| use core::cmp::Ordering; |
| use core::num::FpCategory; |
| use core::ops::{Add, Div, Neg}; |
| |
| use core::f32; |
| use core::f64; |
| |
| use crate::{Num, NumCast, ToPrimitive}; |
| |
| /// Generic trait for floating point numbers that works with `no_std`. |
| /// |
| /// This trait implements a subset of the `Float` trait. |
| pub trait FloatCore: Num + NumCast + Neg<Output = Self> + PartialOrd + Copy { |
| /// Returns positive infinity. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T) { |
| /// assert!(T::infinity() == x); |
| /// } |
| /// |
| /// check(f32::INFINITY); |
| /// check(f64::INFINITY); |
| /// ``` |
| fn infinity() -> Self; |
| |
| /// Returns negative infinity. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T) { |
| /// assert!(T::neg_infinity() == x); |
| /// } |
| /// |
| /// check(f32::NEG_INFINITY); |
| /// check(f64::NEG_INFINITY); |
| /// ``` |
| fn neg_infinity() -> Self; |
| |
| /// Returns NaN. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// |
| /// fn check<T: FloatCore>() { |
| /// let n = T::nan(); |
| /// assert!(n != n); |
| /// } |
| /// |
| /// check::<f32>(); |
| /// check::<f64>(); |
| /// ``` |
| fn nan() -> Self; |
| |
| /// Returns `-0.0`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(n: T) { |
| /// let z = T::neg_zero(); |
| /// assert!(z.is_zero()); |
| /// assert!(T::one() / z == n); |
| /// } |
| /// |
| /// check(f32::NEG_INFINITY); |
| /// check(f64::NEG_INFINITY); |
| /// ``` |
| fn neg_zero() -> Self; |
| |
| /// Returns the smallest finite value that this type can represent. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T) { |
| /// assert!(T::min_value() == x); |
| /// } |
| /// |
| /// check(f32::MIN); |
| /// check(f64::MIN); |
| /// ``` |
| fn min_value() -> Self; |
| |
| /// Returns the smallest positive, normalized value that this type can represent. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T) { |
| /// assert!(T::min_positive_value() == x); |
| /// } |
| /// |
| /// check(f32::MIN_POSITIVE); |
| /// check(f64::MIN_POSITIVE); |
| /// ``` |
| fn min_positive_value() -> Self; |
| |
| /// Returns epsilon, a small positive value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T) { |
| /// assert!(T::epsilon() == x); |
| /// } |
| /// |
| /// check(f32::EPSILON); |
| /// check(f64::EPSILON); |
| /// ``` |
| fn epsilon() -> Self; |
| |
| /// Returns the largest finite value that this type can represent. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T) { |
| /// assert!(T::max_value() == x); |
| /// } |
| /// |
| /// check(f32::MAX); |
| /// check(f64::MAX); |
| /// ``` |
| fn max_value() -> Self; |
| |
| /// Returns `true` if the number is NaN. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, p: bool) { |
| /// assert!(x.is_nan() == p); |
| /// } |
| /// |
| /// check(f32::NAN, true); |
| /// check(f32::INFINITY, false); |
| /// check(f64::NAN, true); |
| /// check(0.0f64, false); |
| /// ``` |
| #[inline] |
| #[allow(clippy::eq_op)] |
| fn is_nan(self) -> bool { |
| self != self |
| } |
| |
| /// Returns `true` if the number is infinite. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, p: bool) { |
| /// assert!(x.is_infinite() == p); |
| /// } |
| /// |
| /// check(f32::INFINITY, true); |
| /// check(f32::NEG_INFINITY, true); |
| /// check(f32::NAN, false); |
| /// check(f64::INFINITY, true); |
| /// check(f64::NEG_INFINITY, true); |
| /// check(0.0f64, false); |
| /// ``` |
| #[inline] |
| fn is_infinite(self) -> bool { |
| self == Self::infinity() || self == Self::neg_infinity() |
| } |
| |
| /// Returns `true` if the number is neither infinite or NaN. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, p: bool) { |
| /// assert!(x.is_finite() == p); |
| /// } |
| /// |
| /// check(f32::INFINITY, false); |
| /// check(f32::MAX, true); |
| /// check(f64::NEG_INFINITY, false); |
| /// check(f64::MIN_POSITIVE, true); |
| /// check(f64::NAN, false); |
| /// ``` |
| #[inline] |
| fn is_finite(self) -> bool { |
| !(self.is_nan() || self.is_infinite()) |
| } |
| |
| /// Returns `true` if the number is neither zero, infinite, subnormal or NaN. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, p: bool) { |
| /// assert!(x.is_normal() == p); |
| /// } |
| /// |
| /// check(f32::INFINITY, false); |
| /// check(f32::MAX, true); |
| /// check(f64::NEG_INFINITY, false); |
| /// check(f64::MIN_POSITIVE, true); |
| /// check(0.0f64, false); |
| /// ``` |
| #[inline] |
| fn is_normal(self) -> bool { |
| self.classify() == FpCategory::Normal |
| } |
| |
| /// Returns `true` if the number is [subnormal]. |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::f64; |
| /// |
| /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
| /// let max = f64::MAX; |
| /// let lower_than_min = 1.0e-308_f64; |
| /// let zero = 0.0_f64; |
| /// |
| /// assert!(!min.is_subnormal()); |
| /// assert!(!max.is_subnormal()); |
| /// |
| /// assert!(!zero.is_subnormal()); |
| /// assert!(!f64::NAN.is_subnormal()); |
| /// assert!(!f64::INFINITY.is_subnormal()); |
| /// // Values between `0` and `min` are Subnormal. |
| /// assert!(lower_than_min.is_subnormal()); |
| /// ``` |
| /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
| #[inline] |
| fn is_subnormal(self) -> bool { |
| self.classify() == FpCategory::Subnormal |
| } |
| |
| /// Returns the floating point category of the number. If only one property |
| /// is going to be tested, it is generally faster to use the specific |
| /// predicate instead. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// use std::num::FpCategory; |
| /// |
| /// fn check<T: FloatCore>(x: T, c: FpCategory) { |
| /// assert!(x.classify() == c); |
| /// } |
| /// |
| /// check(f32::INFINITY, FpCategory::Infinite); |
| /// check(f32::MAX, FpCategory::Normal); |
| /// check(f64::NAN, FpCategory::Nan); |
| /// check(f64::MIN_POSITIVE, FpCategory::Normal); |
| /// check(f64::MIN_POSITIVE / 2.0, FpCategory::Subnormal); |
| /// check(0.0f64, FpCategory::Zero); |
| /// ``` |
| fn classify(self) -> FpCategory; |
| |
| /// Returns the largest integer less than or equal to a number. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.floor() == y); |
| /// } |
| /// |
| /// check(f32::INFINITY, f32::INFINITY); |
| /// check(0.9f32, 0.0); |
| /// check(1.0f32, 1.0); |
| /// check(1.1f32, 1.0); |
| /// check(-0.0f64, 0.0); |
| /// check(-0.9f64, -1.0); |
| /// check(-1.0f64, -1.0); |
| /// check(-1.1f64, -2.0); |
| /// check(f64::MIN, f64::MIN); |
| /// ``` |
| #[inline] |
| fn floor(self) -> Self { |
| let f = self.fract(); |
| if f.is_nan() || f.is_zero() { |
| self |
| } else if self < Self::zero() { |
| self - f - Self::one() |
| } else { |
| self - f |
| } |
| } |
| |
| /// Returns the smallest integer greater than or equal to a number. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.ceil() == y); |
| /// } |
| /// |
| /// check(f32::INFINITY, f32::INFINITY); |
| /// check(0.9f32, 1.0); |
| /// check(1.0f32, 1.0); |
| /// check(1.1f32, 2.0); |
| /// check(-0.0f64, 0.0); |
| /// check(-0.9f64, -0.0); |
| /// check(-1.0f64, -1.0); |
| /// check(-1.1f64, -1.0); |
| /// check(f64::MIN, f64::MIN); |
