| // Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT |
| // file at the top-level directory of this distribution and at |
| // http://rust-lang.org/COPYRIGHT. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // http://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! Rational numbers |
| //! |
| //! ## Compatibility |
| //! |
| //! The `num-rational` crate is tested for rustc 1.60 and greater. |
| |
| #![doc(html_root_url = "https://docs.rs/num-rational/0.4")] |
| #![no_std] |
| // Ratio ops often use other "suspicious" ops |
| #![allow(clippy::suspicious_arithmetic_impl)] |
| #![allow(clippy::suspicious_op_assign_impl)] |
| |
| #[cfg(feature = "std")] |
| #[macro_use] |
| extern crate std; |
| |
| use core::cmp; |
| use core::fmt; |
| use core::fmt::{Binary, Display, Formatter, LowerExp, LowerHex, Octal, UpperExp, UpperHex}; |
| use core::hash::{Hash, Hasher}; |
| use core::ops::{Add, Div, Mul, Neg, Rem, ShlAssign, Sub}; |
| use core::str::FromStr; |
| #[cfg(feature = "std")] |
| use std::error::Error; |
| |
| #[cfg(feature = "num-bigint")] |
| use num_bigint::{BigInt, BigUint, Sign, ToBigInt}; |
| |
| use num_integer::Integer; |
| use num_traits::float::FloatCore; |
| use num_traits::{ |
| Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, ConstOne, ConstZero, FromPrimitive, |
| Inv, Num, NumCast, One, Pow, Signed, ToPrimitive, Unsigned, Zero, |
| }; |
| |
| mod pow; |
| |
| /// Represents the ratio between two numbers. |
| #[derive(Copy, Clone, Debug)] |
| #[allow(missing_docs)] |
| pub struct Ratio<T> { |
| /// Numerator. |
| numer: T, |
| /// Denominator. |
| denom: T, |
| } |
| |
| /// Alias for a `Ratio` of machine-sized integers. |
| #[deprecated( |
| since = "0.4.0", |
| note = "it's better to use a specific size, like `Rational32` or `Rational64`" |
| )] |
| pub type Rational = Ratio<isize>; |
| /// Alias for a `Ratio` of 32-bit-sized integers. |
| pub type Rational32 = Ratio<i32>; |
| /// Alias for a `Ratio` of 64-bit-sized integers. |
| pub type Rational64 = Ratio<i64>; |
| |
| #[cfg(feature = "num-bigint")] |
| /// Alias for arbitrary precision rationals. |
| pub type BigRational = Ratio<BigInt>; |
| |
| /// These method are `const`. |
| impl<T> Ratio<T> { |
| /// Creates a `Ratio` without checking for `denom == 0` or reducing. |
| /// |
| /// **There are several methods that will panic if used on a `Ratio` with |
| /// `denom == 0`.** |
| #[inline] |
| pub const fn new_raw(numer: T, denom: T) -> Ratio<T> { |
| Ratio { numer, denom } |
| } |
| |
| /// Deconstructs a `Ratio` into its numerator and denominator. |
| #[inline] |
| pub fn into_raw(self) -> (T, T) { |
| (self.numer, self.denom) |
| } |
| |
| /// Gets an immutable reference to the numerator. |
| #[inline] |
| pub const fn numer(&self) -> &T { |
| &self.numer |
| } |
| |
| /// Gets an immutable reference to the denominator. |
| #[inline] |
| pub const fn denom(&self) -> &T { |
| &self.denom |
| } |
| } |
| |
| impl<T: Clone + Integer> Ratio<T> { |
| /// Creates a new `Ratio`. |
| /// |
| /// **Panics if `denom` is zero.** |
| #[inline] |
| pub fn new(numer: T, denom: T) -> Ratio<T> { |
| let mut ret = Ratio::new_raw(numer, denom); |
| ret.reduce(); |
| ret |
| } |
| |
| /// Creates a `Ratio` representing the integer `t`. |
| #[inline] |
| pub fn from_integer(t: T) -> Ratio<T> { |
| Ratio::new_raw(t, One::one()) |
| } |
| |
| /// Converts to an integer, rounding towards zero. |
| #[inline] |
| pub fn to_integer(&self) -> T { |
| self.trunc().numer |
| } |
| |
| /// Returns true if the rational number is an integer (denominator is 1). |
| #[inline] |
| pub fn is_integer(&self) -> bool { |
| self.denom.is_one() |
| } |
| |
| /// Puts self into lowest terms, with `denom` > 0. |
| /// |
| /// **Panics if `denom` is zero.** |
| fn reduce(&mut self) { |
| if self.denom.is_zero() { |
| panic!("denominator == 0"); |
| } |
| if self.numer.is_zero() { |
| self.denom.set_one(); |
| return; |
| } |
| if self.numer == self.denom { |
| self.set_one(); |
| return; |
| } |
| let g: T = self.numer.gcd(&self.denom); |
| |
| // FIXME(#5992): assignment operator overloads |
| // T: Clone + Integer != T: Clone + NumAssign |
| |
| #[inline] |
| fn replace_with<T: Zero>(x: &mut T, f: impl FnOnce(T) -> T) { |
| let y = core::mem::replace(x, T::zero()); |
| *x = f(y); |
| } |
| |
| // self.numer /= g; |
| replace_with(&mut self.numer, |x| x / g.clone()); |
| |
| // self.denom /= g; |
| replace_with(&mut self.denom, |x| x / g); |
| |
| // keep denom positive! |
| if self.denom < T::zero() { |
| replace_with(&mut self.numer, |x| T::zero() - x); |
| replace_with(&mut self.denom, |x| T::zero() - x); |
| } |
| } |
| |
| /// Returns a reduced copy of self. |
| /// |
| /// In general, it is not necessary to use this method, as the only |
| /// method of procuring a non-reduced fraction is through `new_raw`. |
| /// |
| /// **Panics if `denom` is zero.** |
| pub fn reduced(&self) -> Ratio<T> { |
| let mut ret = self.clone(); |
| ret.reduce(); |
| ret |
| } |
| |
| /// Returns the reciprocal. |
| /// |
| /// **Panics if the `Ratio` is zero.** |
| #[inline] |
| pub fn recip(&self) -> Ratio<T> { |
| self.clone().into_recip() |
| } |
| |
| #[inline] |
| fn into_recip(self) -> Ratio<T> { |
| match self.numer.cmp(&T::zero()) { |
| cmp::Ordering::Equal => panic!("division by zero"), |
| cmp::Ordering::Greater => Ratio::new_raw(self.denom, self.numer), |
| cmp::Ordering::Less => Ratio::new_raw(T::zero() - self.denom, T::zero() - self.numer), |
| } |
| } |
| |
| /// Rounds towards minus infinity. |
| #[inline] |
| pub fn floor(&self) -> Ratio<T> { |
| if *self < Zero::zero() { |
| let one: T = One::one(); |
| Ratio::from_integer( |
| (self.numer.clone() - self.denom.clone() + one) / self.denom.clone(), |
| ) |
| } else { |
| Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
| } |
| } |
| |
| /// Rounds towards plus infinity. |
| #[inline] |
| pub fn ceil(&self) -> Ratio<T> { |
| if *self < Zero::zero() { |
| Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
| } else { |
| let one: T = One::one(); |
| Ratio::from_integer( |
| (self.numer.clone() + self.denom.clone() - one) / self.denom.clone(), |
| ) |
| } |
| } |
| |
| /// Rounds to the nearest integer. Rounds half-way cases away from zero. |
| #[inline] |
| pub fn round(&self) -> Ratio<T> { |
| let zero: Ratio<T> = Zero::zero(); |
| let one: T = One::one(); |
| let two: T = one.clone() + one.clone(); |
| |
| // Find unsigned fractional part of rational number |
| let mut fractional = self.fract(); |
| if fractional < zero { |
| fractional = zero - fractional |
| }; |
| |
| // The algorithm compares the unsigned fractional part with 1/2, that |
| // is, a/b >= 1/2, or a >= b/2. For odd denominators, we use |
| // a >= (b/2)+1. This avoids overflow issues. |
| let half_or_larger = if fractional.denom.is_even() { |
| fractional.numer >= fractional.denom / two |
| } else { |
| fractional.numer >= (fractional.denom / two) + one |
| }; |
| |
| if half_or_larger { |
| let one: Ratio<T> = One::one(); |
| if *self >= Zero::zero() { |
| self.trunc() + one |
| } else { |
| self.trunc() - one |
| } |
| } else { |
| self.trunc() |
| } |
| } |
| |
| /// Rounds towards zero. |
| #[inline] |
| pub fn trunc(&self) -> Ratio<T> { |
| Ratio::from_integer(self.numer.clone() / self.denom.clone()) |
| } |
| |
| /// Returns the fractional part of a number, with division rounded towards zero. |
| /// |
| /// Satisfies `self == self.trunc() + self.fract()`. |
| #[inline] |
| pub fn fract(&self) -> Ratio<T> { |
| Ratio::new_raw(self.numer.clone() % self.denom.clone(), self.denom.clone()) |
| } |
| |
| /// Raises the `Ratio` to the power of an exponent. |
| #[inline] |
| pub fn pow(&self, expon: i32) -> Ratio<T> |
| where |
| for<'a> &'a T: Pow<u32, Output = T>, |
| { |
| Pow::pow(self, expon) |
| } |
| } |
| |
| #[cfg(feature = "num-bigint")] |
| impl Ratio<BigInt> { |
| /// Converts a float into a rational number. |
| pub fn from_float<T: FloatCore>(f: T) -> Option<BigRational> { |
| if !f.is_finite() { |
| return None; |
| } |
| let (mantissa, exponent, sign) = f.integer_decode(); |
| let bigint_sign = if sign == 1 { Sign::Plus } else { Sign::Minus }; |
| if exponent < 0 { |
| let one: BigInt = One::one(); |
| let denom: BigInt = one << ((-exponent) as usize); |
| let numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
| Some(Ratio::new(BigInt::from_biguint(bigint_sign, numer), denom)) |
| } else { |
| let mut numer: BigUint = FromPrimitive::from_u64(mantissa).unwrap(); |
| numer <<= exponent as usize; |
| Some(Ratio::from_integer(BigInt::from_biguint( |
| bigint_sign, |
| numer, |
| ))) |
| } |
| } |
| } |
| |
| impl<T: Clone + Integer> Default for Ratio<T> { |
| /// Returns zero |
| fn default() -> Self { |
| Ratio::zero() |
| } |
| } |
| |
| // From integer |
| impl<T> From<T> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| fn from(x: T) -> Ratio<T> { |
| Ratio::from_integer(x) |
| } |
| } |
| |
| // From pair (through the `new` constructor) |
| impl<T> From<(T, T)> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| fn from(pair: (T, T)) -> Ratio<T> { |
| Ratio::new(pair.0, pair.1) |
| } |
| } |
| |
| // Comparisons |
| |
| // Mathematically, comparing a/b and c/d is the same as comparing a*d and b*c, but it's very easy |
| // for those multiplications to overflow fixed-size integers, so we need to take care. |
| |
| impl<T: Clone + Integer> Ord for Ratio<T> { |
| #[inline] |
| fn cmp(&self, other: &Self) -> cmp::Ordering { |
| // With equal denominators, the numerators can be directly compared |
| if self.denom == other.denom { |
| let ord = self.numer.cmp(&other.numer); |
| return if self.denom < T::zero() { |
| ord.reverse() |
| } else { |
| ord |
| }; |
| } |
| |
| // With equal numerators, the denominators can be inversely compared |
| if self.numer == other.numer { |
| if self.numer.is_zero() { |
| return cmp::Ordering::Equal; |
| } |
| let ord = self.denom.cmp(&other.denom); |
| return if self.numer < T::zero() { |
| ord |
| } else { |
| ord.reverse() |
| }; |
| } |
| |
| // Unfortunately, we don't have CheckedMul to try. That could sometimes avoid all the |
| // division below, or even always avoid it for BigInt and BigUint. |
| // FIXME- future breaking change to add Checked* to Integer? |
| |
| // Compare as floored integers and remainders |
| let (self_int, self_rem) = self.numer.div_mod_floor(&self.denom); |
| let (other_int, other_rem) = other.numer.div_mod_floor(&other.denom); |
| match self_int.cmp(&other_int) { |
| cmp::Ordering::Greater => cmp::Ordering::Greater, |
| cmp::Ordering::Less => cmp::Ordering::Less, |
| cmp::Ordering::Equal => { |
| match (self_rem.is_zero(), other_rem.is_zero()) { |
| (true, true) => cmp::Ordering::Equal, |
| (true, false) => cmp::Ordering::Less, |
| (false, true) => cmp::Ordering::Greater, |
| (false, false) => { |
| // Compare the reciprocals of the remaining fractions in reverse |
| let self_recip = Ratio::new_raw(self.denom.clone(), self_rem); |
| let other_recip = Ratio::new_raw(other.denom.clone(), other_rem); |
| self_recip.cmp(&other_recip).reverse() |
| } |
| } |
| } |
| } |
| } |
| } |
| |
| impl<T: Clone + Integer> PartialOrd for Ratio<T> { |
| #[inline] |
| fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> { |
| Some(self.cmp(other)) |
| } |
| } |
| |
