55 as $T); |
| assert_eq!((15 as $T).lcm(&17), 255 as $T); |
| } |
| |
| #[test] |
| fn test_gcd_lcm() { |
| for i in (0..).take(256) { |
| for j in (0..).take(256) { |
| assert_eq!(i.gcd_lcm(&j), (i.gcd(&j), i.lcm(&j))); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_is_multiple_of() { |
| assert!((6 as $T).is_multiple_of(&(6 as $T))); |
| assert!((6 as $T).is_multiple_of(&(3 as $T))); |
| assert!((6 as $T).is_multiple_of(&(1 as $T))); |
| } |
| |
| #[test] |
| fn test_even() { |
| assert_eq!((0 as $T).is_even(), true); |
| assert_eq!((1 as $T).is_even(), false); |
| assert_eq!((2 as $T).is_even(), true); |
| assert_eq!((3 as $T).is_even(), false); |
| assert_eq!((4 as $T).is_even(), true); |
| } |
| |
| #[test] |
| fn test_odd() { |
| assert_eq!((0 as $T).is_odd(), false); |
| assert_eq!((1 as $T).is_odd(), true); |
| assert_eq!((2 as $T).is_odd(), false); |
| assert_eq!((3 as $T).is_odd(), true); |
| assert_eq!((4 as $T).is_odd(), false); |
| } |
| } |
| }; |
| } |
| |
| impl_integer_for_usize!(u8, test_integer_u8); |
| impl_integer_for_usize!(u16, test_integer_u16); |
| impl_integer_for_usize!(u32, test_integer_u32); |
| impl_integer_for_usize!(u64, test_integer_u64); |
| impl_integer_for_usize!(usize, test_integer_usize); |
| #[cfg(has_i128)] |
| impl_integer_for_usize!(u128, test_integer_u128); |
| |
| /// An iterator over binomial coefficients. |
| pub struct IterBinomial<T> { |
| a: T, |
| n: T, |
| k: T, |
| } |
| |
| impl<T> IterBinomial<T> |
| where |
| T: Integer, |
| { |
| /// For a given n, iterate over all binomial coefficients binomial(n, k), for k=0...n. |
| /// |
| /// Note that this might overflow, depending on `T`. For the primitive |
| /// integer types, the following n are the largest ones for which there will |
| /// be no overflow: |
| /// |
| /// type | n |
| /// -----|--- |
| /// u8 | 10 |
| /// i8 | 9 |
| /// u16 | 18 |
| /// i16 | 17 |
| /// u32 | 34 |
| /// i32 | 33 |
| /// u64 | 67 |
| /// i64 | 66 |
| /// |
| /// For larger n, `T` should be a bigint type. |
| pub fn new(n: T) -> IterBinomial<T> { |
| IterBinomial { |
| k: T::zero(), |
| a: T::one(), |
| n: n, |
| } |
| } |
| } |
| |
| impl<T> Iterator for IterBinomial<T> |
| where |
| T: Integer + Clone, |
| { |
| type Item = T; |
| |
| fn next(&mut self) -> Option<T> { |
| if self.k > self.n { |
| return None; |
| } |
| self.a = if !self.k.is_zero() { |
| multiply_and_divide( |
| self.a.clone(), |
| self.n.clone() - self.k.clone() + T::one(), |
| self.k.clone(), |
| ) |
| } else { |
| T::one() |
| }; |
| self.k = self.k.clone() + T::one(); |
| Some(self.a.clone()) |
| } |
| } |
| |
| /// Calculate r * a / b, avoiding overflows and fractions. |
| /// |
| /// Assumes that b divides r * a evenly. |
| fn multiply_and_divide<T: Integer + Clone>(r: T, a: T, b: T) -> T { |
| // See http://blog.plover.com/math/choose-2.html for the idea. |
| let g = gcd(r.clone(), b.clone()); |
| r / g.clone() * (a / (b / g)) |
| } |
| |
| /// Calculate the binomial coefficient. |
| /// |
| /// Note that this might overflow, depending on `T`. For the primitive integer |