| /// ``` |
| #[inline] |
| fn ceil(self) -> Self { |
| let f = self.fract(); |
| if f.is_nan() || f.is_zero() { |
| self |
| } else if self > Self::zero() { |
| self - f + Self::one() |
| } else { |
| self - f |
| } |
| } |
| |
| /// Returns the nearest integer to a number. Round half-way cases away from `0.0`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.round() == y); |
| /// } |
| /// |
| /// check(f32::INFINITY, f32::INFINITY); |
| /// check(0.4f32, 0.0); |
| /// check(0.5f32, 1.0); |
| /// check(0.6f32, 1.0); |
| /// check(-0.4f64, 0.0); |
| /// check(-0.5f64, -1.0); |
| /// check(-0.6f64, -1.0); |
| /// check(f64::MIN, f64::MIN); |
| /// ``` |
| #[inline] |
| fn round(self) -> Self { |
| let one = Self::one(); |
| let h = Self::from(0.5).expect("Unable to cast from 0.5"); |
| let f = self.fract(); |
| if f.is_nan() || f.is_zero() { |
| self |
| } else if self > Self::zero() { |
| if f < h { |
| self - f |
| } else { |
| self - f + one |
| } |
| } else if -f < h { |
| self - f |
| } else { |
| self - f - one |
| } |
| } |
| |
| /// Return the integer part of a number. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.trunc() == y); |
| /// } |
| /// |
| /// check(f32::INFINITY, f32::INFINITY); |
| /// check(0.9f32, 0.0); |
| /// check(1.0f32, 1.0); |
| /// check(1.1f32, 1.0); |
| /// check(-0.0f64, 0.0); |
| /// check(-0.9f64, -0.0); |
| /// check(-1.0f64, -1.0); |
| /// check(-1.1f64, -1.0); |
| /// check(f64::MIN, f64::MIN); |
| /// ``` |
| #[inline] |
| fn trunc(self) -> Self { |
| let f = self.fract(); |
| if f.is_nan() { |
| self |
| } else { |
| self - f |
| } |
| } |
| |
| /// Returns the fractional part of a number. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.fract() == y); |
| /// } |
| /// |
| /// check(f32::MAX, 0.0); |
| /// check(0.75f32, 0.75); |
| /// check(1.0f32, 0.0); |
| /// check(1.25f32, 0.25); |
| /// check(-0.0f64, 0.0); |
| /// check(-0.75f64, -0.75); |
| /// check(-1.0f64, 0.0); |
| /// check(-1.25f64, -0.25); |
| /// check(f64::MIN, 0.0); |
| /// ``` |
| #[inline] |
| fn fract(self) -> Self { |
| if self.is_zero() { |
| Self::zero() |
| } else { |
| self % Self::one() |
| } |
| } |
| |
| /// Computes the absolute value of `self`. Returns `FloatCore::nan()` if the |
| /// number is `FloatCore::nan()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.abs() == y); |
| /// } |
| /// |
| /// check(f32::INFINITY, f32::INFINITY); |
| /// check(1.0f32, 1.0); |
| /// check(0.0f64, 0.0); |
| /// check(-0.0f64, 0.0); |
| /// check(-1.0f64, 1.0); |
| /// check(f64::MIN, f64::MAX); |
| /// ``` |
| #[inline] |
| fn abs(self) -> Self { |
| if self.is_sign_positive() { |
| return self; |
| } |
| if self.is_sign_negative() { |
| return -self; |
| } |
| Self::nan() |
| } |
| |
| /// Returns a number that represents the sign of `self`. |
| /// |
| /// - `1.0` if the number is positive, `+0.0` or `FloatCore::infinity()` |
| /// - `-1.0` if the number is negative, `-0.0` or `FloatCore::neg_infinity()` |
| /// - `FloatCore::nan()` if the number is `FloatCore::nan()` |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.signum() == y); |
| /// } |
| /// |
| /// check(f32::INFINITY, 1.0); |
| /// check(3.0f32, 1.0); |
| /// check(0.0f32, 1.0); |
| /// check(-0.0f64, -1.0); |
| /// check(-3.0f64, -1.0); |
| /// check(f64::MIN, -1.0); |
| /// ``` |
| #[inline] |
| fn signum(self) -> Self { |
| if self.is_nan() { |
| Self::nan() |
| } else if self.is_sign_negative() { |
| -Self::one() |
| } else { |
| Self::one() |
| } |
| } |
| |
| /// Returns `true` if `self` is positive, including `+0.0` and |
| /// `FloatCore::infinity()`, and `FloatCore::nan()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, p: bool) { |
| /// assert!(x.is_sign_positive() == p); |
| /// } |
| /// |
| /// check(f32::INFINITY, true); |
| /// check(f32::MAX, true); |
| /// check(0.0f32, true); |
| /// check(-0.0f64, false); |
| /// check(f64::NEG_INFINITY, false); |
| /// check(f64::MIN_POSITIVE, true); |
| /// check(f64::NAN, true); |
| /// check(-f64::NAN, false); |
| /// ``` |
| #[inline] |
| fn is_sign_positive(self) -> bool { |
| !self.is_sign_negative() |
| } |
| |
| /// Returns `true` if `self` is negative, including `-0.0` and |
| /// `FloatCore::neg_infinity()`, and `-FloatCore::nan()`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, p: bool) { |
| /// assert!(x.is_sign_negative() == p); |
| /// } |
| /// |
| /// check(f32::INFINITY, false); |
| /// check(f32::MAX, false); |
| /// check(0.0f32, false); |
| /// check(-0.0f64, true); |
| /// check(f64::NEG_INFINITY, true); |
| /// check(f64::MIN_POSITIVE, false); |
| /// check(f64::NAN, false); |
| /// check(-f64::NAN, true); |
| /// ``` |
| #[inline] |
| fn is_sign_negative(self) -> bool { |
| let (_, _, sign) = self.integer_decode(); |
| sign < 0 |
| } |
| |
| /// Returns the minimum of the two numbers. |
| /// |
| /// If one of the arguments is NaN, then the other argument is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T, min: T) { |
| /// assert!(x.min(y) == min); |
| /// } |
| /// |
| /// check(1.0f32, 2.0, 1.0); |
| /// check(f32::NAN, 2.0, 2.0); |
| /// check(1.0f64, -2.0, -2.0); |
| /// check(1.0f64, f64::NAN, 1.0); |
| /// ``` |
| #[inline] |
| fn min(self, other: Self) -> Self { |
| if self.is_nan() { |
| return other; |
| } |
| if other.is_nan() { |
| return self; |
| } |
| if self < other { |
| self |
| } else { |
| other |
| } |
| } |
| |
| /// Returns the maximum of the two numbers. |
| /// |
| /// If one of the arguments is NaN, then the other argument is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T, max: T) { |
| /// assert!(x.max(y) == max); |
| /// } |
| /// |
| /// check(1.0f32, 2.0, 2.0); |
| /// check(1.0f32, f32::NAN, 1.0); |
| /// check(-1.0f64, 2.0, 2.0); |
| /// check(-1.0f64, f64::NAN, -1.0); |
| /// ``` |
| #[inline] |
| fn max(self, other: Self) -> Self { |
| if self.is_nan() { |
| return other; |
| } |
| if other.is_nan() { |
| return self; |
| } |
| if self > other { |
| self |
| } else { |
| other |
| } |
| } |
| |
| /// A value bounded by a minimum and a maximum |
| /// |
| /// If input is less than min then this returns min. |
| /// If input is greater than max then this returns max. |
| /// Otherwise this returns input. |
| /// |
| /// **Panics** in debug mode if `!(min <= max)`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// |
| /// fn check<T: FloatCore>(val: T, min: T, max: T, expected: T) { |
| /// assert!(val.clamp(min, max) == expected); |
| /// } |
| /// |
| /// |
| /// check(1.0f32, 0.0, 2.0, 1.0); |
| /// check(1.0f32, 2.0, 3.0, 2.0); |
| /// check(3.0f32, 0.0, 2.0, 2.0); |
| /// |
| /// check(1.0f64, 0.0, 2.0, 1.0); |
| /// check(1.0f64, 2.0, 3.0, 2.0); |
| /// check(3.0f64, 0.0, 2.0, 2.0); |
| /// ``` |
| fn clamp(self, min: Self, max: Self) -> Self { |
| crate::clamp(self, min, max) |
| } |
| |
| /// Returns the reciprocal (multiplicative inverse) of the number. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, y: T) { |
| /// assert!(x.recip() == y); |
| /// assert!(y.recip() == x); |
| /// } |
| /// |
| /// check(f32::INFINITY, 0.0); |
| /// check(2.0f32, 0.5); |