| impl<T: Clone + Integer> PartialEq for Ratio<T> { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| self.cmp(other) == cmp::Ordering::Equal |
| } |
| } |
| |
| impl<T: Clone + Integer> Eq for Ratio<T> {} |
| |
| // NB: We can't just `#[derive(Hash)]`, because it needs to agree |
| // with `Eq` even for non-reduced ratios. |
| impl<T: Clone + Integer + Hash> Hash for Ratio<T> { |
| fn hash<H: Hasher>(&self, state: &mut H) { |
| recurse(&self.numer, &self.denom, state); |
| |
| fn recurse<T: Integer + Hash, H: Hasher>(numer: &T, denom: &T, state: &mut H) { |
| if !denom.is_zero() { |
| let (int, rem) = numer.div_mod_floor(denom); |
| int.hash(state); |
| recurse(denom, &rem, state); |
| } else { |
| denom.hash(state); |
| } |
| } |
| } |
| } |
| |
| mod iter_sum_product { |
| use crate::Ratio; |
| use core::iter::{Product, Sum}; |
| use num_integer::Integer; |
| use num_traits::{One, Zero}; |
| |
| impl<T: Integer + Clone> Sum for Ratio<T> { |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Ratio<T>>, |
| { |
| iter.fold(Self::zero(), |sum, num| sum + num) |
| } |
| } |
| |
| impl<'a, T: Integer + Clone> Sum<&'a Ratio<T>> for Ratio<T> { |
| fn sum<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Ratio<T>>, |
| { |
| iter.fold(Self::zero(), |sum, num| sum + num) |
| } |
| } |
| |
| impl<T: Integer + Clone> Product for Ratio<T> { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = Ratio<T>>, |
| { |
| iter.fold(Self::one(), |prod, num| prod * num) |
| } |
| } |
| |
| impl<'a, T: Integer + Clone> Product<&'a Ratio<T>> for Ratio<T> { |
| fn product<I>(iter: I) -> Self |
| where |
| I: Iterator<Item = &'a Ratio<T>>, |
| { |
| iter.fold(Self::one(), |prod, num| prod * num) |
| } |
| } |
| } |
| |
| mod opassign { |
| use core::ops::{AddAssign, DivAssign, MulAssign, RemAssign, SubAssign}; |
| |
| use crate::Ratio; |
| use num_integer::Integer; |
| use num_traits::NumAssign; |
| |
| impl<T: Clone + Integer + NumAssign> AddAssign for Ratio<T> { |
| fn add_assign(&mut self, other: Ratio<T>) { |
| if self.denom == other.denom { |
| self.numer += other.numer |
| } else { |
| let lcm = self.denom.lcm(&other.denom); |
| let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
| let rhs_numer = other.numer * (lcm.clone() / other.denom); |
| self.numer = lhs_numer + rhs_numer; |
| self.denom = lcm; |
| } |
| self.reduce(); |
| } |
| } |
| |
| // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
| impl<T: Clone + Integer + NumAssign> DivAssign for Ratio<T> { |
| fn div_assign(&mut self, other: Ratio<T>) { |
| let gcd_ac = self.numer.gcd(&other.numer); |
| let gcd_bd = self.denom.gcd(&other.denom); |
| self.numer /= gcd_ac.clone(); |
| self.numer *= other.denom / gcd_bd.clone(); |
| self.denom /= gcd_bd; |
| self.denom *= other.numer / gcd_ac; |
| self.reduce(); // TODO: remove this line. see #8. |
| } |
| } |
| |
| // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
| impl<T: Clone + Integer + NumAssign> MulAssign for Ratio<T> { |
| fn mul_assign(&mut self, other: Ratio<T>) { |
| let gcd_ad = self.numer.gcd(&other.denom); |
| let gcd_bc = self.denom.gcd(&other.numer); |
| self.numer /= gcd_ad.clone(); |
| self.numer *= other.numer / gcd_bc.clone(); |
| self.denom /= gcd_bc; |
| self.denom *= other.denom / gcd_ad; |
| self.reduce(); // TODO: remove this line. see #8. |
| } |
| } |
| |
| impl<T: Clone + Integer + NumAssign> RemAssign for Ratio<T> { |
| fn rem_assign(&mut self, other: Ratio<T>) { |
| if self.denom == other.denom { |
| self.numer %= other.numer |
| } else { |
| let lcm = self.denom.lcm(&other.denom); |
| let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
| let rhs_numer = other.numer * (lcm.clone() / other.denom); |
| self.numer = lhs_numer % rhs_numer; |
| self.denom = lcm; |
| } |
| self.reduce(); |
| } |
| } |
| |
| impl<T: Clone + Integer + NumAssign> SubAssign for Ratio<T> { |
| fn sub_assign(&mut self, other: Ratio<T>) { |
| if self.denom == other.denom { |
| self.numer -= other.numer |
| } else { |
| let lcm = self.denom.lcm(&other.denom); |
| let lhs_numer = self.numer.clone() * (lcm.clone() / self.denom.clone()); |
| let rhs_numer = other.numer * (lcm.clone() / other.denom); |
| self.numer = lhs_numer - rhs_numer; |
| self.denom = lcm; |
| } |
| self.reduce(); |
| } |
| } |
| |
| // a/b + c/1 = (a*1 + b*c) / (b*1) = (a + b*c) / b |
| impl<T: Clone + Integer + NumAssign> AddAssign<T> for Ratio<T> { |
| fn add_assign(&mut self, other: T) { |
| self.numer += self.denom.clone() * other; |
| self.reduce(); |
| } |
| } |
| |
| impl<T: Clone + Integer + NumAssign> DivAssign<T> for Ratio<T> { |
| fn div_assign(&mut self, other: T) { |
| let gcd = self.numer.gcd(&other); |
| self.numer /= gcd.clone(); |
| self.denom *= other / gcd; |
| self.reduce(); // TODO: remove this line. see #8. |
| } |
| } |
| |
| impl<T: Clone + Integer + NumAssign> MulAssign<T> for Ratio<T> { |
| fn mul_assign(&mut self, other: T) { |
| let gcd = self.denom.gcd(&other); |
| self.denom /= gcd.clone(); |
| self.numer *= other / gcd; |
| self.reduce(); // TODO: remove this line. see #8. |
| } |
| } |
| |
| // a/b % c/1 = (a*1 % b*c) / (b*1) = (a % b*c) / b |
| impl<T: Clone + Integer + NumAssign> RemAssign<T> for Ratio<T> { |
| fn rem_assign(&mut self, other: T) { |
| self.numer %= self.denom.clone() * other; |
| self.reduce(); |
| } |
| } |
| |
| // a/b - c/1 = (a*1 - b*c) / (b*1) = (a - b*c) / b |
| impl<T: Clone + Integer + NumAssign> SubAssign<T> for Ratio<T> { |
| fn sub_assign(&mut self, other: T) { |
| self.numer -= self.denom.clone() * other; |
| self.reduce(); |
| } |
| } |
| |
| macro_rules! forward_op_assign { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, T: Clone + Integer + NumAssign> $imp<&'a Ratio<T>> for Ratio<T> { |
| #[inline] |
| fn $method(&mut self, other: &Ratio<T>) { |
| self.$method(other.clone()) |
| } |
| } |
| impl<'a, T: Clone + Integer + NumAssign> $imp<&'a T> for Ratio<T> { |
| #[inline] |
| fn $method(&mut self, other: &T) { |
| self.$method(other.clone()) |
| } |
| } |
| }; |
| } |
| |
| forward_op_assign!(impl AddAssign, add_assign); |
| forward_op_assign!(impl DivAssign, div_assign); |
| forward_op_assign!(impl MulAssign, mul_assign); |
| forward_op_assign!(impl RemAssign, rem_assign); |
| forward_op_assign!(impl SubAssign, sub_assign); |
| } |
| |
| macro_rules! forward_ref_ref_binop { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, 'b, T: Clone + Integer> $imp<&'b Ratio<T>> for &'a Ratio<T> { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn $method(self, other: &'b Ratio<T>) -> Ratio<T> { |
| self.clone().$method(other.clone()) |
| } |
| } |
| impl<'a, 'b, T: Clone + Integer> $imp<&'b T> for &'a Ratio<T> { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn $method(self, other: &'b T) -> Ratio<T> { |
| self.clone().$method(other.clone()) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! forward_ref_val_binop { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, T> $imp<Ratio<T>> for &'a Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn $method(self, other: Ratio<T>) -> Ratio<T> { |
| self.clone().$method(other) |
| } |
| } |
| impl<'a, T> $imp<T> for &'a Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn $method(self, other: T) -> Ratio<T> { |
| self.clone().$method(other) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! forward_val_ref_binop { |
| (impl $imp:ident, $method:ident) => { |
| impl<'a, T> $imp<&'a Ratio<T>> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn $method(self, other: &Ratio<T>) -> Ratio<T> { |
| self.$method(other.clone()) |
| } |
| } |
| impl<'a, T> $imp<&'a T> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn $method(self, other: &T) -> Ratio<T> { |
| self.$method(other.clone()) |
| } |
| } |
| }; |
| } |
| |
| macro_rules! forward_all_binop { |
| (impl $imp:ident, $method:ident) => { |
| forward_ref_ref_binop!(impl $imp, $method); |
| forward_ref_val_binop!(impl $imp, $method); |
| forward_val_ref_binop!(impl $imp, $method); |
| }; |
| } |
| |
| // Arithmetic |
| forward_all_binop!(impl Mul, mul); |
| // a/b * c/d = (a/gcd_ad)*(c/gcd_bc) / ((d/gcd_ad)*(b/gcd_bc)) |
| impl<T> Mul<Ratio<T>> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| #[inline] |
| fn mul(self, rhs: Ratio<T>) -> Ratio<T> { |
| let gcd_ad = self.numer.gcd(&rhs.denom); |
| let gcd_bc = self.denom.gcd(&rhs.numer); |
| Ratio::new( |
| self.numer / gcd_ad.clone() * (rhs.numer / gcd_bc.clone()), |
| self.denom / gcd_bc * (rhs.denom / gcd_ad), |
| ) |
| } |
| } |
| // a/b * c/1 = (a*c) / (b*1) = (a*c) / b |
| impl<T> Mul<T> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| #[inline] |
| fn mul(self, rhs: T) -> Ratio<T> { |
| let gcd = self.denom.gcd(&rhs); |
| Ratio::new(self.numer * (rhs / gcd.clone()), self.denom / gcd) |
| } |
| } |
| |
| forward_all_binop!(impl Div, div); |
| // (a/b) / (c/d) = (a/gcd_ac)*(d/gcd_bd) / ((c/gcd_ac)*(b/gcd_bd)) |
| impl<T> Div<Ratio<T>> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn div(self, rhs: Ratio<T>) -> Ratio<T> { |
| let gcd_ac = self.numer.gcd(&rhs.numer); |
| let gcd_bd = self.denom.gcd(&rhs.denom); |
| Ratio::new( |
| self.numer / gcd_ac.clone() * (rhs.denom / gcd_bd.clone()), |
| self.denom / gcd_bd * (rhs.numer / gcd_ac), |
| ) |
| } |
| } |
| // (a/b) / (c/1) = (a*1) / (b*c) = a / (b*c) |
| impl<T> Div<T> for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn div(self, rhs: T) -> Ratio<T> { |
| let gcd = self.numer.gcd(&rhs); |
| Ratio::new(self.numer / gcd.clone(), self.denom * (rhs / gcd)) |
| } |
| } |
| |
| macro_rules! arith_impl { |
| (impl $imp:ident, $method:ident) => { |
| forward_all_binop!(impl $imp, $method); |
| // Abstracts a/b `op` c/d = (a*lcm/b `op` c*lcm/d)/lcm where lcm = lcm(b,d) |
| impl<T: Clone + Integer> $imp<Ratio<T>> for Ratio<T> { |
| type Output = Ratio<T>; |
| #[inline] |
| fn $method(self, rhs: Ratio<T>) -> Ratio<T> { |
| if self.denom == rhs.denom { |
| return Ratio::new(self.numer.$method(rhs.numer), rhs.denom); |
| } |
| let lcm = self.denom.lcm(&rhs.denom); |
| let lhs_numer = self.numer * (lcm.clone() / self.denom); |
| let rhs_numer = rhs.numer * (lcm.clone() / rhs.denom); |
| Ratio::new(lhs_numer.$method(rhs_numer), lcm) |
| } |
| } |
| // Abstracts the a/b `op` c/1 = (a*1 `op` b*c) / (b*1) = (a `op` b*c) / b pattern |
| impl<T: Clone + Integer> $imp<T> for Ratio<T> { |
| type Output = Ratio<T>; |
| #[inline] |
| fn $method(self, rhs: T) -> Ratio<T> { |
| Ratio::new(self.numer.$method(self.denom.clone() * rhs), self.denom) |
| } |
| } |
| }; |
| } |
| |
| arith_impl!(impl Add, add); |
| arith_impl!(impl Sub, sub); |
| arith_impl!(impl Rem, rem); |
| |
| // a/b * c/d = (a*c)/(b*d) |
| impl<T> CheckedMul for Ratio<T> |
| where |
| T: Clone + Integer + CheckedMul, |
| { |
| #[inline] |
| fn checked_mul(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
| let gcd_ad = self.numer.gcd(&rhs.denom); |
| let gcd_bc = self.denom.gcd(&rhs.numer); |
| Some(Ratio::new( |
| (self.numer.clone() / gcd_ad.clone()) |
| .checked_mul(&(rhs.numer.clone() / gcd_bc.clone()))?, |
| (self.denom.clone() / gcd_bc).checked_mul(&(rhs.denom.clone() / gcd_ad))?, |
| )) |
| } |
| } |
| |
| // (a/b) / (c/d) = (a*d)/(b*c) |
| impl<T> CheckedDiv for Ratio<T> |
| where |
| T: Clone + Integer + CheckedMul, |
| { |
| #[inline] |
| fn checked_div(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
| if rhs.is_zero() { |
| return None; |