| /// types, the following n are the largest ones possible such that there will |
| /// be no overflow for any k: |
| /// |
| /// type | n |
| /// -----|--- |
| /// u8 | 10 |
| /// i8 | 9 |
| /// u16 | 18 |
| /// i16 | 17 |
| /// u32 | 34 |
| /// i32 | 33 |
| /// u64 | 67 |
| /// i64 | 66 |
| /// |
| /// For larger n, consider using a bigint type for `T`. |
| pub fn binomial<T: Integer + Clone>(mut n: T, k: T) -> T { |
| // See http://blog.plover.com/math/choose.html for the idea. |
| if k > n { |
| return T::zero(); |
| } |
| if k > n.clone() - k.clone() { |
| return binomial(n.clone(), n - k); |
| } |
| let mut r = T::one(); |
| let mut d = T::one(); |
| loop { |
| if d > k { |
| break; |
| } |
| r = multiply_and_divide(r, n.clone(), d.clone()); |
| n = n - T::one(); |
| d = d + T::one(); |
| } |
| r |
| } |
| |
| /// Calculate the multinomial coefficient. |
| pub fn multinomial<T: Integer + Clone>(k: &[T]) -> T |
| where |
| for<'a> T: Add<&'a T, Output = T>, |
| { |
| let mut r = T::one(); |
| let mut p = T::zero(); |
| for i in k { |
| p = p + i; |
| r = r * binomial(p.clone(), i.clone()); |
| } |
| r |
| } |
| |
| #[test] |
| fn test_lcm_overflow() { |
| macro_rules! check { |
| ($t:ty, $x:expr, $y:expr, $r:expr) => {{ |
| let x: $t = $x; |
| let y: $t = $y; |
| let o = x.checked_mul(y); |
| assert!( |
| o.is_none(), |
| "sanity checking that {} input {} * {} overflows", |
| stringify!($t), |
| x, |
| y |
| ); |
| assert_eq!(x.lcm(&y), $r); |
| assert_eq!(y.lcm(&x), $r); |
| }}; |
| } |
| |
| // Original bug (Issue #166) |
| check!(i64, 46656000000000000, 600, 46656000000000000); |
| |
| check!(i8, 0x40, 0x04, 0x40); |
| check!(u8, 0x80, 0x02, 0x80); |
| check!(i16, 0x40_00, 0x04, 0x40_00); |
| check!(u16, 0x80_00, 0x02, 0x80_00); |
| check!(i32, 0x4000_0000, 0x04, 0x4000_0000); |
| check!(u32, 0x8000_0000, 0x02, 0x8000_0000); |
| check!(i64, 0x4000_0000_0000_0000, 0x04, 0x4000_0000_0000_0000); |
| check!(u64, 0x8000_0000_0000_0000, 0x02, 0x8000_0000_0000_0000); |
| } |
| |
| #[test] |
| fn test_iter_binomial() { |
| macro_rules! check_simple { |
| ($t:ty) => {{ |
| let n: $t = 3; |
| let expected = [1, 3, 3, 1]; |
| for (b, &e) in IterBinomial::new(n).zip(&expected) { |
| assert_eq!(b, e); |
| } |
| }}; |
| } |
| |
| check_simple!(u8); |
| check_simple!(i8); |
| check_simple!(u16); |
| check_simple!(i16); |
| check_simple!(u32); |
| check_simple!(i32); |
| check_simple!(u64); |
| check_simple!(i64); |
| |
| macro_rules! check_binomial { |
| ($t:ty, $n:expr) => {{ |
| let n: $t = $n; |
| let mut k: $t = 0; |
| for b in IterBinomial::new(n) { |
| assert_eq!(b, binomial(n, k)); |
| k += 1; |
| } |
| }}; |
| } |
| |
| // Check the largest n for which there is no overflow. |
| check_binomial!(u8, 10); |
| check_binomial!(i8, 9); |
| check_binomial!(u16, 18); |
| check_binomial!(i16, 17); |
| check_binomial!(u32, 34); |
| check_binomial!(i32, 33); |
| check_binomial!(u64, 67); |
| check_binomial!(i64, 66); |
| } |
| |
| #[test] |
| fn test_binomial() { |
| macro_rules! check { |
| ($t:ty, $x:expr, $y:expr, $r:expr) => {{ |
| let x: $t = $x; |
| let y: $t = $y; |
| let expected: $t = $r; |