| /// check(-0.25f64, -4.0); |
| /// check(-0.0f64, f64::NEG_INFINITY); |
| /// ``` |
| #[inline] |
| fn recip(self) -> Self { |
| Self::one() / self |
| } |
| |
| /// Raise a number to an integer power. |
| /// |
| /// Using this function is generally faster than using `powf` |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// |
| /// fn check<T: FloatCore>(x: T, exp: i32, powi: T) { |
| /// assert!(x.powi(exp) == powi); |
| /// } |
| /// |
| /// check(9.0f32, 2, 81.0); |
| /// check(1.0f32, -2, 1.0); |
| /// check(10.0f64, 20, 1e20); |
| /// check(4.0f64, -2, 0.0625); |
| /// check(-1.0f64, std::i32::MIN, 1.0); |
| /// ``` |
| #[inline] |
| fn powi(mut self, mut exp: i32) -> Self { |
| if exp < 0 { |
| exp = exp.wrapping_neg(); |
| self = self.recip(); |
| } |
| // It should always be possible to convert a positive `i32` to a `usize`. |
| // Note, `i32::MIN` will wrap and still be negative, so we need to convert |
| // to `u32` without sign-extension before growing to `usize`. |
| super::pow(self, (exp as u32).to_usize().unwrap()) |
| } |
| |
| /// Converts to degrees, assuming the number is in radians. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(rad: T, deg: T) { |
| /// assert!(rad.to_degrees() == deg); |
| /// } |
| /// |
| /// check(0.0f32, 0.0); |
| /// check(f32::consts::PI, 180.0); |
| /// check(f64::consts::FRAC_PI_4, 45.0); |
| /// check(f64::INFINITY, f64::INFINITY); |
| /// ``` |
| fn to_degrees(self) -> Self; |
| |
| /// Converts to radians, assuming the number is in degrees. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(deg: T, rad: T) { |
| /// assert!(deg.to_radians() == rad); |
| /// } |
| /// |
| /// check(0.0f32, 0.0); |
| /// check(180.0, f32::consts::PI); |
| /// check(45.0, f64::consts::FRAC_PI_4); |
| /// check(f64::INFINITY, f64::INFINITY); |
| /// ``` |
| fn to_radians(self) -> Self; |
| |
| /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
| /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::float::FloatCore; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check<T: FloatCore>(x: T, m: u64, e: i16, s:i8) { |
| /// let (mantissa, exponent, sign) = x.integer_decode(); |
| /// assert_eq!(mantissa, m); |
| /// assert_eq!(exponent, e); |
| /// assert_eq!(sign, s); |
| /// } |
| /// |
| /// check(2.0f32, 1 << 23, -22, 1); |
| /// check(-2.0f32, 1 << 23, -22, -1); |
| /// check(f32::INFINITY, 1 << 23, 105, 1); |
| /// check(f64::NEG_INFINITY, 1 << 52, 972, -1); |
| /// ``` |
| fn integer_decode(self) -> (u64, i16, i8); |
| } |
| |
| impl FloatCore for f32 { |
| constant! { |
| infinity() -> f32::INFINITY; |
| neg_infinity() -> f32::NEG_INFINITY; |
| nan() -> f32::NAN; |
| neg_zero() -> -0.0; |
| min_value() -> f32::MIN; |
| min_positive_value() -> f32::MIN_POSITIVE; |
| epsilon() -> f32::EPSILON; |
| max_value() -> f32::MAX; |
| } |
| |
| #[inline] |
| fn integer_decode(self) -> (u64, i16, i8) { |
| integer_decode_f32(self) |
| } |
| |
| forward! { |
| Self::is_nan(self) -> bool; |
| Self::is_infinite(self) -> bool; |
| Self::is_finite(self) -> bool; |
| Self::is_normal(self) -> bool; |
| Self::is_subnormal(self) -> bool; |
| Self::clamp(self, min: Self, max: Self) -> Self; |
| Self::classify(self) -> FpCategory; |
| Self::is_sign_positive(self) -> bool; |
| Self::is_sign_negative(self) -> bool; |
| Self::min(self, other: Self) -> Self; |
| Self::max(self, other: Self) -> Self; |
| Self::recip(self) -> Self; |
| Self::to_degrees(self) -> Self; |
| Self::to_radians(self) -> Self; |
| } |
| |
| #[cfg(feature = "std")] |
| forward! { |
| Self::floor(self) -> Self; |
| Self::ceil(self) -> Self; |
| Self::round(self) -> Self; |
| Self::trunc(self) -> Self; |
| Self::fract(self) -> Self; |
| Self::abs(self) -> Self; |
| Self::signum(self) -> Self; |
| Self::powi(self, n: i32) -> Self; |
| } |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| forward! { |
| libm::floorf as floor(self) -> Self; |
| libm::ceilf as ceil(self) -> Self; |
| libm::roundf as round(self) -> Self; |
| libm::truncf as trunc(self) -> Self; |
| libm::fabsf as abs(self) -> Self; |
| } |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| #[inline] |
| fn fract(self) -> Self { |
| self - libm::truncf(self) |
| } |
| } |
| |
| impl FloatCore for f64 { |
| constant! { |
| infinity() -> f64::INFINITY; |
| neg_infinity() -> f64::NEG_INFINITY; |
| nan() -> f64::NAN; |
| neg_zero() -> -0.0; |
| min_value() -> f64::MIN; |
| min_positive_value() -> f64::MIN_POSITIVE; |
| epsilon() -> f64::EPSILON; |
| max_value() -> f64::MAX; |
| } |
| |
| #[inline] |
| fn integer_decode(self) -> (u64, i16, i8) { |
| integer_decode_f64(self) |
| } |
| |
| forward! { |
| Self::is_nan(self) -> bool; |
| Self::is_infinite(self) -> bool; |
| Self::is_finite(self) -> bool; |
| Self::is_normal(self) -> bool; |
| Self::is_subnormal(self) -> bool; |
| Self::clamp(self, min: Self, max: Self) -> Self; |
| Self::classify(self) -> FpCategory; |
| Self::is_sign_positive(self) -> bool; |
| Self::is_sign_negative(self) -> bool; |
| Self::min(self, other: Self) -> Self; |
| Self::max(self, other: Self) -> Self; |
| Self::recip(self) -> Self; |
| Self::to_degrees(self) -> Self; |
| Self::to_radians(self) -> Self; |
| } |
| |
| #[cfg(feature = "std")] |
| forward! { |
| Self::floor(self) -> Self; |
| Self::ceil(self) -> Self; |
| Self::round(self) -> Self; |
| Self::trunc(self) -> Self; |
| Self::fract(self) -> Self; |
| Self::abs(self) -> Self; |
| Self::signum(self) -> Self; |
| Self::powi(self, n: i32) -> Self; |
| } |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| forward! { |
| libm::floor as floor(self) -> Self; |
| libm::ceil as ceil(self) -> Self; |
| libm::round as round(self) -> Self; |
| libm::trunc as trunc(self) -> Self; |
| libm::fabs as abs(self) -> Self; |
| } |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| #[inline] |
| fn fract(self) -> Self { |
| self - libm::trunc(self) |
| } |
| } |
| |
| // FIXME: these doctests aren't actually helpful, because they're using and |
| // testing the inherent methods directly, not going through `Float`. |
| |
| /// Generic trait for floating point numbers |
| /// |
| /// This trait is only available with the `std` feature, or with the `libm` feature otherwise. |
| #[cfg(any(feature = "std", feature = "libm"))] |
| pub trait Float: Num + Copy + NumCast + PartialOrd + Neg<Output = Self> { |
| /// Returns the `NaN` value. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let nan: f32 = Float::nan(); |
| /// |
| /// assert!(nan.is_nan()); |
| /// ``` |
| fn nan() -> Self; |
| /// Returns the infinite value. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f32; |
| /// |
| /// let infinity: f32 = Float::infinity(); |
| /// |
| /// assert!(infinity.is_infinite()); |
| /// assert!(!infinity.is_finite()); |
| /// assert!(infinity > f32::MAX); |
| /// ``` |
| fn infinity() -> Self; |
| /// Returns the negative infinite value. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f32; |
| /// |
| /// let neg_infinity: f32 = Float::neg_infinity(); |
| /// |
| /// assert!(neg_infinity.is_infinite()); |
| /// assert!(!neg_infinity.is_finite()); |