| } |
| let (numer, denom) = if self.denom == rhs.denom { |
| (self.numer.clone(), rhs.numer.clone()) |
| } else if self.numer == rhs.numer { |
| (rhs.denom.clone(), self.denom.clone()) |
| } else { |
| let gcd_ac = self.numer.gcd(&rhs.numer); |
| let gcd_bd = self.denom.gcd(&rhs.denom); |
| ( |
| (self.numer.clone() / gcd_ac.clone()) |
| .checked_mul(&(rhs.denom.clone() / gcd_bd.clone()))?, |
| (self.denom.clone() / gcd_bd).checked_mul(&(rhs.numer.clone() / gcd_ac))?, |
| ) |
| }; |
| // Manual `reduce()`, avoiding sharp edges |
| if denom.is_zero() { |
| None |
| } else if numer.is_zero() { |
| Some(Self::zero()) |
| } else if numer == denom { |
| Some(Self::one()) |
| } else { |
| let g = numer.gcd(&denom); |
| let numer = numer / g.clone(); |
| let denom = denom / g; |
| let raw = if denom < T::zero() { |
| // We need to keep denom positive, but 2's-complement MIN may |
| // overflow negation -- instead we can check multiplying -1. |
| let n1 = T::zero() - T::one(); |
| Ratio::new_raw(numer.checked_mul(&n1)?, denom.checked_mul(&n1)?) |
| } else { |
| Ratio::new_raw(numer, denom) |
| }; |
| Some(raw) |
| } |
| } |
| } |
| |
| // As arith_impl! but for Checked{Add,Sub} traits |
| macro_rules! checked_arith_impl { |
| (impl $imp:ident, $method:ident) => { |
| impl<T: Clone + Integer + CheckedMul + $imp> $imp for Ratio<T> { |
| #[inline] |
| fn $method(&self, rhs: &Ratio<T>) -> Option<Ratio<T>> { |
| let gcd = self.denom.clone().gcd(&rhs.denom); |
| let lcm = (self.denom.clone() / gcd.clone()).checked_mul(&rhs.denom)?; |
| let lhs_numer = (lcm.clone() / self.denom.clone()).checked_mul(&self.numer)?; |
| let rhs_numer = (lcm.clone() / rhs.denom.clone()).checked_mul(&rhs.numer)?; |
| Some(Ratio::new(lhs_numer.$method(&rhs_numer)?, lcm)) |
| } |
| } |
| }; |
| } |
| |
| // a/b + c/d = (lcm/b*a + lcm/d*c)/lcm, where lcm = lcm(b,d) |
| checked_arith_impl!(impl CheckedAdd, checked_add); |
| |
| // a/b - c/d = (lcm/b*a - lcm/d*c)/lcm, where lcm = lcm(b,d) |
| checked_arith_impl!(impl CheckedSub, checked_sub); |
| |
| impl<T> Neg for Ratio<T> |
| where |
| T: Clone + Integer + Neg<Output = T>, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn neg(self) -> Ratio<T> { |
| Ratio::new_raw(-self.numer, self.denom) |
| } |
| } |
| |
| impl<'a, T> Neg for &'a Ratio<T> |
| where |
| T: Clone + Integer + Neg<Output = T>, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn neg(self) -> Ratio<T> { |
| -self.clone() |
| } |
| } |
| |
| impl<T> Inv for Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn inv(self) -> Ratio<T> { |
| self.recip() |
| } |
| } |
| |
| impl<'a, T> Inv for &'a Ratio<T> |
| where |
| T: Clone + Integer, |
| { |
| type Output = Ratio<T>; |
| |
| #[inline] |
| fn inv(self) -> Ratio<T> { |
| self.recip() |
| } |
| } |
| |
| // Constants |
| impl<T: ConstZero + ConstOne> Ratio<T> { |
| /// A constant `Ratio` 0/1. |
| pub const ZERO: Self = Self::new_raw(T::ZERO, T::ONE); |
| } |
| |
| impl<T: Clone + Integer + ConstZero + ConstOne> ConstZero for Ratio<T> { |
| const ZERO: Self = Self::ZERO; |
| } |
| |
| impl<T: Clone + Integer> Zero for Ratio<T> { |
| #[inline] |
| fn zero() -> Ratio<T> { |
| Ratio::new_raw(Zero::zero(), One::one()) |
| } |
| |
| #[inline] |
| fn is_zero(&self) -> bool { |
| self.numer.is_zero() |
| } |
| |
| #[inline] |
| fn set_zero(&mut self) { |
| self.numer.set_zero(); |
| self.denom.set_one(); |
| } |
| } |
| |
| impl<T: ConstOne> Ratio<T> { |
| /// A constant `Ratio` 1/1. |
| pub const ONE: Self = Self::new_raw(T::ONE, T::ONE); |
| } |
| |
| impl<T: Clone + Integer + ConstOne> ConstOne for Ratio<T> { |
| const ONE: Self = Self::ONE; |
| } |
| |
| impl<T: Clone + Integer> One for Ratio<T> { |
| #[inline] |
| fn one() -> Ratio<T> { |
| Ratio::new_raw(One::one(), One::one()) |
| } |
| |
| #[inline] |
| fn is_one(&self) -> bool { |
| self.numer == self.denom |
| } |
| |
| #[inline] |
| fn set_one(&mut self) { |
| self.numer.set_one(); |
| self.denom.set_one(); |
| } |
| } |
| |
| impl<T: Clone + Integer> Num for Ratio<T> { |
| type FromStrRadixErr = ParseRatioError; |
| |
| /// Parses `numer/denom` where the numbers are in base `radix`. |
| fn from_str_radix(s: &str, radix: u32) -> Result<Ratio<T>, ParseRatioError> { |
| if s.splitn(2, '/').count() == 2 { |
| let mut parts = s.splitn(2, '/').map(|ss| { |
| T::from_str_radix(ss, radix).map_err(|_| ParseRatioError { |
| kind: RatioErrorKind::ParseError, |
| }) |
| }); |
| let numer: T = parts.next().unwrap()?; |
| let denom: T = parts.next().unwrap()?; |
| if denom.is_zero() { |
| Err(ParseRatioError { |
| kind: RatioErrorKind::ZeroDenominator, |
| }) |
| } else { |
| Ok(Ratio::new(numer, denom)) |
| } |
| } else { |
| Err(ParseRatioError { |
| kind: RatioErrorKind::ParseError, |
| }) |
| } |
| } |
| } |
| |
| impl<T: Clone + Integer + Signed> Signed for Ratio<T> { |
| #[inline] |
| fn abs(&self) -> Ratio<T> { |
| if self.is_negative() { |
| -self.clone() |
| } else { |
| self.clone() |
| } |
| } |
| |
| #[inline] |
| fn abs_sub(&self, other: &Ratio<T>) -> Ratio<T> { |
| if *self <= *other { |
| Zero::zero() |
| } else { |
| self - other |
| } |
| } |
| |
| #[inline] |
| fn signum(&self) -> Ratio<T> { |
| if self.is_positive() { |
| Self::one() |
| } else if self.is_zero() { |
| Self::zero() |
| } else { |
| -Self::one() |
| } |
| } |
| |
| #[inline] |
| fn is_positive(&self) -> bool { |
| (self.numer.is_positive() && self.denom.is_positive()) |
| || (self.numer.is_negative() && self.denom.is_negative()) |
| } |
| |
| #[inline] |
| fn is_negative(&self) -> bool { |
| (self.numer.is_negative() && self.denom.is_positive()) |
| || (self.numer.is_positive() && self.denom.is_negative()) |
| } |
| } |
| |
| // String conversions |
| macro_rules! impl_formatting { |
| ($fmt_trait:ident, $prefix:expr, $fmt_str:expr, $fmt_alt:expr) => { |
| impl<T: $fmt_trait + Clone + Integer> $fmt_trait for Ratio<T> { |
| #[cfg(feature = "std")] |
| fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| let pre_pad = if self.denom.is_one() { |
| format!($fmt_str, self.numer) |
| } else { |
| if f.alternate() { |
| format!(concat!($fmt_str, "/", $fmt_alt), self.numer, self.denom) |
| } else { |
| format!(concat!($fmt_str, "/", $fmt_str), self.numer, self.denom) |
| } |
| }; |
| if let Some(pre_pad) = pre_pad.strip_prefix("-") { |
| f.pad_integral(false, $prefix, pre_pad) |
| } else { |
| f.pad_integral(true, $prefix, &pre_pad) |
| } |
| } |
| #[cfg(not(feature = "std"))] |
| fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { |
| let plus = if f.sign_plus() && self.numer >= T::zero() { |
| "+" |
| } else { |
| "" |
| }; |
| if self.denom.is_one() { |
| if f.alternate() { |
| write!(f, concat!("{}", $fmt_alt), plus, self.numer) |
| } else { |
| write!(f, concat!("{}", $fmt_str), plus, self.numer) |
| } |
| } else { |
| if f.alternate() { |
| write!( |
| f, |
| concat!("{}", $fmt_alt, "/", $fmt_alt), |
| plus, self.numer, self.denom |
| ) |
| } else { |
| write!( |
| f, |
| concat!("{}", $fmt_str, "/", $fmt_str), |
| plus, self.numer, self.denom |
| ) |
| } |
| } |
| } |
| } |
| }; |
| } |
| |
| impl_formatting!(Display, "", "{}", "{:#}"); |
| impl_formatting!(Octal, "0o", "{:o}", "{:#o}"); |
| impl_formatting!(Binary, "0b", "{:b}", "{:#b}"); |
| impl_formatting!(LowerHex, "0x", "{:x}", "{:#x}"); |
| impl_formatting!(UpperHex, "0x", "{:X}", "{:#X}"); |
| impl_formatting!(LowerExp, "", "{:e}", "{:#e}"); |
| impl_formatting!(UpperExp, "", "{:E}", "{:#E}"); |
| |
| impl<T: FromStr + Clone + Integer> FromStr for Ratio<T> { |
| type Err = ParseRatioError; |
| |
| /// Parses `numer/denom` or just `numer`. |
| fn from_str(s: &str) -> Result<Ratio<T>, ParseRatioError> { |
| let mut split = s.splitn(2, '/'); |
| |
| let n = split.next().ok_or(ParseRatioError { |
| kind: RatioErrorKind::ParseError, |
| })?; |
| let num = FromStr::from_str(n).map_err(|_| ParseRatioError { |
| kind: RatioErrorKind::ParseError, |
| })?; |
| |
| let d = split.next().unwrap_or("1"); |
| let den = FromStr::from_str(d).map_err(|_| ParseRatioError { |
| kind: RatioErrorKind::ParseError, |
| })?; |
| |
| if Zero::is_zero(&den) { |
| Err(ParseRatioError { |
| kind: RatioErrorKind::ZeroDenominator, |
| }) |
| } else { |
| Ok(Ratio::new(num, den)) |
| } |
| } |
| } |
| |
| impl<T> From<Ratio<T>> for (T, T) { |
| fn from(val: Ratio<T>) -> Self { |
| (val.numer, val.denom) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<T> serde::Serialize for Ratio<T> |
| where |
| T: serde::Serialize + Clone + Integer + PartialOrd, |
| { |
| fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> |
| where |
| S: serde::Serializer, |
| { |
| (self.numer(), self.denom()).serialize(serializer) |
| } |
| } |
| |
| #[cfg(feature = "serde")] |
| impl<'de, T> serde::Deserialize<'de> for Ratio<T> |
| where |
| T: serde::Deserialize<'de> + Clone + Integer + PartialOrd, |
| { |
| fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> |
| where |
| D: serde::Deserializer<'de>, |
| { |
| use serde::de::Error; |
| use serde::de::Unexpected; |
| let (numer, denom): (T, T) = serde::Deserialize::deserialize(deserializer)?; |
| if denom.is_zero() { |
| Err(Error::invalid_value( |
| Unexpected::Signed(0), |
| &"a ratio with non-zero denominator", |
| )) |
| } else { |
| Ok(Ratio::new_raw(numer, denom)) |
| } |
| } |
| } |
| |
| // FIXME: Bubble up specific errors |
| #[derive(Copy, Clone, Debug, PartialEq)] |
| pub struct ParseRatioError { |
| kind: RatioErrorKind, |
| } |
| |
| #[derive(Copy, Clone, Debug, PartialEq)] |
| enum RatioErrorKind { |
| ParseError, |
| ZeroDenominator, |
| } |
| |
| impl fmt::Display for ParseRatioError { |
| fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { |
| self.kind.description().fmt(f) |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| impl Error for ParseRatioError { |
| #[allow(deprecated)] |
| fn description(&self) -> &str { |
| self.kind.description() |
| } |
| } |
| |
| impl RatioErrorKind { |
| fn description(&self) -> &'static str { |
| match *self { |
| RatioErrorKind::ParseError => "failed to parse integer", |
| RatioErrorKind::ZeroDenominator => "zero value denominator", |
| } |
| } |
| } |
| |
| #[cfg(feature = "num-bigint")] |
| impl FromPrimitive for Ratio<BigInt> { |
| fn from_i64(n: i64) -> Option<Self> { |
| Some(Ratio::from_integer(n.into())) |
| } |
| |
| fn from_i128(n: i128) -> Option<Self> { |
| Some(Ratio::from_integer(n.into())) |
| } |
| |
| fn from_u64(n: u64) -> Option<Self> { |
| Some(Ratio::from_integer(n.into())) |
| } |
| |
| fn from_u128(n: u128) -> Option<Self> { |
| Some(Ratio::from_integer(n.into())) |
| } |
| |
| fn from_f32(n: f32) -> Option<Self> { |
| Ratio::from_float(n) |
| } |
| |
| fn from_f64(n: f64) -> Option<Self> { |
| Ratio::from_float(n) |
| } |
| } |
| |
| macro_rules! from_primitive_integer { |
| ($typ:ty, $approx:ident) => { |
| impl FromPrimitive for Ratio<$typ> { |
| fn from_i64(n: i64) -> Option<Self> { |
| <$typ as FromPrimitive>::from_i64(n).map(Ratio::from_integer) |
| } |
| |
| fn from_i128(n: i128) -> Option<Self> { |
| <$typ as FromPrimitive>::from_i128(n).map(Ratio::from_integer) |
| } |
| |
| fn from_u64(n: u64) -> Option<Self> { |
| <$typ as FromPrimitive>::from_u64(n).map(Ratio::from_integer) |
| } |
| |
| fn from_u128(n: u128) -> Option<Self> { |
| <$typ as FromPrimitive>::from_u128(n).map(Ratio::from_integer) |
| } |
| |