| assert_eq!(binomial(x, y), expected); |
| if y <= x { |
| assert_eq!(binomial(x, x - y), expected); |
| } |
| }}; |
| } |
| check!(u8, 9, 4, 126); |
| check!(u8, 0, 0, 1); |
| check!(u8, 2, 3, 0); |
| |
| check!(i8, 9, 4, 126); |
| check!(i8, 0, 0, 1); |
| check!(i8, 2, 3, 0); |
| |
| check!(u16, 100, 2, 4950); |
| check!(u16, 14, 4, 1001); |
| check!(u16, 0, 0, 1); |
| check!(u16, 2, 3, 0); |
| |
| check!(i16, 100, 2, 4950); |
| check!(i16, 14, 4, 1001); |
| check!(i16, 0, 0, 1); |
| check!(i16, 2, 3, 0); |
| |
| check!(u32, 100, 2, 4950); |
| check!(u32, 35, 11, 417225900); |
| check!(u32, 14, 4, 1001); |
| check!(u32, 0, 0, 1); |
| check!(u32, 2, 3, 0); |
| |
| check!(i32, 100, 2, 4950); |
| check!(i32, 35, 11, 417225900); |
| check!(i32, 14, 4, 1001); |
| check!(i32, 0, 0, 1); |
| check!(i32, 2, 3, 0); |
| |
| check!(u64, 100, 2, 4950); |
| check!(u64, 35, 11, 417225900); |
| check!(u64, 14, 4, 1001); |
| check!(u64, 0, 0, 1); |
| check!(u64, 2, 3, 0); |
| |
| check!(i64, 100, 2, 4950); |
| check!(i64, 35, 11, 417225900); |
| check!(i64, 14, 4, 1001); |
| check!(i64, 0, 0, 1); |
| check!(i64, 2, 3, 0); |
| } |
| |
| #[test] |
| fn test_multinomial() { |
| macro_rules! check_binomial { |
| ($t:ty, $k:expr) => {{ |
| let n: $t = $k.iter().fold(0, |acc, &x| acc + x); |
| let k: &[$t] = $k; |
| assert_eq!(k.len(), 2); |
| assert_eq!(multinomial(k), binomial(n, k[0])); |
| }}; |
| } |
| |
| check_binomial!(u8, &[4, 5]); |
| |
| check_binomial!(i8, &[4, 5]); |
| |
| check_binomial!(u16, &[2, 98]); |
| check_binomial!(u16, &[4, 10]); |
| |
| check_binomial!(i16, &[2, 98]); |
| check_binomial!(i16, &[4, 10]); |
| |
| check_binomial!(u32, &[2, 98]); |
| check_binomial!(u32, &[11, 24]); |
| check_binomial!(u32, &[4, 10]); |
| |
| check_binomial!(i32, &[2, 98]); |
| check_binomial!(i32, &[11, 24]); |
| check_binomial!(i32, &[4, 10]); |
| |
| check_binomial!(u64, &[2, 98]); |
| check_binomial!(u64, &[11, 24]); |
| check_binomial!(u64, &[4, 10]); |
| |
| check_binomial!(i64, &[2, 98]); |
| check_binomial!(i64, &[11, 24]); |
| check_binomial!(i64, &[4, 10]); |
| |
| macro_rules! check_multinomial { |
| ($t:ty, $k:expr, $r:expr) => {{ |
| let k: &[$t] = $k; |
| let expected: $t = $r; |
| assert_eq!(multinomial(k), expected); |
| }}; |
| } |
| |
| check_multinomial!(u8, &[2, 1, 2], 30); |
| check_multinomial!(u8, &[2, 3, 0], 10); |
| |
| check_multinomial!(i8, &[2, 1, 2], 30); |
| check_multinomial!(i8, &[2, 3, 0], 10); |
| |
| check_multinomial!(u16, &[2, 1, 2], 30); |
| check_multinomial!(u16, &[2, 3, 0], 10); |
| |
| check_multinomial!(i16, &[2, 1, 2], 30); |
| check_multinomial!(i16, &[2, 3, 0], 10); |
| |
| check_multinomial!(u32, &[2, 1, 2], 30); |
| check_multinomial!(u32, &[2, 3, 0], 10); |
| |
| check_multinomial!(i32, &[2, 1, 2], 30); |
| check_multinomial!(i32, &[2, 3, 0], 10); |
| |
| check_multinomial!(u64, &[2, 1, 2], 30); |
| check_multinomial!(u64, &[2, 3, 0], 10); |
| |
| check_multinomial!(i64, &[2, 1, 2], 30); |
| check_multinomial!(i64, &[2, 3, 0], 10); |
| |
| check_multinomial!(u64, &[], 1); |
| check_multinomial!(u64, &[0], 1); |
| check_multinomial!(u64, &[12345], 1); |
| } |