| /// assert!(neg_infinity < f32::MIN); |
| /// ``` |
| fn neg_infinity() -> Self; |
| /// Returns `-0.0`. |
| /// |
| /// ``` |
| /// use num_traits::{Zero, Float}; |
| /// |
| /// let inf: f32 = Float::infinity(); |
| /// let zero: f32 = Zero::zero(); |
| /// let neg_zero: f32 = Float::neg_zero(); |
| /// |
| /// assert_eq!(zero, neg_zero); |
| /// assert_eq!(7.0f32/inf, zero); |
| /// assert_eq!(zero * 10.0, zero); |
| /// ``` |
| fn neg_zero() -> Self; |
| |
| /// Returns the smallest finite value that this type can represent. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x: f64 = Float::min_value(); |
| /// |
| /// assert_eq!(x, f64::MIN); |
| /// ``` |
| fn min_value() -> Self; |
| |
| /// Returns the smallest positive, normalized value that this type can represent. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x: f64 = Float::min_positive_value(); |
| /// |
| /// assert_eq!(x, f64::MIN_POSITIVE); |
| /// ``` |
| fn min_positive_value() -> Self; |
| |
| /// Returns epsilon, a small positive value. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x: f64 = Float::epsilon(); |
| /// |
| /// assert_eq!(x, f64::EPSILON); |
| /// ``` |
| /// |
| /// # Panics |
| /// |
| /// The default implementation will panic if `f32::EPSILON` cannot |
| /// be cast to `Self`. |
| fn epsilon() -> Self { |
| Self::from(f32::EPSILON).expect("Unable to cast from f32::EPSILON") |
| } |
| |
| /// Returns the largest finite value that this type can represent. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x: f64 = Float::max_value(); |
| /// assert_eq!(x, f64::MAX); |
| /// ``` |
| fn max_value() -> Self; |
| |
| /// Returns `true` if this value is `NaN` and false otherwise. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let nan = f64::NAN; |
| /// let f = 7.0; |
| /// |
| /// assert!(nan.is_nan()); |
| /// assert!(!f.is_nan()); |
| /// ``` |
| fn is_nan(self) -> bool; |
| |
| /// Returns `true` if this value is positive infinity or negative infinity and |
| /// false otherwise. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f32; |
| /// |
| /// let f = 7.0f32; |
| /// let inf: f32 = Float::infinity(); |
| /// let neg_inf: f32 = Float::neg_infinity(); |
| /// let nan: f32 = f32::NAN; |
| /// |
| /// assert!(!f.is_infinite()); |
| /// assert!(!nan.is_infinite()); |
| /// |
| /// assert!(inf.is_infinite()); |
| /// assert!(neg_inf.is_infinite()); |
| /// ``` |
| fn is_infinite(self) -> bool; |
| |
| /// Returns `true` if this number is neither infinite nor `NaN`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f32; |
| /// |
| /// let f = 7.0f32; |
| /// let inf: f32 = Float::infinity(); |
| /// let neg_inf: f32 = Float::neg_infinity(); |
| /// let nan: f32 = f32::NAN; |
| /// |
| /// assert!(f.is_finite()); |
| /// |
| /// assert!(!nan.is_finite()); |
| /// assert!(!inf.is_finite()); |
| /// assert!(!neg_inf.is_finite()); |
| /// ``` |
| fn is_finite(self) -> bool; |
| |
| /// Returns `true` if the number is neither zero, infinite, |
| /// [subnormal][subnormal], or `NaN`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f32; |
| /// |
| /// let min = f32::MIN_POSITIVE; // 1.17549435e-38f32 |
| /// let max = f32::MAX; |
| /// let lower_than_min = 1.0e-40_f32; |
| /// let zero = 0.0f32; |
| /// |
| /// assert!(min.is_normal()); |
| /// assert!(max.is_normal()); |
| /// |
| /// assert!(!zero.is_normal()); |
| /// assert!(!f32::NAN.is_normal()); |
| /// assert!(!f32::INFINITY.is_normal()); |
| /// // Values between `0` and `min` are Subnormal. |
| /// assert!(!lower_than_min.is_normal()); |
| /// ``` |
| /// [subnormal]: http://en.wikipedia.org/wiki/Subnormal_number |
| fn is_normal(self) -> bool; |
| |
| /// Returns `true` if the number is [subnormal]. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let min = f64::MIN_POSITIVE; // 2.2250738585072014e-308_f64 |
| /// let max = f64::MAX; |
| /// let lower_than_min = 1.0e-308_f64; |
| /// let zero = 0.0_f64; |
| /// |
| /// assert!(!min.is_subnormal()); |
| /// assert!(!max.is_subnormal()); |
| /// |
| /// assert!(!zero.is_subnormal()); |
| /// assert!(!f64::NAN.is_subnormal()); |
| /// assert!(!f64::INFINITY.is_subnormal()); |
| /// // Values between `0` and `min` are Subnormal. |
| /// assert!(lower_than_min.is_subnormal()); |
| /// ``` |
| /// [subnormal]: https://en.wikipedia.org/wiki/Subnormal_number |
| #[inline] |
| fn is_subnormal(self) -> bool { |
| self.classify() == FpCategory::Subnormal |
| } |
| |
| /// Returns the floating point category of the number. If only one property |
| /// is going to be tested, it is generally faster to use the specific |
| /// predicate instead. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::num::FpCategory; |
| /// use std::f32; |
| /// |
| /// let num = 12.4f32; |
| /// let inf = f32::INFINITY; |
| /// |
| /// assert_eq!(num.classify(), FpCategory::Normal); |
| /// assert_eq!(inf.classify(), FpCategory::Infinite); |
| /// ``` |
| fn classify(self) -> FpCategory; |
| |
| /// Returns the largest integer less than or equal to a number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 3.99; |
| /// let g = 3.0; |
| /// |
| /// assert_eq!(f.floor(), 3.0); |
| /// assert_eq!(g.floor(), 3.0); |
| /// ``` |
| fn floor(self) -> Self; |
| |
| /// Returns the smallest integer greater than or equal to a number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 3.01; |
| /// let g = 4.0; |
| /// |
| /// assert_eq!(f.ceil(), 4.0); |
| /// assert_eq!(g.ceil(), 4.0); |
| /// ``` |
| fn ceil(self) -> Self; |
| |
| /// Returns the nearest integer to a number. Round half-way cases away from |
| /// `0.0`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 3.3; |
| /// let g = -3.3; |
| /// |
| /// assert_eq!(f.round(), 3.0); |
| /// assert_eq!(g.round(), -3.0); |
| /// ``` |
| fn round(self) -> Self; |
| |
| /// Return the integer part of a number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 3.3; |
| /// let g = -3.7; |
| /// |
| /// assert_eq!(f.trunc(), 3.0); |
| /// assert_eq!(g.trunc(), -3.0); |
| /// ``` |
| fn trunc(self) -> Self; |
| |
| /// Returns the fractional part of a number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 3.5; |
| /// let y = -3.5; |
| /// let abs_difference_x = (x.fract() - 0.5).abs(); |
| /// let abs_difference_y = (y.fract() - (-0.5)).abs(); |
| /// |
| /// assert!(abs_difference_x < 1e-10); |
| /// assert!(abs_difference_y < 1e-10); |
| /// ``` |
| fn fract(self) -> Self; |
| |
| /// Computes the absolute value of `self`. Returns `Float::nan()` if the |
| /// number is `Float::nan()`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x = 3.5; |
| /// let y = -3.5; |
| /// |
| /// let abs_difference_x = (x.abs() - x).abs(); |
| /// let abs_difference_y = (y.abs() - (-y)).abs(); |
| /// |
| /// assert!(abs_difference_x < 1e-10); |
| /// assert!(abs_difference_y < 1e-10); |
| /// |
| /// assert!(f64::NAN.abs().is_nan()); |
| /// ``` |
| fn abs(self) -> Self; |
| |
| /// Returns a number that represents the sign of `self`. |
| /// |
| /// - `1.0` if the number is positive, `+0.0` or `Float::infinity()` |
| /// - `-1.0` if the number is negative, `-0.0` or `Float::neg_infinity()` |