| fn from_f32(n: f32) -> Option<Self> { |
| $approx(n, 10e-20, 30) |
| } |
| |
| fn from_f64(n: f64) -> Option<Self> { |
| $approx(n, 10e-20, 30) |
| } |
| } |
| }; |
| } |
| |
| from_primitive_integer!(i8, approximate_float); |
| from_primitive_integer!(i16, approximate_float); |
| from_primitive_integer!(i32, approximate_float); |
| from_primitive_integer!(i64, approximate_float); |
| from_primitive_integer!(i128, approximate_float); |
| from_primitive_integer!(isize, approximate_float); |
| |
| from_primitive_integer!(u8, approximate_float_unsigned); |
| from_primitive_integer!(u16, approximate_float_unsigned); |
| from_primitive_integer!(u32, approximate_float_unsigned); |
| from_primitive_integer!(u64, approximate_float_unsigned); |
| from_primitive_integer!(u128, approximate_float_unsigned); |
| from_primitive_integer!(usize, approximate_float_unsigned); |
| |
| impl<T: Integer + Signed + Bounded + NumCast + Clone> Ratio<T> { |
| pub fn approximate_float<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
| // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
| // to work well. Might want to choose something based on the types in the future, e.g. |
| // T::max().recip() and T::bits() or something similar. |
| let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20"); |
| approximate_float(f, epsilon, 30) |
| } |
| } |
| |
| impl<T: Integer + Unsigned + Bounded + NumCast + Clone> Ratio<T> { |
| pub fn approximate_float_unsigned<F: FloatCore + NumCast>(f: F) -> Option<Ratio<T>> { |
| // 1/10e-20 < 1/2**32 which seems like a good default, and 30 seems |
| // to work well. Might want to choose something based on the types in the future, e.g. |
| // T::max().recip() and T::bits() or something similar. |
| let epsilon = <F as NumCast>::from(10e-20).expect("Can't convert 10e-20"); |
| approximate_float_unsigned(f, epsilon, 30) |
| } |
| } |
| |
| fn approximate_float<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
| where |
| T: Integer + Signed + Bounded + NumCast + Clone, |
| F: FloatCore + NumCast, |
| { |
| let negative = val.is_sign_negative(); |
| let abs_val = val.abs(); |
| |
| let r = approximate_float_unsigned(abs_val, max_error, max_iterations)?; |
| |
| // Make negative again if needed |
| Some(if negative { r.neg() } else { r }) |
| } |
| |
| // No Unsigned constraint because this also works on positive integers and is called |
| // like that, see above |
| fn approximate_float_unsigned<T, F>(val: F, max_error: F, max_iterations: usize) -> Option<Ratio<T>> |
| where |
| T: Integer + Bounded + NumCast + Clone, |
| F: FloatCore + NumCast, |
| { |
| // Continued fractions algorithm |
| // https://web.archive.org/web/20200629111319/http://mathforum.org:80/dr.math/faq/faq.fractions.html#decfrac |
| |
| if val < F::zero() || val.is_nan() { |
| return None; |
| } |
| |
| let mut q = val; |
| let mut n0 = T::zero(); |
| let mut d0 = T::one(); |
| let mut n1 = T::one(); |
| let mut d1 = T::zero(); |
| |
| let t_max = T::max_value(); |
| let t_max_f = <F as NumCast>::from(t_max.clone())?; |
| |
| // 1/epsilon > T::MAX |
| let epsilon = t_max_f.recip(); |
| |
| // Overflow |
| if q > t_max_f { |
| return None; |
| } |
| |
| for _ in 0..max_iterations { |
| let a = match <T as NumCast>::from(q) { |
| None => break, |
| Some(a) => a, |
| }; |
| |
| let a_f = match <F as NumCast>::from(a.clone()) { |
| None => break, |
| Some(a_f) => a_f, |
| }; |
| let f = q - a_f; |
| |
| // Prevent overflow |
| if !a.is_zero() |
| && (n1 > t_max.clone() / a.clone() |
| || d1 > t_max.clone() / a.clone() |
| || a.clone() * n1.clone() > t_max.clone() - n0.clone() |
| || a.clone() * d1.clone() > t_max.clone() - d0.clone()) |
| { |
| break; |
| } |
| |
| let n = a.clone() * n1.clone() + n0.clone(); |
| let d = a.clone() * d1.clone() + d0.clone(); |
| |
| n0 = n1; |
| d0 = d1; |
| n1 = n.clone(); |
| d1 = d.clone(); |
| |
| // Simplify fraction. Doing so here instead of at the end |
| // allows us to get closer to the target value without overflows |
| let g = Integer::gcd(&n1, &d1); |
| if !g.is_zero() { |
| n1 = n1 / g.clone(); |
| d1 = d1 / g.clone(); |
| } |
| |
| // Close enough? |
| let (n_f, d_f) = match (<F as NumCast>::from(n), <F as NumCast>::from(d)) { |
| (Some(n_f), Some(d_f)) => (n_f, d_f), |
| _ => break, |
| }; |
| if (n_f / d_f - val).abs() < max_error { |
| break; |
| } |
| |
| // Prevent division by ~0 |
| if f < epsilon { |
| break; |
| } |
| q = f.recip(); |
| } |
| |
| // Overflow |
| if d1.is_zero() { |
| return None; |
| } |
| |
| Some(Ratio::new(n1, d1)) |
| } |
| |
| #[cfg(not(feature = "num-bigint"))] |
| macro_rules! to_primitive_small { |
| ($($type_name:ty)*) => ($( |
| impl ToPrimitive for Ratio<$type_name> { |
| fn to_i64(&self) -> Option<i64> { |
| self.to_integer().to_i64() |
| } |
| |
| fn to_i128(&self) -> Option<i128> { |
| self.to_integer().to_i128() |
| } |
| |
| fn to_u64(&self) -> Option<u64> { |
| self.to_integer().to_u64() |
| } |
| |
| fn to_u128(&self) -> Option<u128> { |
| self.to_integer().to_u128() |
| } |
| |
| fn to_f64(&self) -> Option<f64> { |
| let float = self.numer.to_f64().unwrap() / self.denom.to_f64().unwrap(); |
| if float.is_nan() { |
| None |
| } else { |
| Some(float) |
| } |
| } |
| } |
| )*) |
| } |
| |
| #[cfg(not(feature = "num-bigint"))] |
| to_primitive_small!(u8 i8 u16 i16 u32 i32); |
| |
| #[cfg(all(target_pointer_width = "32", not(feature = "num-bigint")))] |
| to_primitive_small!(usize isize); |
| |
| #[cfg(not(feature = "num-bigint"))] |
| macro_rules! to_primitive_64 { |
| ($($type_name:ty)*) => ($( |
| impl ToPrimitive for Ratio<$type_name> { |
| fn to_i64(&self) -> Option<i64> { |
| self.to_integer().to_i64() |
| } |
| |
| fn to_i128(&self) -> Option<i128> { |
| self.to_integer().to_i128() |
| } |
| |
| fn to_u64(&self) -> Option<u64> { |
| self.to_integer().to_u64() |
| } |
| |
| fn to_u128(&self) -> Option<u128> { |
| self.to_integer().to_u128() |
| } |
| |
| fn to_f64(&self) -> Option<f64> { |
| let float = ratio_to_f64( |
| self.numer as i128, |
| self.denom as i128 |
| ); |
| if float.is_nan() { |
| None |
| } else { |
| Some(float) |
| } |
| } |
| } |
| )*) |
| } |
| |
| #[cfg(not(feature = "num-bigint"))] |
| to_primitive_64!(u64 i64); |
| |
| #[cfg(all(target_pointer_width = "64", not(feature = "num-bigint")))] |
| to_primitive_64!(usize isize); |
| |
| #[cfg(feature = "num-bigint")] |
| impl<T: Clone + Integer + ToPrimitive + ToBigInt> ToPrimitive for Ratio<T> { |
| fn to_i64(&self) -> Option<i64> { |
| self.to_integer().to_i64() |
| } |
| |
| fn to_i128(&self) -> Option<i128> { |
| self.to_integer().to_i128() |
| } |
| |
| fn to_u64(&self) -> Option<u64> { |
| self.to_integer().to_u64() |
| } |
| |
| fn to_u128(&self) -> Option<u128> { |
| self.to_integer().to_u128() |
| } |
| |
| fn to_f64(&self) -> Option<f64> { |
| let float = match (self.numer.to_i64(), self.denom.to_i64()) { |
| (Some(numer), Some(denom)) => ratio_to_f64( |
| <i128 as From<_>>::from(numer), |
| <i128 as From<_>>::from(denom), |
| ), |
| _ => { |
| let numer: BigInt = self.numer.to_bigint()?; |
| let denom: BigInt = self.denom.to_bigint()?; |
| ratio_to_f64(numer, denom) |
| } |
| }; |
| if float.is_nan() { |
| None |
| } else { |
| Some(float) |
| } |
| } |
| } |
| |
| trait Bits { |
| fn bits(&self) -> u64; |
| } |
| |
| #[cfg(feature = "num-bigint")] |
| impl Bits for BigInt { |
| fn bits(&self) -> u64 { |
| self.bits() |
| } |
| } |
| |
| impl Bits for i128 { |
| fn bits(&self) -> u64 { |
| (128 - self.wrapping_abs().leading_zeros()).into() |
| } |
| } |
| |
| /// Converts a ratio of `T` to an f64. |
| /// |
| /// In addition to stated trait bounds, `T` must be able to hold numbers 56 bits larger than |
| /// the largest of `numer` and `denom`. This is automatically true if `T` is `BigInt`. |
| fn ratio_to_f64<T: Bits + Clone + Integer + Signed + ShlAssign<usize> + ToPrimitive>( |
| numer: T, |
| denom: T, |
| ) -> f64 { |
| use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, MIN_EXP, RADIX}; |
| |
| assert_eq!( |
| RADIX, 2, |
| "only floating point implementations with radix 2 are supported" |
| ); |
| |
| // Inclusive upper and lower bounds to the range of exactly-representable ints in an f64. |
| const MAX_EXACT_INT: i64 = 1i64 << MANTISSA_DIGITS; |
| const MIN_EXACT_INT: i64 = -MAX_EXACT_INT; |
| |
| let flo_sign = numer.signum().to_f64().unwrap() / denom.signum().to_f64().unwrap(); |
| if !flo_sign.is_normal() { |
| return flo_sign; |
| } |
| |
| // Fast track: both sides can losslessly be converted to f64s. In this case, letting the |
| // FPU do the job is faster and easier. In any other case, converting to f64s may lead |
| // to an inexact result: https://stackoverflow.com/questions/56641441/. |
| if let (Some(n), Some(d)) = (numer.to_i64(), denom.to_i64()) { |
| let exact = MIN_EXACT_INT..=MAX_EXACT_INT; |
| if exact.contains(&n) && exact.contains(&d) { |
| return n.to_f64().unwrap() / d.to_f64().unwrap(); |
| } |
| } |
| |
| // Otherwise, the goal is to obtain a quotient with at least 55 bits. 53 of these bits will |
| // be used as the mantissa of the resulting float, and the remaining two are for rounding. |
| // There's an error of up to 1 on the number of resulting bits, so we may get either 55 or |
| // 56 bits. |
| let mut numer = numer.abs(); |
| let mut denom = denom.abs(); |
| let (is_diff_positive, absolute_diff) = match numer.bits().checked_sub(denom.bits()) { |
| Some(diff) => (true, diff), |
| None => (false, denom.bits() - numer.bits()), |
| }; |
| |
| // Filter out overflows and underflows. After this step, the signed difference fits in an |
| // isize. |
| if is_diff_positive && absolute_diff > MAX_EXP as u64 { |
| return INFINITY * flo_sign; |
| } |
| if !is_diff_positive && absolute_diff > -MIN_EXP as u64 + MANTISSA_DIGITS as u64 + 1 { |
| return 0.0 * flo_sign; |
| } |
| let diff = if is_diff_positive { |
| absolute_diff.to_isize().unwrap() |
| } else { |
| -absolute_diff.to_isize().unwrap() |
| }; |
| |
| // Shift is chosen so that the quotient will have 55 or 56 bits. The exception is if the |
| // quotient is going to be subnormal, in which case it may have fewer bits. |
| let shift: isize = diff.max(MIN_EXP as isize) - MANTISSA_DIGITS as isize - 2; |
| if shift >= 0 { |
| denom <<= shift as usize |
| } else { |
| numer <<= -shift as usize |
| }; |
| |
| let (quotient, remainder) = numer.div_rem(&denom); |
| |
| // This is guaranteed to fit since we've set up quotient to be at most 56 bits. |
| let mut quotient = quotient.to_u64().unwrap(); |
| let n_rounding_bits = { |
| let quotient_bits = 64 - quotient.leading_zeros() as isize; |
| let subnormal_bits = MIN_EXP as isize - shift; |
| quotient_bits.max(subnormal_bits) - MANTISSA_DIGITS as isize |
| } as usize; |
| debug_assert!(n_rounding_bits == 2 || n_rounding_bits == 3); |
| let rounding_bit_mask = (1u64 << n_rounding_bits) - 1; |
| |
| // Round to 53 bits with round-to-even. For rounding, we need to take into account both |
| // our rounding bits and the division's remainder. |
| let ls_bit = quotient & (1u64 << n_rounding_bits) != 0; |
| let ms_rounding_bit = quotient & (1u64 << (n_rounding_bits - 1)) != 0; |
| let ls_rounding_bits = quotient & (rounding_bit_mask >> 1) != 0; |
| if ms_rounding_bit && (ls_bit || ls_rounding_bits || !remainder.is_zero()) { |
| quotient += 1u64 << n_rounding_bits; |
| } |