| /// - `Float::nan()` if the number is `Float::nan()` |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let f = 3.5; |
| /// |
| /// assert_eq!(f.signum(), 1.0); |
| /// assert_eq!(f64::NEG_INFINITY.signum(), -1.0); |
| /// |
| /// assert!(f64::NAN.signum().is_nan()); |
| /// ``` |
| fn signum(self) -> Self; |
| |
| /// Returns `true` if `self` is positive, including `+0.0`, |
| /// `Float::infinity()`, and `Float::nan()`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let nan: f64 = f64::NAN; |
| /// let neg_nan: f64 = -f64::NAN; |
| /// |
| /// let f = 7.0; |
| /// let g = -7.0; |
| /// |
| /// assert!(f.is_sign_positive()); |
| /// assert!(!g.is_sign_positive()); |
| /// assert!(nan.is_sign_positive()); |
| /// assert!(!neg_nan.is_sign_positive()); |
| /// ``` |
| fn is_sign_positive(self) -> bool; |
| |
| /// Returns `true` if `self` is negative, including `-0.0`, |
| /// `Float::neg_infinity()`, and `-Float::nan()`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let nan: f64 = f64::NAN; |
| /// let neg_nan: f64 = -f64::NAN; |
| /// |
| /// let f = 7.0; |
| /// let g = -7.0; |
| /// |
| /// assert!(!f.is_sign_negative()); |
| /// assert!(g.is_sign_negative()); |
| /// assert!(!nan.is_sign_negative()); |
| /// assert!(neg_nan.is_sign_negative()); |
| /// ``` |
| fn is_sign_negative(self) -> bool; |
| |
| /// Fused multiply-add. Computes `(self * a) + b` with only one rounding |
| /// error, yielding a more accurate result than an unfused multiply-add. |
| /// |
| /// Using `mul_add` can be more performant than an unfused multiply-add if |
| /// the target architecture has a dedicated `fma` CPU instruction. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let m = 10.0; |
| /// let x = 4.0; |
| /// let b = 60.0; |
| /// |
| /// // 100.0 |
| /// let abs_difference = (m.mul_add(x, b) - (m*x + b)).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn mul_add(self, a: Self, b: Self) -> Self; |
| /// Take the reciprocal (inverse) of a number, `1/x`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 2.0; |
| /// let abs_difference = (x.recip() - (1.0/x)).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn recip(self) -> Self; |
| |
| /// Raise a number to an integer power. |
| /// |
| /// Using this function is generally faster than using `powf` |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 2.0; |
| /// let abs_difference = (x.powi(2) - x*x).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn powi(self, n: i32) -> Self; |
| |
| /// Raise a number to a floating point power. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 2.0; |
| /// let abs_difference = (x.powf(2.0) - x*x).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn powf(self, n: Self) -> Self; |
| |
| /// Take the square root of a number. |
| /// |
| /// Returns NaN if `self` is a negative number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let positive = 4.0; |
| /// let negative = -4.0; |
| /// |
| /// let abs_difference = (positive.sqrt() - 2.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// assert!(negative.sqrt().is_nan()); |
| /// ``` |
| fn sqrt(self) -> Self; |
| |
| /// Returns `e^(self)`, (the exponential function). |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let one = 1.0; |
| /// // e^1 |
| /// let e = one.exp(); |
| /// |
| /// // ln(e) - 1 == 0 |
| /// let abs_difference = (e.ln() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn exp(self) -> Self; |
| |
| /// Returns `2^(self)`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 2.0; |
| /// |
| /// // 2^2 - 4 == 0 |
| /// let abs_difference = (f.exp2() - 4.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn exp2(self) -> Self; |
| |
| /// Returns the natural logarithm of the number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let one = 1.0; |
| /// // e^1 |
| /// let e = one.exp(); |
| /// |
| /// // ln(e) - 1 == 0 |
| /// let abs_difference = (e.ln() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn ln(self) -> Self; |
| |
| /// Returns the logarithm of the number with respect to an arbitrary base. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let ten = 10.0; |
| /// let two = 2.0; |
| /// |
| /// // log10(10) - 1 == 0 |
| /// let abs_difference_10 = (ten.log(10.0) - 1.0).abs(); |
| /// |
| /// // log2(2) - 1 == 0 |
| /// let abs_difference_2 = (two.log(2.0) - 1.0).abs(); |
| /// |
| /// assert!(abs_difference_10 < 1e-10); |
| /// assert!(abs_difference_2 < 1e-10); |
| /// ``` |
| fn log(self, base: Self) -> Self; |
| |
| /// Returns the base 2 logarithm of the number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let two = 2.0; |
| /// |
| /// // log2(2) - 1 == 0 |
| /// let abs_difference = (two.log2() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn log2(self) -> Self; |
| |
| /// Returns the base 10 logarithm of the number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let ten = 10.0; |
| /// |
| /// // log10(10) - 1 == 0 |
| /// let abs_difference = (ten.log10() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn log10(self) -> Self; |
| |
| /// Converts radians to degrees. |
| /// |
| /// ``` |
| /// use std::f64::consts; |
| /// |
| /// let angle = consts::PI; |
| /// |
| /// let abs_difference = (angle.to_degrees() - 180.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| #[inline] |
| fn to_degrees(self) -> Self { |
| let halfpi = Self::zero().acos(); |
| let ninety = Self::from(90u8).unwrap(); |
| self * ninety / halfpi |
| } |
| |
| /// Converts degrees to radians. |
| /// |
| /// ``` |
| /// use std::f64::consts; |
| /// |
| /// let angle = 180.0_f64; |
| /// |
| /// let abs_difference = (angle.to_radians() - consts::PI).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| #[inline] |
| fn to_radians(self) -> Self { |
| let halfpi = Self::zero().acos(); |
| let ninety = Self::from(90u8).unwrap(); |
| self * halfpi / ninety |
| } |
| |
| /// Returns the maximum of the two numbers. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 1.0; |
| /// let y = 2.0; |
| /// |
| /// assert_eq!(x.max(y), y); |
| /// ``` |
| fn max(self, other: Self) -> Self; |
| |
| /// Returns the minimum of the two numbers. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 1.0; |
| /// let y = 2.0; |
| /// |
| /// assert_eq!(x.min(y), x); |
| /// ``` |
| fn min(self, other: Self) -> Self; |
| |
| /// Clamps a value between a min and max. |
| /// |
| /// **Panics** in debug mode if `!(min <= max)`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 1.0; |
| /// let y = 2.0; |
| /// let z = 3.0; |
| /// |
| /// assert_eq!(x.clamp(y, z), 2.0); |
| /// ``` |
| fn clamp(self, min: Self, max: Self) -> Self { |
| crate::clamp(self, min, max) |
| } |
| |
| /// The positive difference of two numbers. |
| /// |
| /// * If `self <= other`: `0:0` |
| /// * Else: `self - other` |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 3.0; |
| /// let y = -3.0; |
| /// |
| /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs(); |
| /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs(); |
| /// |
| /// assert!(abs_difference_x < 1e-10); |
| /// assert!(abs_difference_y < 1e-10); |
| /// ``` |
| fn abs_sub(self, other: Self) -> Self; |
| |
| /// Take the cubic root of a number. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 8.0; |
| /// |
| /// // x^(1/3) - 2 == 0 |
| /// let abs_difference = (x.cbrt() - 2.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn cbrt(self) -> Self; |
| |
| /// Calculate the length of the hypotenuse of a right-angle triangle given |
| /// legs of length `x` and `y`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 2.0; |
| /// let y = 3.0; |
| /// |
| /// // sqrt(x^2 + y^2) |
| /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn hypot(self, other: Self) -> Self; |
| |
| /// Computes the sine of a number (in radians). |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x = f64::consts::PI/2.0; |
| /// |
| /// let abs_difference = (x.sin() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn sin(self) -> Self; |
| |
| /// Computes the cosine of a number (in radians). |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x = 2.0*f64::consts::PI; |
| /// |
| /// let abs_difference = (x.cos() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn cos(self) -> Self; |
| |
| /// Computes the tangent of a number (in radians). |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x = f64::consts::PI/4.0; |
| /// let abs_difference = (x.tan() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-14); |
| /// ``` |
| fn tan(self) -> Self; |
| |
| /// Computes the arcsine of a number. Return value is in radians in |
| /// the range [-pi/2, pi/2] or NaN if the number is outside the range |
| /// [-1, 1]. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let f = f64::consts::PI / 2.0; |
| /// |
| /// // asin(sin(pi/2)) |
| /// let abs_difference = (f.sin().asin() - f64::consts::PI / 2.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn asin(self) -> Self; |
| |
| /// Computes the arccosine of a number. Return value is in radians in |
| /// the range [0, pi] or NaN if the number is outside the range |
| /// [-1, 1]. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let f = f64::consts::PI / 4.0; |
| /// |
| /// // acos(cos(pi/4)) |
| /// let abs_difference = (f.cos().acos() - f64::consts::PI / 4.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn acos(self) -> Self; |
| |
| /// Computes the arctangent of a number. Return value is in radians in the |
| /// range [-pi/2, pi/2]; |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 1.0; |
| /// |
| /// // atan(tan(1)) |
| /// let abs_difference = (f.tan().atan() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn atan(self) -> Self; |
| |
| /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`). |
| /// |
| /// * `x = 0`, `y = 0`: `0` |
| /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]` |
| /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]` |
| /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)` |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let pi = f64::consts::PI; |
| /// // All angles from horizontal right (+x) |
| /// // 45 deg counter-clockwise |
| /// let x1 = 3.0; |
| /// let y1 = -3.0; |
| /// |
| /// // 135 deg clockwise |
| /// let x2 = -3.0; |
| /// let y2 = 3.0; |
| /// |
| /// let abs_difference_1 = (y1.atan2(x1) - (-pi/4.0)).abs(); |
| /// let abs_difference_2 = (y2.atan2(x2) - 3.0*pi/4.0).abs(); |
| /// |
| /// assert!(abs_difference_1 < 1e-10); |
| /// assert!(abs_difference_2 < 1e-10); |
| /// ``` |
| fn atan2(self, other: Self) -> Self; |
| |
| /// Simultaneously computes the sine and cosine of the number, `x`. Returns |
| /// `(sin(x), cos(x))`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x = f64::consts::PI/4.0; |
| /// let f = x.sin_cos(); |
| /// |
| /// let abs_difference_0 = (f.0 - x.sin()).abs(); |
| /// let abs_difference_1 = (f.1 - x.cos()).abs(); |
| /// |
| /// assert!(abs_difference_0 < 1e-10); |
| /// assert!(abs_difference_0 < 1e-10); |
| /// ``` |
| fn sin_cos(self) -> (Self, Self); |
| |
| /// Returns `e^(self) - 1` in a way that is accurate even if the |
| /// number is close to zero. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 7.0; |
| /// |
| /// // e^(ln(7)) - 1 |
| /// let abs_difference = (x.ln().exp_m1() - 6.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn exp_m1(self) -> Self; |
| |
| /// Returns `ln(1+n)` (natural logarithm) more accurately than if |
| /// the operations were performed separately. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let x = f64::consts::E - 1.0; |
| /// |
| /// // ln(1 + (e - 1)) == ln(e) == 1 |
| /// let abs_difference = (x.ln_1p() - 1.0).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn ln_1p(self) -> Self; |
| |
| /// Hyperbolic sine function. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let e = f64::consts::E; |
| /// let x = 1.0; |
| /// |
| /// let f = x.sinh(); |
| /// // Solving sinh() at 1 gives `(e^2-1)/(2e)` |
| /// let g = (e*e - 1.0)/(2.0*e); |
| /// let abs_difference = (f - g).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn sinh(self) -> Self; |
| |
| /// Hyperbolic cosine function. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let e = f64::consts::E; |
| /// let x = 1.0; |
| /// let f = x.cosh(); |
| /// // Solving cosh() at 1 gives this result |
| /// let g = (e*e + 1.0)/(2.0*e); |
| /// let abs_difference = (f - g).abs(); |
| /// |
| /// // Same result |
| /// assert!(abs_difference < 1.0e-10); |
| /// ``` |
| fn cosh(self) -> Self; |
| |
| /// Hyperbolic tangent function. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let e = f64::consts::E; |
| /// let x = 1.0; |
| /// |
| /// let f = x.tanh(); |
| /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))` |
| /// let g = (1.0 - e.powi(-2))/(1.0 + e.powi(-2)); |
| /// let abs_difference = (f - g).abs(); |
| /// |
| /// assert!(abs_difference < 1.0e-10); |
| /// ``` |
| fn tanh(self) -> Self; |
| |
| /// Inverse hyperbolic sine function. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 1.0; |
| /// let f = x.sinh().asinh(); |
| /// |
| /// let abs_difference = (f - x).abs(); |
| /// |
| /// assert!(abs_difference < 1.0e-10); |
| /// ``` |
| fn asinh(self) -> Self; |
| |
| /// Inverse hyperbolic cosine function. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let x = 1.0; |
| /// let f = x.cosh().acosh(); |
| /// |
| /// let abs_difference = (f - x).abs(); |
| /// |
| /// assert!(abs_difference < 1.0e-10); |
| /// ``` |
| fn acosh(self) -> Self; |
| |
| /// Inverse hyperbolic tangent function. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// use std::f64; |
| /// |
| /// let e = f64::consts::E; |
| /// let f = e.tanh().atanh(); |
| /// |
| /// let abs_difference = (f - e).abs(); |
| /// |
| /// assert!(abs_difference < 1.0e-10); |
| /// ``` |
| fn atanh(self) -> Self; |
| |
| /// Returns the mantissa, base 2 exponent, and sign as integers, respectively. |
| /// The original number can be recovered by `sign * mantissa * 2 ^ exponent`. |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let num = 2.0f32; |
| /// |
| /// // (8388608, -22, 1) |
| /// let (mantissa, exponent, sign) = Float::integer_decode(num); |
| /// let sign_f = sign as f32; |
| /// let mantissa_f = mantissa as f32; |