| quotient &= !rounding_bit_mask; |
| |
| // The quotient is guaranteed to be exactly representable as it's now 53 bits + 2 or 3 |
| // trailing zeros, so there is no risk of a rounding error here. |
| let q_float = quotient as f64 * flo_sign; |
| ldexp(q_float, shift as i32) |
| } |
| |
| /// Multiply `x` by 2 to the power of `exp`. Returns an accurate result even if `2^exp` is not |
| /// representable. |
| fn ldexp(x: f64, exp: i32) -> f64 { |
| use core::f64::{INFINITY, MANTISSA_DIGITS, MAX_EXP, RADIX}; |
| |
| assert_eq!( |
| RADIX, 2, |
| "only floating point implementations with radix 2 are supported" |
| ); |
| |
| const EXPONENT_MASK: u64 = 0x7ff << 52; |
| const MAX_UNSIGNED_EXPONENT: i32 = 0x7fe; |
| const MIN_SUBNORMAL_POWER: i32 = MANTISSA_DIGITS as i32; |
| |
| if x.is_zero() || x.is_infinite() || x.is_nan() { |
| return x; |
| } |
| |
| // Filter out obvious over / underflows to make sure the resulting exponent fits in an isize. |
| if exp > 3 * MAX_EXP { |
| return INFINITY * x.signum(); |
| } else if exp < -3 * MAX_EXP { |
| return 0.0 * x.signum(); |
| } |
| |
| // curr_exp is the x's *biased* exponent, and is in the [-54, MAX_UNSIGNED_EXPONENT] range. |
| let (bits, curr_exp) = if !x.is_normal() { |
| // If x is subnormal, we make it normal by multiplying by 2^53. This causes no loss of |
| // precision or rounding. |
| let normal_x = x * 2f64.powi(MIN_SUBNORMAL_POWER); |
| let bits = normal_x.to_bits(); |
| // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
| ( |
| bits, |
| ((bits & EXPONENT_MASK) >> 52) as i32 - MIN_SUBNORMAL_POWER, |
| ) |
| } else { |
| let bits = x.to_bits(); |
| let curr_exp = (bits & EXPONENT_MASK) >> 52; |
| // This cast is safe because the exponent is at most 0x7fe, which fits in an i32. |
| (bits, curr_exp as i32) |
| }; |
| |
| // The addition can't overflow because exponent is between 0 and 0x7fe, and exp is between |
| // -2*MAX_EXP and 2*MAX_EXP. |
| let new_exp = curr_exp + exp; |
| |
| if new_exp > MAX_UNSIGNED_EXPONENT { |
| INFINITY * x.signum() |
| } else if new_exp > 0 { |
| // Normal case: exponent is not too large nor subnormal. |
| let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
| f64::from_bits(new_bits) |
| } else if new_exp >= -(MANTISSA_DIGITS as i32) { |
| // Result is subnormal but may not be zero. |
| // In this case, we increase the exponent by 54 to make it normal, then multiply the end |
| // result by 2^-53. This results in a single multiplication with no prior rounding error, |
| // so there is no risk of double rounding. |
| let new_exp = new_exp + MIN_SUBNORMAL_POWER; |
| debug_assert!(new_exp >= 0); |
| let new_bits = (bits & !EXPONENT_MASK) | ((new_exp as u64) << 52); |
| f64::from_bits(new_bits) * 2f64.powi(-MIN_SUBNORMAL_POWER) |
| } else { |
| // Result is zero. |
| return 0.0 * x.signum(); |
| } |
| } |
| |
| #[cfg(test)] |
| #[cfg(feature = "std")] |
| fn hash<T: Hash>(x: &T) -> u64 { |
| use std::collections::hash_map::RandomState; |
| use std::hash::BuildHasher; |
| let mut hasher = <RandomState as BuildHasher>::Hasher::new(); |
| x.hash(&mut hasher); |
| hasher.finish() |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::ldexp; |
| #[cfg(feature = "num-bigint")] |
| use super::{BigInt, BigRational}; |
| use super::{Ratio, Rational64}; |
| |
| use core::f64; |
| use core::i32; |
| use core::i64; |
| use core::str::FromStr; |
| use num_integer::Integer; |
| use num_traits::ToPrimitive; |
| use num_traits::{FromPrimitive, One, Pow, Signed, Zero}; |
| |
| pub const _0: Rational64 = Ratio { numer: 0, denom: 1 }; |
| pub const _1: Rational64 = Ratio { numer: 1, denom: 1 }; |
| pub const _2: Rational64 = Ratio { numer: 2, denom: 1 }; |
| pub const _NEG2: Rational64 = Ratio { |
| numer: -2, |
| denom: 1, |
| }; |
| pub const _8: Rational64 = Ratio { numer: 8, denom: 1 }; |
| pub const _15: Rational64 = Ratio { |
| numer: 15, |
| denom: 1, |
| }; |
| pub const _16: Rational64 = Ratio { |
| numer: 16, |
| denom: 1, |
| }; |
| |
| pub const _1_2: Rational64 = Ratio { numer: 1, denom: 2 }; |
| pub const _1_8: Rational64 = Ratio { numer: 1, denom: 8 }; |
| pub const _1_15: Rational64 = Ratio { |
| numer: 1, |
| denom: 15, |
| }; |
| pub const _1_16: Rational64 = Ratio { |
| numer: 1, |
| denom: 16, |
| }; |
| pub const _3_2: Rational64 = Ratio { numer: 3, denom: 2 }; |
| pub const _5_2: Rational64 = Ratio { numer: 5, denom: 2 }; |
| pub const _NEG1_2: Rational64 = Ratio { |
| numer: -1, |
| denom: 2, |
| }; |
| pub const _1_NEG2: Rational64 = Ratio { |
| numer: 1, |
| denom: -2, |
| }; |
| pub const _NEG1_NEG2: Rational64 = Ratio { |
| numer: -1, |
| denom: -2, |
| }; |
| pub const _1_3: Rational64 = Ratio { numer: 1, denom: 3 }; |
| pub const _NEG1_3: Rational64 = Ratio { |
| numer: -1, |
| denom: 3, |
| }; |
| pub const _2_3: Rational64 = Ratio { numer: 2, denom: 3 }; |
| pub const _NEG2_3: Rational64 = Ratio { |
| numer: -2, |
| denom: 3, |
| }; |
| pub const _MIN: Rational64 = Ratio { |
| numer: i64::MIN, |
| denom: 1, |
| }; |
| pub const _MIN_P1: Rational64 = Ratio { |
| numer: i64::MIN + 1, |
| denom: 1, |
| }; |
| pub const _MAX: Rational64 = Ratio { |
| numer: i64::MAX, |
| denom: 1, |
| }; |
| pub const _MAX_M1: Rational64 = Ratio { |
| numer: i64::MAX - 1, |
| denom: 1, |
| }; |
| pub const _BILLION: Rational64 = Ratio { |
| numer: 1_000_000_000, |
| denom: 1, |
| }; |
| |
| #[cfg(feature = "num-bigint")] |
| pub fn to_big(n: Rational64) -> BigRational { |
| Ratio::new( |
| FromPrimitive::from_i64(n.numer).unwrap(), |
| FromPrimitive::from_i64(n.denom).unwrap(), |
| ) |
| } |
| #[cfg(not(feature = "num-bigint"))] |
| pub fn to_big(n: Rational64) -> Rational64 { |
| Ratio::new( |
| FromPrimitive::from_i64(n.numer).unwrap(), |
| FromPrimitive::from_i64(n.denom).unwrap(), |
| ) |
| } |
| |
| #[test] |
| fn test_test_constants() { |
| // check our constants are what Ratio::new etc. would make. |
| assert_eq!(_0, Zero::zero()); |
| assert_eq!(_1, One::one()); |
| assert_eq!(_2, Ratio::from_integer(2)); |
| assert_eq!(_1_2, Ratio::new(1, 2)); |
| assert_eq!(_3_2, Ratio::new(3, 2)); |
| assert_eq!(_NEG1_2, Ratio::new(-1, 2)); |
| assert_eq!(_2, From::from(2)); |
| } |
| |
| #[test] |
| fn test_new_reduce() { |
| assert_eq!(Ratio::new(2, 2), One::one()); |
| assert_eq!(Ratio::new(0, i32::MIN), Zero::zero()); |
| assert_eq!(Ratio::new(i32::MIN, i32::MIN), One::one()); |
| } |
| #[test] |
| #[should_panic] |
| fn test_new_zero() { |
| let _a = Ratio::new(1, 0); |
| } |
| |
| #[test] |
| fn test_approximate_float() { |
| assert_eq!(Ratio::from_f32(0.5f32), Some(Ratio::new(1i64, 2))); |
| assert_eq!(Ratio::from_f64(0.5f64), Some(Ratio::new(1i32, 2))); |
| assert_eq!(Ratio::from_f32(5f32), Some(Ratio::new(5i64, 1))); |
| assert_eq!(Ratio::from_f64(5f64), Some(Ratio::new(5i32, 1))); |
| assert_eq!(Ratio::from_f32(29.97f32), Some(Ratio::new(2997i64, 100))); |
| assert_eq!(Ratio::from_f32(-29.97f32), Some(Ratio::new(-2997i64, 100))); |
| |
| assert_eq!(Ratio::<i8>::from_f32(63.5f32), Some(Ratio::new(127i8, 2))); |
| assert_eq!(Ratio::<i8>::from_f32(126.5f32), Some(Ratio::new(126i8, 1))); |
| assert_eq!(Ratio::<i8>::from_f32(127.0f32), Some(Ratio::new(127i8, 1))); |
| assert_eq!(Ratio::<i8>::from_f32(127.5f32), None); |
| assert_eq!(Ratio::<i8>::from_f32(-63.5f32), Some(Ratio::new(-127i8, 2))); |
| assert_eq!( |
| Ratio::<i8>::from_f32(-126.5f32), |
| Some(Ratio::new(-126i8, 1)) |
| ); |
| assert_eq!( |
| Ratio::<i8>::from_f32(-127.0f32), |
| Some(Ratio::new(-127i8, 1)) |
| ); |
| assert_eq!(Ratio::<i8>::from_f32(-127.5f32), None); |
| |
| assert_eq!(Ratio::<u8>::from_f32(-127f32), None); |
| assert_eq!(Ratio::<u8>::from_f32(127f32), Some(Ratio::new(127u8, 1))); |
| assert_eq!(Ratio::<u8>::from_f32(127.5f32), Some(Ratio::new(255u8, 2))); |
| assert_eq!(Ratio::<u8>::from_f32(256f32), None); |
| |
| assert_eq!(Ratio::<i64>::from_f64(-10e200), None); |
| assert_eq!(Ratio::<i64>::from_f64(10e200), None); |
| assert_eq!(Ratio::<i64>::from_f64(f64::INFINITY), None); |
| assert_eq!(Ratio::<i64>::from_f64(f64::NEG_INFINITY), None); |
| assert_eq!(Ratio::<i64>::from_f64(f64::NAN), None); |
| assert_eq!( |
| Ratio::<i64>::from_f64(f64::EPSILON), |
| Some(Ratio::new(1, 4503599627370496)) |
| ); |
| assert_eq!(Ratio::<i64>::from_f64(0.0), Some(Ratio::new(0, 1))); |
| assert_eq!(Ratio::<i64>::from_f64(-0.0), Some(Ratio::new(0, 1))); |
| } |
| |
| #[test] |
| #[allow(clippy::eq_op)] |
| fn test_cmp() { |
| assert!(_0 == _0 && _1 == _1); |
| assert!(_0 != _1 && _1 != _0); |
| assert!(_0 < _1 && !(_1 < _0)); |
| assert!(_1 > _0 && !(_0 > _1)); |
| |
| assert!(_0 <= _0 && _1 <= _1); |
| assert!(_0 <= _1 && !(_1 <= _0)); |
| |
| assert!(_0 >= _0 && _1 >= _1); |
| assert!(_1 >= _0 && !(_0 >= _1)); |
| |
| let _0_2: Rational64 = Ratio::new_raw(0, 2); |
| assert_eq!(_0, _0_2); |
| } |
| |
| #[test] |
| fn test_cmp_overflow() { |
| use core::cmp::Ordering; |
| |
| // issue #7 example: |
| let big = Ratio::new(128u8, 1); |
| let small = big.recip(); |
| assert!(big > small); |
| |
| // try a few that are closer together |
| // (some matching numer, some matching denom, some neither) |
| let ratios = [ |
| Ratio::new(125_i8, 127_i8), |
| Ratio::new(63_i8, 64_i8), |
| Ratio::new(124_i8, 125_i8), |
| Ratio::new(125_i8, 126_i8), |
| Ratio::new(126_i8, 127_i8), |
| Ratio::new(127_i8, 126_i8), |
| ]; |
| |
| fn check_cmp(a: Ratio<i8>, b: Ratio<i8>, ord: Ordering) { |
| #[cfg(feature = "std")] |
| println!("comparing {} and {}", a, b); |
| assert_eq!(a.cmp(&b), ord); |
| assert_eq!(b.cmp(&a), ord.reverse()); |
| } |
| |
| for (i, &a) in ratios.iter().enumerate() { |
| check_cmp(a, a, Ordering::Equal); |
| check_cmp(-a, a, Ordering::Less); |
| for &b in &ratios[i + 1..] { |
| check_cmp(a, b, Ordering::Less); |
| check_cmp(-a, -b, Ordering::Greater); |
| check_cmp(a.recip(), b.recip(), Ordering::Greater); |
| check_cmp(-a.recip(), -b.recip(), Ordering::Less); |
| } |
| } |
| } |
| |
| #[test] |
| fn test_to_integer() { |
| assert_eq!(_0.to_integer(), 0); |
| assert_eq!(_1.to_integer(), 1); |
| assert_eq!(_2.to_integer(), 2); |
| assert_eq!(_1_2.to_integer(), 0); |
| assert_eq!(_3_2.to_integer(), 1); |
| assert_eq!(_NEG1_2.to_integer(), 0); |
| } |
| |
| #[test] |
| fn test_numer() { |
| assert_eq!(_0.numer(), &0); |
| assert_eq!(_1.numer(), &1); |
| assert_eq!(_2.numer(), &2); |
| assert_eq!(_1_2.numer(), &1); |
| assert_eq!(_3_2.numer(), &3); |
| assert_eq!(_NEG1_2.numer(), &(-1)); |
| } |
| #[test] |
| fn test_denom() { |
| assert_eq!(_0.denom(), &1); |
| assert_eq!(_1.denom(), &1); |
| assert_eq!(_2.denom(), &1); |
| assert_eq!(_1_2.denom(), &2); |
| assert_eq!(_3_2.denom(), &2); |
| assert_eq!(_NEG1_2.denom(), &2); |
| } |
| |
| #[test] |
| fn test_is_integer() { |
| assert!(_0.is_integer()); |
| assert!(_1.is_integer()); |
| assert!(_2.is_integer()); |
| assert!(!_1_2.is_integer()); |
| assert!(!_3_2.is_integer()); |
| assert!(!_NEG1_2.is_integer()); |
| } |
| |
| #[cfg(not(feature = "std"))] |
| use core::fmt::{self, Write}; |
| #[cfg(not(feature = "std"))] |
| #[derive(Debug)] |
| struct NoStdTester { |
| cursor: usize, |
| buf: [u8; NoStdTester::BUF_SIZE], |
| } |
| |
| #[cfg(not(feature = "std"))] |
| impl NoStdTester { |
| fn new() -> NoStdTester { |
| NoStdTester { |
| buf: [0; Self::BUF_SIZE], |
| cursor: 0, |
| } |
| } |
| |
| fn clear(&mut self) { |
| self.buf = [0; Self::BUF_SIZE]; |