| /// let exponent_f = num.powf(exponent as f32); |
| /// |
| /// // 1 * 8388608 * 2^(-22) == 2 |
| /// let abs_difference = (sign_f * mantissa_f * exponent_f - num).abs(); |
| /// |
| /// assert!(abs_difference < 1e-10); |
| /// ``` |
| fn integer_decode(self) -> (u64, i16, i8); |
| |
| /// Returns a number composed of the magnitude of `self` and the sign of |
| /// `sign`. |
| /// |
| /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise |
| /// equal to `-self`. If `self` is a `NAN`, then a `NAN` with the sign of |
| /// `sign` is returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use num_traits::Float; |
| /// |
| /// let f = 3.5_f32; |
| /// |
| /// assert_eq!(f.copysign(0.42), 3.5_f32); |
| /// assert_eq!(f.copysign(-0.42), -3.5_f32); |
| /// assert_eq!((-f).copysign(0.42), 3.5_f32); |
| /// assert_eq!((-f).copysign(-0.42), -3.5_f32); |
| /// |
| /// assert!(f32::nan().copysign(1.0).is_nan()); |
| /// ``` |
| fn copysign(self, sign: Self) -> Self { |
| if self.is_sign_negative() == sign.is_sign_negative() { |
| self |
| } else { |
| self.neg() |
| } |
| } |
| } |
| |
| #[cfg(feature = "std")] |
| macro_rules! float_impl_std { |
| ($T:ident $decode:ident) => { |
| impl Float for $T { |
| constant! { |
| nan() -> $T::NAN; |
| infinity() -> $T::INFINITY; |
| neg_infinity() -> $T::NEG_INFINITY; |
| neg_zero() -> -0.0; |
| min_value() -> $T::MIN; |
| min_positive_value() -> $T::MIN_POSITIVE; |
| epsilon() -> $T::EPSILON; |
| max_value() -> $T::MAX; |
| } |
| |
| #[inline] |
| #[allow(deprecated)] |
| fn abs_sub(self, other: Self) -> Self { |
| <$T>::abs_sub(self, other) |
| } |
| |
| #[inline] |
| fn integer_decode(self) -> (u64, i16, i8) { |
| $decode(self) |
| } |
| |
| forward! { |
| Self::is_nan(self) -> bool; |
| Self::is_infinite(self) -> bool; |
| Self::is_finite(self) -> bool; |
| Self::is_normal(self) -> bool; |
| Self::is_subnormal(self) -> bool; |
| Self::classify(self) -> FpCategory; |
| Self::clamp(self, min: Self, max: Self) -> Self; |
| Self::floor(self) -> Self; |
| Self::ceil(self) -> Self; |
| Self::round(self) -> Self; |
| Self::trunc(self) -> Self; |
| Self::fract(self) -> Self; |
| Self::abs(self) -> Self; |
| Self::signum(self) -> Self; |
| Self::is_sign_positive(self) -> bool; |
| Self::is_sign_negative(self) -> bool; |
| Self::mul_add(self, a: Self, b: Self) -> Self; |
| Self::recip(self) -> Self; |
| Self::powi(self, n: i32) -> Self; |
| Self::powf(self, n: Self) -> Self; |
| Self::sqrt(self) -> Self; |
| Self::exp(self) -> Self; |
| Self::exp2(self) -> Self; |
| Self::ln(self) -> Self; |
| Self::log(self, base: Self) -> Self; |
| Self::log2(self) -> Self; |
| Self::log10(self) -> Self; |
| Self::to_degrees(self) -> Self; |
| Self::to_radians(self) -> Self; |
| Self::max(self, other: Self) -> Self; |
| Self::min(self, other: Self) -> Self; |
| Self::cbrt(self) -> Self; |
| Self::hypot(self, other: Self) -> Self; |
| Self::sin(self) -> Self; |
| Self::cos(self) -> Self; |
| Self::tan(self) -> Self; |
| Self::asin(self) -> Self; |
| Self::acos(self) -> Self; |
| Self::atan(self) -> Self; |
| Self::atan2(self, other: Self) -> Self; |
| Self::sin_cos(self) -> (Self, Self); |
| Self::exp_m1(self) -> Self; |
| Self::ln_1p(self) -> Self; |
| Self::sinh(self) -> Self; |
| Self::cosh(self) -> Self; |
| Self::tanh(self) -> Self; |
| Self::asinh(self) -> Self; |
| Self::acosh(self) -> Self; |
| Self::atanh(self) -> Self; |
| Self::copysign(self, sign: Self) -> Self; |
| } |
| } |
| }; |
| } |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| macro_rules! float_impl_libm { |
| ($T:ident $decode:ident) => { |
| constant! { |
| nan() -> $T::NAN; |
| infinity() -> $T::INFINITY; |
| neg_infinity() -> $T::NEG_INFINITY; |
| neg_zero() -> -0.0; |
| min_value() -> $T::MIN; |
| min_positive_value() -> $T::MIN_POSITIVE; |
| epsilon() -> $T::EPSILON; |
| max_value() -> $T::MAX; |
| } |
| |
| #[inline] |
| fn integer_decode(self) -> (u64, i16, i8) { |
| $decode(self) |
| } |
| |
| #[inline] |
| fn fract(self) -> Self { |
| self - Float::trunc(self) |
| } |
| |
| #[inline] |
| fn log(self, base: Self) -> Self { |
| self.ln() / base.ln() |
| } |
| |
| forward! { |
| Self::is_nan(self) -> bool; |
| Self::is_infinite(self) -> bool; |
| Self::is_finite(self) -> bool; |
| Self::is_normal(self) -> bool; |
| Self::is_subnormal(self) -> bool; |
| Self::clamp(self, min: Self, max: Self) -> Self; |
| Self::classify(self) -> FpCategory; |
| Self::is_sign_positive(self) -> bool; |
| Self::is_sign_negative(self) -> bool; |
| Self::min(self, other: Self) -> Self; |
| Self::max(self, other: Self) -> Self; |
| Self::recip(self) -> Self; |
| Self::to_degrees(self) -> Self; |
| Self::to_radians(self) -> Self; |
| } |
| |
| forward! { |
| FloatCore::signum(self) -> Self; |
| FloatCore::powi(self, n: i32) -> Self; |
| } |
| }; |
| } |
| |
| fn integer_decode_f32(f: f32) -> (u64, i16, i8) { |
| let bits: u32 = f.to_bits(); |
| let sign: i8 = if bits >> 31 == 0 { 1 } else { -1 }; |
| let mut exponent: i16 = ((bits >> 23) & 0xff) as i16; |
| let mantissa = if exponent == 0 { |
| (bits & 0x7fffff) << 1 |
| } else { |
| (bits & 0x7fffff) | 0x800000 |
| }; |
| // Exponent bias + mantissa shift |
| exponent -= 127 + 23; |
| (mantissa as u64, exponent, sign) |
| } |
| |
| fn integer_decode_f64(f: f64) -> (u64, i16, i8) { |
| let bits: u64 = f.to_bits(); |
| let sign: i8 = if bits >> 63 == 0 { 1 } else { -1 }; |
| let mut exponent: i16 = ((bits >> 52) & 0x7ff) as i16; |
| let mantissa = if exponent == 0 { |
| (bits & 0xfffffffffffff) << 1 |
| } else { |
| (bits & 0xfffffffffffff) | 0x10000000000000 |
| }; |
| // Exponent bias + mantissa shift |
| exponent -= 1023 + 52; |
| (mantissa, exponent, sign) |
| } |
| |
| #[cfg(feature = "std")] |
| float_impl_std!(f32 integer_decode_f32); |
| #[cfg(feature = "std")] |
| float_impl_std!(f64 integer_decode_f64); |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| impl Float for f32 { |
| float_impl_libm!(f32 integer_decode_f32); |
| |
| #[inline] |
| #[allow(deprecated)] |
| fn abs_sub(self, other: Self) -> Self { |
| libm::fdimf(self, other) |
| } |
| |
| forward! { |
| libm::floorf as floor(self) -> Self; |
| libm::ceilf as ceil(self) -> Self; |
| libm::roundf as round(self) -> Self; |
| libm::truncf as trunc(self) -> Self; |
| libm::fabsf as abs(self) -> Self; |
| libm::fmaf as mul_add(self, a: Self, b: Self) -> Self; |
| libm::powf as powf(self, n: Self) -> Self; |
| libm::sqrtf as sqrt(self) -> Self; |
| libm::expf as exp(self) -> Self; |
| libm::exp2f as exp2(self) -> Self; |
| libm::logf as ln(self) -> Self; |
| libm::log2f as log2(self) -> Self; |
| libm::log10f as log10(self) -> Self; |
| libm::cbrtf as cbrt(self) -> Self; |
| libm::hypotf as hypot(self, other: Self) -> Self; |
| libm::sinf as sin(self) -> Self; |
| libm::cosf as cos(self) -> Self; |
| libm::tanf as tan(self) -> Self; |
| libm::asinf as asin(self) -> Self; |
| libm::acosf as acos(self) -> Self; |
| libm::atanf as atan(self) -> Self; |
| libm::atan2f as atan2(self, other: Self) -> Self; |
| libm::sincosf as sin_cos(self) -> (Self, Self); |
| libm::expm1f as exp_m1(self) -> Self; |