| self.cursor = 0; |
| } |
| |
| const WRITE_ERR: &'static str = "Formatted output too long"; |
| const BUF_SIZE: usize = 32; |
| } |
| |
| #[cfg(not(feature = "std"))] |
| impl Write for NoStdTester { |
| fn write_str(&mut self, s: &str) -> fmt::Result { |
| for byte in s.bytes() { |
| self.buf[self.cursor] = byte; |
| self.cursor += 1; |
| if self.cursor >= self.buf.len() { |
| return Err(fmt::Error {}); |
| } |
| } |
| Ok(()) |
| } |
| } |
| |
| #[cfg(not(feature = "std"))] |
| impl PartialEq<str> for NoStdTester { |
| fn eq(&self, other: &str) -> bool { |
| let other = other.as_bytes(); |
| for index in 0..self.cursor { |
| if self.buf.get(index) != other.get(index) { |
| return false; |
| } |
| } |
| true |
| } |
| } |
| |
| macro_rules! assert_fmt_eq { |
| ($fmt_args:expr, $string:expr) => { |
| #[cfg(not(feature = "std"))] |
| { |
| let mut tester = NoStdTester::new(); |
| write!(tester, "{}", $fmt_args).expect(NoStdTester::WRITE_ERR); |
| assert_eq!(tester, *$string); |
| tester.clear(); |
| } |
| #[cfg(feature = "std")] |
| { |
| assert_eq!(std::fmt::format($fmt_args), $string); |
| } |
| }; |
| } |
| |
| #[test] |
| fn test_show() { |
| // Test: |
| // :b :o :x, :X, :? |
| // alternate or not (#) |
| // positive and negative |
| // padding |
| // does not test precision (i.e. truncation) |
| assert_fmt_eq!(format_args!("{}", _2), "2"); |
| assert_fmt_eq!(format_args!("{:+}", _2), "+2"); |
| assert_fmt_eq!(format_args!("{:-}", _2), "2"); |
| assert_fmt_eq!(format_args!("{}", _1_2), "1/2"); |
| assert_fmt_eq!(format_args!("{}", -_1_2), "-1/2"); // test negatives |
| assert_fmt_eq!(format_args!("{}", _0), "0"); |
| assert_fmt_eq!(format_args!("{}", -_2), "-2"); |
| assert_fmt_eq!(format_args!("{:+}", -_2), "-2"); |
| assert_fmt_eq!(format_args!("{:b}", _2), "10"); |
| assert_fmt_eq!(format_args!("{:#b}", _2), "0b10"); |
| assert_fmt_eq!(format_args!("{:b}", _1_2), "1/10"); |
| assert_fmt_eq!(format_args!("{:+b}", _1_2), "+1/10"); |
| assert_fmt_eq!(format_args!("{:-b}", _1_2), "1/10"); |
| assert_fmt_eq!(format_args!("{:b}", _0), "0"); |
| assert_fmt_eq!(format_args!("{:#b}", _1_2), "0b1/0b10"); |
| // no std does not support padding |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:010b}", _1_2), "0000001/10"); |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:#010b}", _1_2), "0b001/0b10"); |
| let half_i8: Ratio<i8> = Ratio::new(1_i8, 2_i8); |
| assert_fmt_eq!(format_args!("{:b}", -half_i8), "11111111/10"); |
| assert_fmt_eq!(format_args!("{:#b}", -half_i8), "0b11111111/0b10"); |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:05}", Ratio::new(-1_i8, 1_i8)), "-0001"); |
| |
| assert_fmt_eq!(format_args!("{:o}", _8), "10"); |
| assert_fmt_eq!(format_args!("{:o}", _1_8), "1/10"); |
| assert_fmt_eq!(format_args!("{:o}", _0), "0"); |
| assert_fmt_eq!(format_args!("{:#o}", _1_8), "0o1/0o10"); |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:010o}", _1_8), "0000001/10"); |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:#010o}", _1_8), "0o001/0o10"); |
| assert_fmt_eq!(format_args!("{:o}", -half_i8), "377/2"); |
| assert_fmt_eq!(format_args!("{:#o}", -half_i8), "0o377/0o2"); |
| |
| assert_fmt_eq!(format_args!("{:x}", _16), "10"); |
| assert_fmt_eq!(format_args!("{:x}", _15), "f"); |
| assert_fmt_eq!(format_args!("{:x}", _1_16), "1/10"); |
| assert_fmt_eq!(format_args!("{:x}", _1_15), "1/f"); |
| assert_fmt_eq!(format_args!("{:x}", _0), "0"); |
| assert_fmt_eq!(format_args!("{:#x}", _1_16), "0x1/0x10"); |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:010x}", _1_16), "0000001/10"); |
| #[cfg(feature = "std")] |
| assert_eq!(&format!("{:#010x}", _1_16), "0x001/0x10"); |
| assert_fmt_eq!(format_args!("{:x}", -half_i8), "ff/2"); |
| assert_fmt_eq!(format_args!("{:#x}", -half_i8), "0xff/0x2"); |
| |
| assert_fmt_eq!(format_args!("{:X}", _16), "10"); |
| assert_fmt_eq!(format_args!("{:X}", _15), "F"); |
| assert_fmt_eq!(format_args!("{:X}", _1_16), "1/10"); |
| assert_fmt_eq!(format_args!("{:X}", _1_15), "1/F"); |
| assert_fmt_eq!(format_args!("{:X}", _0), "0"); |
| assert_fmt_eq!(format_args!("{:#X}", _1_16), "0x1/0x10"); |
| #[cfg(feature = "std")] |
| assert_eq!(format!("{:010X}", _1_16), "0000001/10"); |
| #[cfg(feature = "std")] |
| assert_eq!(format!("{:#010X}", _1_16), "0x001/0x10"); |
| assert_fmt_eq!(format_args!("{:X}", -half_i8), "FF/2"); |
| assert_fmt_eq!(format_args!("{:#X}", -half_i8), "0xFF/0x2"); |
| |
| assert_fmt_eq!(format_args!("{:e}", -_2), "-2e0"); |
| assert_fmt_eq!(format_args!("{:#e}", -_2), "-2e0"); |
| assert_fmt_eq!(format_args!("{:+e}", -_2), "-2e0"); |
| assert_fmt_eq!(format_args!("{:e}", _BILLION), "1e9"); |
| assert_fmt_eq!(format_args!("{:+e}", _BILLION), "+1e9"); |
| assert_fmt_eq!(format_args!("{:e}", _BILLION.recip()), "1e0/1e9"); |
| assert_fmt_eq!(format_args!("{:+e}", _BILLION.recip()), "+1e0/1e9"); |
| |
| assert_fmt_eq!(format_args!("{:E}", -_2), "-2E0"); |
| assert_fmt_eq!(format_args!("{:#E}", -_2), "-2E0"); |
| assert_fmt_eq!(format_args!("{:+E}", -_2), "-2E0"); |
| assert_fmt_eq!(format_args!("{:E}", _BILLION), "1E9"); |
| assert_fmt_eq!(format_args!("{:+E}", _BILLION), "+1E9"); |
| assert_fmt_eq!(format_args!("{:E}", _BILLION.recip()), "1E0/1E9"); |
| assert_fmt_eq!(format_args!("{:+E}", _BILLION.recip()), "+1E0/1E9"); |
| } |
| |
| mod arith { |
| use super::super::{Ratio, Rational64}; |
| use super::{to_big, _0, _1, _1_2, _2, _3_2, _5_2, _MAX, _MAX_M1, _MIN, _MIN_P1, _NEG1_2}; |
| use core::fmt::Debug; |
| use num_integer::Integer; |
| use num_traits::{Bounded, CheckedAdd, CheckedDiv, CheckedMul, CheckedSub, NumAssign}; |
| |
| #[test] |
| fn test_add() { |
| fn test(a: Rational64, b: Rational64, c: Rational64) { |
| assert_eq!(a + b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x += b; |
| x |
| }, |
| c |
| ); |
| assert_eq!(to_big(a) + to_big(b), to_big(c)); |
| assert_eq!(a.checked_add(&b), Some(c)); |
| assert_eq!(to_big(a).checked_add(&to_big(b)), Some(to_big(c))); |
| } |
| fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| assert_eq!(a + b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x += b; |
| x |
| }, |
| c |
| ); |
| } |
| |
| test(_1, _1_2, _3_2); |
| test(_1, _1, _2); |
| test(_1_2, _3_2, _2); |
| test(_1_2, _NEG1_2, _0); |
| test_assign(_1_2, 1, _3_2); |
| } |
| |
| #[test] |
| fn test_add_overflow() { |
| // compares Ratio(1, T::max_value()) + Ratio(1, T::max_value()) |
| // to Ratio(1+1, T::max_value()) for each integer type. |
| // Previously, this calculation would overflow. |
| fn test_add_typed_overflow<T>() |
| where |
| T: Integer + Bounded + Clone + Debug + NumAssign, |
| { |
| let _1_max = Ratio::new(T::one(), T::max_value()); |
| let _2_max = Ratio::new(T::one() + T::one(), T::max_value()); |
| assert_eq!(_1_max.clone() + _1_max.clone(), _2_max); |
| assert_eq!( |
| { |
| let mut tmp = _1_max.clone(); |
| tmp += _1_max; |
| tmp |
| }, |
| _2_max |
| ); |
| } |
| test_add_typed_overflow::<u8>(); |
| test_add_typed_overflow::<u16>(); |
| test_add_typed_overflow::<u32>(); |
| test_add_typed_overflow::<u64>(); |
| test_add_typed_overflow::<usize>(); |
| test_add_typed_overflow::<u128>(); |
| |
| test_add_typed_overflow::<i8>(); |
| test_add_typed_overflow::<i16>(); |
| test_add_typed_overflow::<i32>(); |
| test_add_typed_overflow::<i64>(); |
| test_add_typed_overflow::<isize>(); |
| test_add_typed_overflow::<i128>(); |
| } |
| |
| #[test] |
| fn test_sub() { |
| fn test(a: Rational64, b: Rational64, c: Rational64) { |
| assert_eq!(a - b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x -= b; |
| x |
| }, |
| c |
| ); |
| assert_eq!(to_big(a) - to_big(b), to_big(c)); |
| assert_eq!(a.checked_sub(&b), Some(c)); |
| assert_eq!(to_big(a).checked_sub(&to_big(b)), Some(to_big(c))); |
| } |
| fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| assert_eq!(a - b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x -= b; |
| x |
| }, |
| c |
| ); |
| } |
| |
| test(_1, _1_2, _1_2); |
| test(_3_2, _1_2, _1); |
| test(_1, _NEG1_2, _3_2); |
| test_assign(_1_2, 1, _NEG1_2); |
| } |
| |
| #[test] |
| fn test_sub_overflow() { |
| // compares Ratio(1, T::max_value()) - Ratio(1, T::max_value()) to T::zero() |
| // for each integer type. Previously, this calculation would overflow. |
| fn test_sub_typed_overflow<T>() |
| where |
| T: Integer + Bounded + Clone + Debug + NumAssign, |
| { |
| let _1_max: Ratio<T> = Ratio::new(T::one(), T::max_value()); |
| assert!(T::is_zero(&(_1_max.clone() - _1_max.clone()).numer)); |
| { |
| let mut tmp: Ratio<T> = _1_max.clone(); |
| tmp -= _1_max; |
| assert!(T::is_zero(&tmp.numer)); |
| } |
| } |
| test_sub_typed_overflow::<u8>(); |
| test_sub_typed_overflow::<u16>(); |
| test_sub_typed_overflow::<u32>(); |
| test_sub_typed_overflow::<u64>(); |
| test_sub_typed_overflow::<usize>(); |
| test_sub_typed_overflow::<u128>(); |
| |
| test_sub_typed_overflow::<i8>(); |
| test_sub_typed_overflow::<i16>(); |
| test_sub_typed_overflow::<i32>(); |
| test_sub_typed_overflow::<i64>(); |
| test_sub_typed_overflow::<isize>(); |
| test_sub_typed_overflow::<i128>(); |
| } |
| |
| #[test] |
| fn test_mul() { |
| fn test(a: Rational64, b: Rational64, c: Rational64) { |
| assert_eq!(a * b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x *= b; |
| x |
| }, |
| c |
| ); |
| assert_eq!(to_big(a) * to_big(b), to_big(c)); |
| assert_eq!(a.checked_mul(&b), Some(c)); |
| assert_eq!(to_big(a).checked_mul(&to_big(b)), Some(to_big(c))); |
| } |
| fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| assert_eq!(a * b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x *= b; |
| x |
| }, |
| c |
| ); |
| } |
| |
| test(_1, _1_2, _1_2); |
| test(_1_2, _3_2, Ratio::new(3, 4)); |
| test(_1_2, _NEG1_2, Ratio::new(-1, 4)); |
| test_assign(_1_2, 2, _1); |
| } |
| |
| #[test] |
| fn test_mul_overflow() { |
| fn test_mul_typed_overflow<T>() |
| where |
| T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
| { |
| let two = T::one() + T::one(); |
| let _3 = T::one() + T::one() + T::one(); |
| |
| // 1/big * 2/3 = 1/(max/4*3), where big is max/2 |
| // make big = max/2, but also divisible by 2 |
| let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
| let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
| let _2_3: Ratio<T> = Ratio::new(two.clone(), _3.clone()); |
| assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
| assert_eq!(expected.clone(), _1_big.clone() * _2_3.clone()); |
| assert_eq!( |
| Some(expected.clone()), |
| _1_big.clone().checked_mul(&_2_3.clone()) |
| ); |
| assert_eq!(expected, { |
| let mut tmp = _1_big; |
| tmp *= _2_3; |
| tmp |
| }); |
| |
| // big/3 * 3 = big/1 |
| // make big = max/2, but make it indivisible by 3 |
| let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
| assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| let big_3 = Ratio::new(big.clone(), _3.clone()); |
| let expected = Ratio::new(big, T::one()); |
| assert_eq!(expected, big_3.clone() * _3.clone()); |
| assert_eq!(expected, { |
| let mut tmp = big_3; |
| tmp *= _3; |
| tmp |
| }); |
| } |
| test_mul_typed_overflow::<u16>(); |
| test_mul_typed_overflow::<u8>(); |
| test_mul_typed_overflow::<u32>(); |
| test_mul_typed_overflow::<u64>(); |
| test_mul_typed_overflow::<usize>(); |
| test_mul_typed_overflow::<u128>(); |
| |
| test_mul_typed_overflow::<i8>(); |
| test_mul_typed_overflow::<i16>(); |
| test_mul_typed_overflow::<i32>(); |
| test_mul_typed_overflow::<i64>(); |
| test_mul_typed_overflow::<isize>(); |
| test_mul_typed_overflow::<i128>(); |
| } |
| |
| #[test] |
| fn test_div() { |
| fn test(a: Rational64, b: Rational64, c: Rational64) { |
| assert_eq!(a / b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x /= b; |
| x |
| }, |
| c |
| ); |
| assert_eq!(to_big(a) / to_big(b), to_big(c)); |
| assert_eq!(a.checked_div(&b), Some(c)); |
| assert_eq!(to_big(a).checked_div(&to_big(b)), Some(to_big(c))); |
| } |
| fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| assert_eq!(a / b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x /= b; |
| x |
| }, |
| c |
| ); |
| } |
| |
| test(_1, _1_2, _2); |
| test(_3_2, _1_2, _1 + _2); |
| test(_1, _NEG1_2, _NEG1_2 + _NEG1_2 + _NEG1_2 + _NEG1_2); |
| test_assign(_1, 2, _1_2); |
| } |
| |
| #[test] |
| fn test_div_overflow() { |
| fn test_div_typed_overflow<T>() |
| where |
| T: Integer + Bounded + Clone + Debug + NumAssign + CheckedMul, |
| { |
| let two = T::one() + T::one(); |
| let _3 = T::one() + T::one() + T::one(); |
| |
| // 1/big / 3/2 = 1/(max/4*3), where big is max/2 |
| // big ~ max/2, and big is divisible by 2 |
| let big = T::max_value() / two.clone() / two.clone() * two.clone(); |
| assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| let _1_big: Ratio<T> = Ratio::new(T::one(), big.clone()); |
| let _3_two: Ratio<T> = Ratio::new(_3.clone(), two.clone()); |
| let expected = Ratio::new(T::one(), big / two.clone() * _3.clone()); |
| assert_eq!(expected.clone(), _1_big.clone() / _3_two.clone()); |
| assert_eq!( |
| Some(expected.clone()), |
| _1_big.clone().checked_div(&_3_two.clone()) |
| ); |
| assert_eq!(expected, { |
| let mut tmp = _1_big; |
| tmp /= _3_two; |
| tmp |
| }); |
| |
| // 3/big / 3 = 1/big where big is max/2 |
| // big ~ max/2, and big is not divisible by 3 |
| let big = T::max_value() / two / _3.clone() * _3.clone() + T::one(); |
| assert_eq!(None, big.clone().checked_mul(&_3.clone())); |
| let _3_big = Ratio::new(_3.clone(), big.clone()); |
| let expected = Ratio::new(T::one(), big); |
| assert_eq!(expected, _3_big.clone() / _3.clone()); |
| assert_eq!(expected, { |
| let mut tmp = _3_big; |
| tmp /= _3; |
| tmp |
| }); |
| } |
| test_div_typed_overflow::<u8>(); |
| test_div_typed_overflow::<u16>(); |
| test_div_typed_overflow::<u32>(); |
| test_div_typed_overflow::<u64>(); |
| test_div_typed_overflow::<usize>(); |
| test_div_typed_overflow::<u128>(); |
| |
| test_div_typed_overflow::<i8>(); |
| test_div_typed_overflow::<i16>(); |
| test_div_typed_overflow::<i32>(); |
| test_div_typed_overflow::<i64>(); |
| test_div_typed_overflow::<isize>(); |
| test_div_typed_overflow::<i128>(); |
| } |
| |
| #[test] |
| fn test_rem() { |
| fn test(a: Rational64, b: Rational64, c: Rational64) { |
| assert_eq!(a % b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x %= b; |
| x |
| }, |
| c |
| ); |
| assert_eq!(to_big(a) % to_big(b), to_big(c)) |
| } |
| fn test_assign(a: Rational64, b: i64, c: Rational64) { |
| assert_eq!(a % b, c); |
| assert_eq!( |
| { |
| let mut x = a; |
| x %= b; |
| x |
| }, |
| c |
| ); |
| } |
| |
| test(_3_2, _1, _1_2); |
| test(_3_2, _1_2, _0); |
| test(_5_2, _3_2, _1); |
| test(_2, _NEG1_2, _0); |
| test(_1_2, _2, _1_2); |
| test_assign(_3_2, 1, _1_2); |
| } |
| |
| #[test] |
| fn test_rem_overflow() { |
| // tests that Ratio(1,2) % Ratio(1, T::max_value()) equals 0 |
| // for each integer type. Previously, this calculation would overflow. |
| fn test_rem_typed_overflow<T>() |
| where |
| T: Integer + Bounded + Clone + Debug + NumAssign, |
| { |
| let two = T::one() + T::one(); |
| // value near to maximum, but divisible by two |
| let max_div2 = T::max_value() / two.clone() * two.clone(); |
| let _1_max: Ratio<T> = Ratio::new(T::one(), max_div2); |
| let _1_two: Ratio<T> = Ratio::new(T::one(), two); |
| assert!(T::is_zero(&(_1_two.clone() % _1_max.clone()).numer)); |
| { |
| let mut tmp: Ratio<T> = _1_two; |
| tmp %= _1_max; |
| assert!(T::is_zero(&tmp.numer)); |
| } |
| } |
| test_rem_typed_overflow::<u8>(); |
| test_rem_typed_overflow::<u16>(); |
| test_rem_typed_overflow::<u32>(); |
| test_rem_typed_overflow::<u64>(); |
| test_rem_typed_overflow::<usize>(); |
| test_rem_typed_overflow::<u128>(); |
| |
| test_rem_typed_overflow::<i8>(); |
| test_rem_typed_overflow::<i16>(); |
| test_rem_typed_overflow::<i32>(); |
| test_rem_typed_overflow::<i64>(); |
| test_rem_typed_overflow::<isize>(); |
| test_rem_typed_overflow::<i128>(); |
| } |
| |
| #[test] |
| fn test_neg() { |
| fn test(a: Rational64, b: Rational64) { |
| assert_eq!(-a, b); |
| assert_eq!(-to_big(a), to_big(b)) |
| } |
| |
| test(_0, _0); |
| test(_1_2, _NEG1_2); |
| test(-_1, _1); |
| } |
| #[test] |
| #[allow(clippy::eq_op)] |
| fn test_zero() { |
| assert_eq!(_0 + _0, _0); |
| assert_eq!(_0 * _0, _0); |
| assert_eq!(_0 * _1, _0); |
| assert_eq!(_0 / _NEG1_2, _0); |
| assert_eq!(_0 - _0, _0); |
| } |
| #[test] |
| #[should_panic] |
| fn test_div_0() { |
| let _a = _1 / _0; |
| } |
| |
| #[test] |
| fn test_checked_failures() { |
| let big = Ratio::new(128u8, 1); |
| let small = Ratio::new(1, 128u8); |
| assert_eq!(big.checked_add(&big), None); |
| assert_eq!(small.checked_sub(&big), None); |
| assert_eq!(big.checked_mul(&big), None); |
| assert_eq!(small.checked_div(&big), None); |
| assert_eq!(_1.checked_div(&_0), None); |
| } |
| |
| #[test] |
| fn test_checked_zeros() { |
| assert_eq!(_0.checked_add(&_0), Some(_0)); |
| assert_eq!(_0.checked_sub(&_0), Some(_0)); |
| assert_eq!(_0.checked_mul(&_0), Some(_0)); |
| assert_eq!(_0.checked_div(&_0), None); |
| } |
| |
| #[test] |
| fn test_checked_min() { |
| assert_eq!(_MIN.checked_add(&_MIN), None); |
| assert_eq!(_MIN.checked_sub(&_MIN), Some(_0)); |
| assert_eq!(_MIN.checked_mul(&_MIN), None); |
| assert_eq!(_MIN.checked_div(&_MIN), Some(_1)); |
| assert_eq!(_0.checked_add(&_MIN), Some(_MIN)); |
| assert_eq!(_0.checked_sub(&_MIN), None); |
| assert_eq!(_0.checked_mul(&_MIN), Some(_0)); |
| assert_eq!(_0.checked_div(&_MIN), Some(_0)); |
| assert_eq!(_1.checked_add(&_MIN), Some(_MIN_P1)); |
| assert_eq!(_1.checked_sub(&_MIN), None); |
| assert_eq!(_1.checked_mul(&_MIN), Some(_MIN)); |
| assert_eq!(_1.checked_div(&_MIN), None); |
| assert_eq!(_MIN.checked_add(&_0), Some(_MIN)); |
| assert_eq!(_MIN.checked_sub(&_0), Some(_MIN)); |
| assert_eq!(_MIN.checked_mul(&_0), Some(_0)); |
| assert_eq!(_MIN.checked_div(&_0), None); |
| assert_eq!(_MIN.checked_add(&_1), Some(_MIN_P1)); |
| assert_eq!(_MIN.checked_sub(&_1), None); |
| assert_eq!(_MIN.checked_mul(&_1), Some(_MIN)); |
| assert_eq!(_MIN.checked_div(&_1), Some(_MIN)); |
| } |
| |
| #[test] |
| fn test_checked_max() { |
| assert_eq!(_MAX.checked_add(&_MAX), None); |
| assert_eq!(_MAX.checked_sub(&_MAX), Some(_0)); |
| assert_eq!(_MAX.checked_mul(&_MAX), None); |
| assert_eq!(_MAX.checked_div(&_MAX), Some(_1)); |
| assert_eq!(_0.checked_add(&_MAX), Some(_MAX)); |
| assert_eq!(_0.checked_sub(&_MAX), Some(_MIN_P1)); |
| assert_eq!(_0.checked_mul(&_MAX), Some(_0)); |
| assert_eq!(_0.checked_div(&_MAX), Some(_0)); |
| assert_eq!(_1.checked_add(&_MAX), None); |
| assert_eq!(_1.checked_sub(&_MAX), Some(-_MAX_M1)); |
| assert_eq!(_1.checked_mul(&_MAX), Some(_MAX)); |
| assert_eq!(_1.checked_div(&_MAX), Some(_MAX.recip())); |
| assert_eq!(_MAX.checked_add(&_0), Some(_MAX)); |
| assert_eq!(_MAX.checked_sub(&_0), Some(_MAX)); |
| assert_eq!(_MAX.checked_mul(&_0), Some(_0)); |
| assert_eq!(_MAX.checked_div(&_0), None); |
| assert_eq!(_MAX.checked_add(&_1), None); |
| assert_eq!(_MAX.checked_sub(&_1), Some(_MAX_M1)); |
| assert_eq!(_MAX.checked_mul(&_1), Some(_MAX)); |
| assert_eq!(_MAX.checked_div(&_1), Some(_MAX)); |
| } |
| |
| #[test] |
| fn test_checked_min_max() { |
| assert_eq!(_MIN.checked_add(&_MAX), Some(-_1)); |
| assert_eq!(_MIN.checked_sub(&_MAX), None); |
| assert_eq!(_MIN.checked_mul(&_MAX), None); |
| assert_eq!( |
| _MIN.checked_div(&_MAX), |
| Some(Ratio::new(_MIN.numer, _MAX.numer)) |
| ); |
| assert_eq!(_MAX.checked_add(&_MIN), Some(-_1)); |
| assert_eq!(_MAX.checked_sub(&_MIN), None); |
| assert_eq!(_MAX.checked_mul(&_MIN), None); |
| assert_eq!(_MAX.checked_div(&_MIN), None); |
| } |
| } |
| |
| #[test] |
| fn test_round() { |
| assert_eq!(_1_3.ceil(), _1); |
| assert_eq!(_1_3.floor(), _0); |
| assert_eq!(_1_3.round(), _0); |
| assert_eq!(_1_3.trunc(), _0); |
| |
| assert_eq!(_NEG1_3.ceil(), _0); |
| assert_eq!(_NEG1_3.floor(), -_1); |
| assert_eq!(_NEG1_3.round(), _0); |
| assert_eq!(_NEG1_3.trunc(), _0); |
| |
| assert_eq!(_2_3.ceil(), _1); |
| assert_eq!(_2_3.floor(), _0); |
| assert_eq!(_2_3.round(), _1); |
| assert_eq!(_2_3.trunc(), _0); |
| |
| assert_eq!(_NEG2_3.ceil(), _0); |
| assert_eq!(_NEG2_3.floor(), -_1); |
| assert_eq!(_NEG2_3.round(), -_1); |
| assert_eq!(_NEG2_3.trunc(), _0); |
| |
| assert_eq!(_1_2.ceil(), _1); |
| assert_eq!(_1_2.floor(), _0); |
| assert_eq!(_1_2.round(), _1); |
| assert_eq!(_1_2.trunc(), _0); |
| |
| assert_eq!(_NEG1_2.ceil(), _0); |
| assert_eq!(_NEG1_2.floor(), -_1); |
| assert_eq!(_NEG1_2.round(), -_1); |
| assert_eq!(_NEG1_2.trunc(), _0); |
| |
| assert_eq!(_1.ceil(), _1); |
| assert_eq!(_1.floor(), _1); |
| assert_eq!(_1.round(), _1); |
| assert_eq!(_1.trunc(), _1); |
| |
| // Overflow checks |
| |
| let _neg1 = Ratio::from_integer(-1); |
| let _large_rat1 = Ratio::new(i32::MAX, i32::MAX - 1); |
| let _large_rat2 = Ratio::new(i32::MAX - 1, i32::MAX); |
| let _large_rat3 = Ratio::new(i32::MIN + 2, i32::MIN + 1); |
| let _large_rat4 = Ratio::new(i32::MIN + 1, i32::MIN + 2); |
| let _large_rat5 = Ratio::new(i32::MIN + 2, i32::MAX); |
| let _large_rat6 = Ratio::new(i32::MAX, i32::MIN + 2); |
| let _large_rat7 = Ratio::new(1, i32::MIN + 1); |
| let _large_rat8 = Ratio::new(1, i32::MAX); |
| |
| assert_eq!(_large_rat1.round(), One::one()); |
| assert_eq!(_large_rat2.round(), One::one()); |
| assert_eq!(_large_rat3.round(), One::one()); |
| assert_eq!(_large_rat4.round(), One::one()); |
| assert_eq!(_large_rat5.round(), _neg1); |
| assert_eq!(_large_rat6.round(), _neg1); |
| assert_eq!(_large_rat7.round(), Zero::zero()); |
| assert_eq!(_large_rat8.round(), Zero::zero()); |
| } |
| |
| #[test] |
| fn test_fract() { |
| assert_eq!(_1.fract(), _0); |
| assert_eq!(_NEG1_2.fract(), _NEG1_2); |
| assert_eq!(_1_2.fract(), _1_2); |
| assert_eq!(_3_2.fract(), _1_2); |
| } |
| |
| #[test] |
| fn test_recip() { |
| assert_eq!(_1 * _1.recip(), _1); |
| assert_eq!(_2 * _2.recip(), _1); |
| assert_eq!(_1_2 * _1_2.recip(), _1); |
| assert_eq!(_3_2 * _3_2.recip(), _1); |
| assert_eq!(_NEG1_2 * _NEG1_2.recip(), _1); |
| |
| assert_eq!(_3_2.recip(), _2_3); |
| assert_eq!(_NEG1_2.recip(), _NEG2); |
| assert_eq!(_NEG1_2.recip().denom(), &1); |
| } |
| |
| #[test] |
| #[should_panic(expected = "division by zero")] |
| fn test_recip_fail() { |
| let _a = Ratio::new(0, 1).recip(); |
| } |
| |
| #[test] |
| fn test_pow() { |
| fn test(r: Rational64, e: i32, expected: Rational64) { |
| assert_eq!(r.pow(e), expected); |
| assert_eq!(Pow::pow(r, e), expected); |
| assert_eq!(Pow::pow(r, &e), expected); |
| assert_eq!(Pow::pow(&r, e), expected); |
| assert_eq!(Pow::pow(&r, &e), expected); |
| #[cfg(feature = "num-bigint")] |
| test_big(r, e, expected); |
| } |
| |
| #[cfg(feature = "num-bigint")] |
| fn test_big(r: Rational64, e: i32, expected: Rational64) { |
| let r = BigRational::new_raw(r.numer.into(), r.denom.into()); |
| let expected = BigRational::new_raw(expected.numer.into(), expected.denom.into()); |
| assert_eq!((&r).pow(e), expected); |
| assert_eq!(Pow::pow(r.clone(), e), expected); |
| assert_eq!(Pow::pow(r.clone(), &e), expected); |
| assert_eq!(Pow::pow(&r, e), expected); |
| assert_eq!(Pow::pow(&r, &e), expected); |
| } |
| |
| test(_1_2, 2, Ratio::new(1, 4)); |
| test(_1_2, -2, Ratio::new(4, 1)); |
| test(_1, 1, _1); |
| test(_1, i32::MAX, _1); |
| test(_1, i32::MIN, _1); |
| test(_NEG1_2, 2, _1_2.pow(2i32)); |
| test(_NEG1_2, 3, -_1_2.pow(3i32)); |
| test(_3_2, 0, _1); |
| test(_3_2, -1, _3_2.recip()); |
| test(_3_2, 3, Ratio::new(27, 8)); |
| } |
| |
| #[test] |
| #[cfg(feature = "std")] |
| fn test_to_from_str() { |
| use std::string::{String, ToString}; |
| fn test(r: Rational64, s: String) { |
| assert_eq!(FromStr::from_str(&s), Ok(r)); |
| assert_eq!(r.to_string(), s); |
| } |
| test(_1, "1".to_string()); |
| test(_0, "0".to_string()); |
| test(_1_2, "1/2".to_string()); |
| test(_3_2, "3/2".to_string()); |
| test(_2, "2".to_string()); |
| test(_NEG1_2, "-1/2".to_string()); |
| } |
| #[test] |
| fn test_from_str_fail() { |
| fn test(s: &str) { |
| let rational: Result<Rational64, _> = FromStr::from_str(s); |
| assert!(rational.is_err()); |
| } |
| |
| let xs = ["0 /1", "abc", "", "1/", "--1/2", "3/2/1", "1/0"]; |
| for &s in xs.iter() { |
| test(s); |
| } |
| } |
| |
| #[cfg(feature = "num-bigint")] |
| #[test] |
| fn test_from_float() { |
| use num_traits::float::FloatCore; |
| fn test<T: FloatCore>(given: T, (numer, denom): (&str, &str)) { |
| let ratio: BigRational = Ratio::from_float(given).unwrap(); |
| assert_eq!( |
| ratio, |
| Ratio::new( |
| FromStr::from_str(numer).unwrap(), |
| FromStr::from_str(denom).unwrap() |
| ) |
| ); |
| } |
| |
| // f32 |
| test(core::f32::consts::PI, ("13176795", "4194304")); |
| test(2f32.powf(100.), ("1267650600228229401496703205376", "1")); |
| test( |
| -(2f32.powf(100.)), |
| ("-1267650600228229401496703205376", "1"), |
| ); |
| test( |
| 1.0 / 2f32.powf(100.), |
| ("1", "1267650600228229401496703205376"), |
| ); |
| test(684729.48391f32, ("1369459", "2")); |
| test(-8573.5918555f32, ("-4389679", "512")); |
| |
| // f64 |
| test( |
| core::f64::consts::PI, |
| ("884279719003555", "281474976710656"), |
| ); |
| test(2f64.powf(100.), ("1267650600228229401496703205376", "1")); |
| test( |
| -(2f64.powf(100.)), |
| ("-1267650600228229401496703205376", "1"), |
| ); |
| test(684729.48391f64, ("367611342500051", "536870912")); |
| test(-8573.5918555f64, ("-4713381968463931", "549755813888")); |
| test( |
| 1.0 / 2f64.powf(100.), |
| ("1", "1267650600228229401496703205376"), |
| ); |
| } |
| |
| #[cfg(feature = "num-bigint")] |
| #[test] |
| fn test_from_float_fail() { |
| use core::{f32, f64}; |
| |
| assert_eq!(Ratio::from_float(f32::NAN), None); |
| assert_eq!(Ratio::from_float(f32::INFINITY), None); |
| assert_eq!(Ratio::from_float(f32::NEG_INFINITY), None); |
| assert_eq!(Ratio::from_float(f64::NAN), None); |
| assert_eq!(Ratio::from_float(f64::INFINITY), None); |
| assert_eq!(Ratio::from_float(f64::NEG_INFINITY), None); |
| } |
| |
| #[test] |
| fn test_signed() { |
| assert_eq!(_NEG1_2.abs(), _1_2); |
| assert_eq!(_3_2.abs_sub(&_1_2), _1); |
| assert_eq!(_1_2.abs_sub(&_3_2), Zero::zero()); |
| assert_eq!(_1_2.signum(), One::one()); |
| assert_eq!(_NEG1_2.signum(), -<Ratio<i64>>::one()); |
| assert_eq!(_0.signum(), Zero::zero()); |
| assert!(_NEG1_2.is_negative()); |
| assert!(_1_NEG2.is_negative()); |
| assert!(!_NEG1_2.is_positive()); |
| assert!(!_1_NEG2.is_positive()); |
| assert!(_1_2.is_positive()); |
| assert!(_NEG1_NEG2.is_positive()); |
| assert!(!_1_2.is_negative()); |
| assert!(!_NEG1_NEG2.is_negative()); |
| assert!(!_0.is_positive()); |
| assert!(!_0.is_negative()); |
| } |
| |
| #[test] |
| #[cfg(feature = "std")] |
| fn test_hash() { |
| assert!(crate::hash(&_0) != crate::hash(&_1)); |
| assert!(crate::hash(&_0) != crate::hash(&_3_2)); |
| |
| // a == b -> hash(a) == hash(b) |
| let a = Rational64::new_raw(4, 2); |
| let b = Rational64::new_raw(6, 3); |
| assert_eq!(a, b); |
| assert_eq!(crate::hash(&a), crate::hash(&b)); |
| |
| let a = Rational64::new_raw(123456789, 1000); |
| let b = Rational64::new_raw(123456789 * 5, 5000); |
| assert_eq!(a, b); |
| assert_eq!(crate::hash(&a), crate::hash(&b)); |
| } |
| |
| #[test] |
| fn test_into_pair() { |
| assert_eq!((0, 1), _0.into()); |
| assert_eq!((-2, 1), _NEG2.into()); |
| assert_eq!((1, -2), _1_NEG2.into()); |
| } |
| |
| #[test] |
| fn test_from_pair() { |
| assert_eq!(_0, Ratio::from((0, 1))); |
| assert_eq!(_1, Ratio::from((1, 1))); |
| assert_eq!(_NEG2, Ratio::from((-2, 1))); |
| assert_eq!(_1_NEG2, Ratio::from((1, -2))); |
| } |
| |
| #[test] |
| fn ratio_iter_sum() { |
| // generic function to assure the iter method can be called |
| // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
| fn iter_sums<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
| let mut manual_sum = Ratio::new(T::zero(), T::one()); |
| for ratio in slice { |
| manual_sum = manual_sum + ratio; |
| } |
| [manual_sum, slice.iter().sum(), slice.iter().cloned().sum()] |
| } |
| // collect into array so test works on no_std |
| let mut nums = [Ratio::new(0, 1); 1000]; |
| for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
| nums[i] = r; |
| } |
| let sums = iter_sums(&nums[..]); |
| assert_eq!(sums[0], sums[1]); |
| assert_eq!(sums[0], sums[2]); |
| } |
| |
| #[test] |
| fn ratio_iter_product() { |
| // generic function to assure the iter method can be called |
| // for any Iterator with Item = Ratio<impl Integer> or Ratio<&impl Integer> |
| fn iter_products<T: Integer + Clone>(slice: &[Ratio<T>]) -> [Ratio<T>; 3] { |
| let mut manual_prod = Ratio::new(T::one(), T::one()); |
| for ratio in slice { |
| manual_prod = manual_prod * ratio; |
| } |
| [ |
| manual_prod, |
| slice.iter().product(), |
| slice.iter().cloned().product(), |
| ] |
| } |
| |
| // collect into array so test works on no_std |
| let mut nums = [Ratio::new(0, 1); 1000]; |
| for (i, r) in (0..1000).map(|n| Ratio::new(n, 500)).enumerate() { |
| nums[i] = r; |
| } |
| let products = iter_products(&nums[..]); |
| assert_eq!(products[0], products[1]); |
| assert_eq!(products[0], products[2]); |
| } |
| |
| #[test] |
| fn test_num_zero() { |
| let zero = Rational64::zero(); |
| assert!(zero.is_zero()); |
| |
| let mut r = Rational64::new(123, 456); |
| assert!(!r.is_zero()); |
| assert_eq!(r + zero, r); |
| |
| r.set_zero(); |
| assert!(r.is_zero()); |
| } |
| |
| #[test] |
| fn test_num_one() { |
| let one = Rational64::one(); |
| assert!(one.is_one()); |
| |
| let mut r = Rational64::new(123, 456); |
| assert!(!r.is_one()); |
| assert_eq!(r * one, r); |
| |
| r.set_one(); |
| assert!(r.is_one()); |
| } |
| |
| #[test] |
| fn test_const() { |
| const N: Ratio<i32> = Ratio::new_raw(123, 456); |
| const N_NUMER: &i32 = N.numer(); |
| const N_DENOM: &i32 = N.denom(); |
| |
| assert_eq!(N_NUMER, &123); |
| assert_eq!(N_DENOM, &456); |
| |
| let r = N.reduced(); |
| assert_eq!(r.numer(), &(123 / 3)); |
| assert_eq!(r.denom(), &(456 / 3)); |
| } |
| |
| #[test] |
| fn test_ratio_to_i64() { |
| assert_eq!(5, Rational64::new(70, 14).to_u64().unwrap()); |
| assert_eq!(-3, Rational64::new(-31, 8).to_i64().unwrap()); |
| assert_eq!(None, Rational64::new(-31, 8).to_u64()); |
| } |
| |
| #[test] |
| #[cfg(feature = "num-bigint")] |
| fn test_ratio_to_i128() { |
| assert_eq!( |
| 1i128 << 70, |
| Ratio::<i128>::new(1i128 << 77, 1i128 << 7) |
| .to_i128() |
| .unwrap() |
| ); |
| } |
| |
| #[test] |
| #[cfg(feature = "num-bigint")] |
| fn test_big_ratio_to_f64() { |
| assert_eq!( |
| BigRational::new( |
| "1234567890987654321234567890987654321234567890" |
| .parse() |
| .unwrap(), |
| "3".parse().unwrap() |
| ) |
| .to_f64(), |
| Some(411522630329218100000000000000000000000000000f64) |
| ); |
| assert_eq!(Ratio::from_float(5e-324).unwrap().to_f64(), Some(5e-324)); |
| assert_eq!( |
| // subnormal |
| BigRational::new(BigInt::one(), BigInt::one() << 1050).to_f64(), |
| Some(2.0f64.powi(-50).powi(21)) |
| ); |
| assert_eq!( |
| // definite underflow |
| BigRational::new(BigInt::one(), BigInt::one() << 1100).to_f64(), |
| Some(0.0) |
| ); |
| assert_eq!( |
| BigRational::from(BigInt::one() << 1050).to_f64(), |
| Some(core::f64::INFINITY) |
| ); |
| assert_eq!( |
| BigRational::from((-BigInt::one()) << 1050).to_f64(), |
| Some(core::f64::NEG_INFINITY) |
| ); |
| assert_eq!( |
| BigRational::new( |
| "1234567890987654321234567890".parse().unwrap(), |
| "987654321234567890987654321".parse().unwrap() |
| ) |
| .to_f64(), |
| Some(1.2499999893125f64) |
| ); |
| assert_eq!( |
| BigRational::new_raw(BigInt::one(), BigInt::zero()).to_f64(), |
| Some(core::f64::INFINITY) |
| ); |
| assert_eq!( |
| BigRational::new_raw(-BigInt::one(), BigInt::zero()).to_f64(), |
| Some(core::f64::NEG_INFINITY) |
| ); |
| assert_eq!( |
| BigRational::new_raw(BigInt::zero(), BigInt::zero()).to_f64(), |
| None |
| ); |
| } |
| |
| #[test] |
| fn test_ratio_to_f64() { |
| assert_eq!(Ratio::<u8>::new(1, 2).to_f64(), Some(0.5f64)); |
| assert_eq!(Rational64::new(1, 2).to_f64(), Some(0.5f64)); |
| assert_eq!(Rational64::new(1, -2).to_f64(), Some(-0.5f64)); |
| assert_eq!(Rational64::new(0, 2).to_f64(), Some(0.0f64)); |
| assert_eq!(Rational64::new(0, -2).to_f64(), Some(-0.0f64)); |
| assert_eq!(Rational64::new((1 << 57) + 1, 1 << 54).to_f64(), Some(8f64)); |
| assert_eq!( |
| Rational64::new((1 << 52) + 1, 1 << 52).to_f64(), |
| Some(1.0000000000000002f64), |
| ); |
| assert_eq!( |
| Rational64::new((1 << 60) + (1 << 8), 1 << 60).to_f64(), |
| Some(1.0000000000000002f64), |
| ); |
| assert_eq!( |
| Ratio::<i32>::new_raw(1, 0).to_f64(), |
| Some(core::f64::INFINITY) |
| ); |
| assert_eq!( |
| Ratio::<i32>::new_raw(-1, 0).to_f64(), |
| Some(core::f64::NEG_INFINITY) |
| ); |
| assert_eq!(Ratio::<i32>::new_raw(0, 0).to_f64(), None); |
| } |
| |
| #[test] |
| fn test_ldexp() { |
| use core::f64::{INFINITY, MAX_EXP, MIN_EXP, NAN, NEG_INFINITY}; |
| assert_eq!(ldexp(1.0, 0), 1.0); |
| assert_eq!(ldexp(1.0, 1), 2.0); |
| assert_eq!(ldexp(0.0, 1), 0.0); |
| assert_eq!(ldexp(-0.0, 1), -0.0); |
| |
| // Cases where ldexp is equivalent to multiplying by 2^exp because there's no over- or |
| // underflow. |
| assert_eq!(ldexp(3.5, 5), 3.5 * 2f64.powi(5)); |
| assert_eq!(ldexp(1.0, MAX_EXP - 1), 2f64.powi(MAX_EXP - 1)); |
| assert_eq!(ldexp(2.77, MIN_EXP + 3), 2.77 * 2f64.powi(MIN_EXP + 3)); |
| |
| // Case where initial value is subnormal |
| assert_eq!(ldexp(5e-324, 4), 5e-324 * 2f64.powi(4)); |
| assert_eq!(ldexp(5e-324, 200), 5e-324 * 2f64.powi(200)); |
| |
| // Near underflow (2^exp is too small to represent, but not x*2^exp) |
| assert_eq!(ldexp(4.0, MIN_EXP - 3), 2f64.powi(MIN_EXP - 1)); |
| |
| // Near overflow |
| assert_eq!(ldexp(0.125, MAX_EXP + 3), 2f64.powi(MAX_EXP)); |
| |
| // Overflow and underflow cases |
| assert_eq!(ldexp(1.0, MIN_EXP - 54), 0.0); |
| assert_eq!(ldexp(-1.0, MIN_EXP - 54), -0.0); |
| assert_eq!(ldexp(1.0, MAX_EXP), INFINITY); |
| assert_eq!(ldexp(-1.0, MAX_EXP), NEG_INFINITY); |
| |
| // Special values |
| assert_eq!(ldexp(INFINITY, 1), INFINITY); |
| assert_eq!(ldexp(NEG_INFINITY, 1), NEG_INFINITY); |
| assert!(ldexp(NAN, 1).is_nan()); |
| } |
| } |