| libm::log1pf as ln_1p(self) -> Self; |
| libm::sinhf as sinh(self) -> Self; |
| libm::coshf as cosh(self) -> Self; |
| libm::tanhf as tanh(self) -> Self; |
| libm::asinhf as asinh(self) -> Self; |
| libm::acoshf as acosh(self) -> Self; |
| libm::atanhf as atanh(self) -> Self; |
| libm::copysignf as copysign(self, other: Self) -> Self; |
| } |
| } |
| |
| #[cfg(all(not(feature = "std"), feature = "libm"))] |
| impl Float for f64 { |
| float_impl_libm!(f64 integer_decode_f64); |
| |
| #[inline] |
| #[allow(deprecated)] |
| fn abs_sub(self, other: Self) -> Self { |
| libm::fdim(self, other) |
| } |
| |
| forward! { |
| libm::floor as floor(self) -> Self; |
| libm::ceil as ceil(self) -> Self; |
| libm::round as round(self) -> Self; |
| libm::trunc as trunc(self) -> Self; |
| libm::fabs as abs(self) -> Self; |
| libm::fma as mul_add(self, a: Self, b: Self) -> Self; |
| libm::pow as powf(self, n: Self) -> Self; |
| libm::sqrt as sqrt(self) -> Self; |
| libm::exp as exp(self) -> Self; |
| libm::exp2 as exp2(self) -> Self; |
| libm::log as ln(self) -> Self; |
| libm::log2 as log2(self) -> Self; |
| libm::log10 as log10(self) -> Self; |
| libm::cbrt as cbrt(self) -> Self; |
| libm::hypot as hypot(self, other: Self) -> Self; |
| libm::sin as sin(self) -> Self; |
| libm::cos as cos(self) -> Self; |
| libm::tan as tan(self) -> Self; |
| libm::asin as asin(self) -> Self; |
| libm::acos as acos(self) -> Self; |
| libm::atan as atan(self) -> Self; |
| libm::atan2 as atan2(self, other: Self) -> Self; |
| libm::sincos as sin_cos(self) -> (Self, Self); |
| libm::expm1 as exp_m1(self) -> Self; |
| libm::log1p as ln_1p(self) -> Self; |
| libm::sinh as sinh(self) -> Self; |
| libm::cosh as cosh(self) -> Self; |
| libm::tanh as tanh(self) -> Self; |
| libm::asinh as asinh(self) -> Self; |
| libm::acosh as acosh(self) -> Self; |
| libm::atanh as atanh(self) -> Self; |
| libm::copysign as copysign(self, sign: Self) -> Self; |
| } |
| } |
| |
| macro_rules! float_const_impl { |
| ($(#[$doc:meta] $constant:ident,)+) => ( |
| #[allow(non_snake_case)] |
| pub trait FloatConst { |
| $(#[$doc] fn $constant() -> Self;)+ |
| #[doc = "Return the full circle constant `Ï„`."] |
| #[inline] |
| fn TAU() -> Self where Self: Sized + Add<Self, Output = Self> { |
| Self::PI() + Self::PI() |
| } |
| #[doc = "Return `log10(2.0)`."] |
| #[inline] |
| fn LOG10_2() -> Self where Self: Sized + Div<Self, Output = Self> { |
| Self::LN_2() / Self::LN_10() |
| } |
| #[doc = "Return `log2(10.0)`."] |
| #[inline] |
| fn LOG2_10() -> Self where Self: Sized + Div<Self, Output = Self> { |
| Self::LN_10() / Self::LN_2() |
| } |
| } |
| float_const_impl! { @float f32, $($constant,)+ } |
| float_const_impl! { @float f64, $($constant,)+ } |
| ); |
| (@float $T:ident, $($constant:ident,)+) => ( |
| impl FloatConst for $T { |
| constant! { |
| $( $constant() -> $T::consts::$constant; )+ |
| TAU() -> 6.28318530717958647692528676655900577; |
| LOG10_2() -> 0.301029995663981195213738894724493027; |
| LOG2_10() -> 3.32192809488736234787031942948939018; |
| } |
| } |
| ); |
| } |
| |
| float_const_impl! { |
| #[doc = "Return Euler’s number."] |
| E, |
| #[doc = "Return `1.0 / π`."] |
| FRAC_1_PI, |
| #[doc = "Return `1.0 / sqrt(2.0)`."] |
| FRAC_1_SQRT_2, |
| #[doc = "Return `2.0 / π`."] |
| FRAC_2_PI, |
| #[doc = "Return `2.0 / sqrt(Ï€)`."] |
| FRAC_2_SQRT_PI, |
| #[doc = "Return `Ï€ / 2.0`."] |
| FRAC_PI_2, |
| #[doc = "Return `Ï€ / 3.0`."] |
| FRAC_PI_3, |
| #[doc = "Return `Ï€ / 4.0`."] |
| FRAC_PI_4, |
| #[doc = "Return `Ï€ / 6.0`."] |
| FRAC_PI_6, |
| #[doc = "Return `Ï€ / 8.0`."] |
| FRAC_PI_8, |
| #[doc = "Return `ln(10.0)`."] |
| LN_10, |
| #[doc = "Return `ln(2.0)`."] |
| LN_2, |
| #[doc = "Return `log10(e)`."] |
| LOG10_E, |
| #[doc = "Return `log2(e)`."] |
| LOG2_E, |
| #[doc = "Return Archimedes’ constant `π`."] |
| PI, |
| #[doc = "Return `sqrt(2.0)`."] |
| SQRT_2, |
| } |
| |
| /// Trait for floating point numbers that provide an implementation |
| /// of the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| /// floating point standard. |
| pub trait TotalOrder { |
| /// Return the ordering between `self` and `other`. |
| /// |
| /// Unlike the standard partial comparison between floating point numbers, |
| /// this comparison always produces an ordering in accordance to |
| /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision) |
| /// floating point standard. The values are ordered in the following sequence: |
| /// |
| /// - negative quiet NaN |
| /// - negative signaling NaN |
| /// - negative infinity |
| /// - negative numbers |
| /// - negative subnormal numbers |
| /// - negative zero |
| /// - positive zero |
| /// - positive subnormal numbers |
| /// - positive numbers |
| /// - positive infinity |
| /// - positive signaling NaN |
| /// - positive quiet NaN. |
| /// |
| /// The ordering established by this function does not always agree with the |
| /// [`PartialOrd`] and [`PartialEq`] implementations. For example, |
| /// they consider negative and positive zero equal, while `total_cmp` |
| /// doesn't. |
| /// |
| /// The interpretation of the signaling NaN bit follows the definition in |
| /// the IEEE 754 standard, which may not match the interpretation by some of |
| /// the older, non-conformant (e.g. MIPS) hardware implementations. |
| /// |
| /// # Examples |
| /// ``` |
| /// use num_traits::float::TotalOrder; |
| /// use std::cmp::Ordering; |
| /// use std::{f32, f64}; |
| /// |
| /// fn check_eq<T: TotalOrder>(x: T, y: T) { |
| /// assert_eq!(x.total_cmp(&y), Ordering::Equal); |
| /// } |
| /// |
| /// check_eq(f64::NAN, f64::NAN); |
| /// check_eq(f32::NAN, f32::NAN); |
| /// |
| /// fn check_lt<T: TotalOrder>(x: T, y: T) { |
| /// assert_eq!(x.total_cmp(&y), Ordering::Less); |
| /// } |
| /// |
| /// check_lt(-f64::NAN, f64::NAN); |
| /// check_lt(f64::INFINITY, f64::NAN); |
| /// check_lt(-0.0_f64, 0.0_f64); |
| /// ``` |
| fn total_cmp(&self, other: &Self) -> Ordering; |
| } |
| macro_rules! totalorder_impl { |
| ($T:ident, $I:ident, $U:ident, $bits:expr) => { |
| impl TotalOrder for $T { |
| #[inline] |
| #[cfg(has_total_cmp)] |
| fn total_cmp(&self, other: &Self) -> Ordering { |
| // Forward to the core implementation |
| Self::total_cmp(&self, other) |
| } |
| #[inline] |
| #[cfg(not(has_total_cmp))] |
| fn total_cmp(&self, other: &Self) -> Ordering { |
| // Backport the core implementation (since 1.62) |
| let mut left = self.to_bits() as $I; |
| let mut right = other.to_bits() as $I; |
| |
| left ^= (((left >> ($bits - 1)) as $U) >> 1) as $I; |
| right ^= (((right >> ($bits - 1)) as $U) >> 1) as $I; |
| |
| left.cmp(&right) |
| } |
| } |
| }; |
| } |
| totalorder_impl!(f64, i64, u64, 64); |
| totalorder_impl!(f32, i32, u32, 32); |
| |
| #[cfg(test)] |
| mod tests { |
| use core::f64::consts; |
| |
| const DEG_RAD_PAIRS: [(f64, f64); 7] = [ |
| (0.0, 0.), |
| (22.5, consts::FRAC_PI_8), |
| (30.0, consts::FRAC_PI_6), |
| (45.0, consts::FRAC_PI_4), |
| (60.0, consts::FRAC_PI_3), |
| (90.0, consts::FRAC_PI_2), |
| (180.0, consts::PI), |
| ]; |
| |
| #[test] |
| fn convert_deg_rad() { |
| use crate::float::FloatCore; |
| |
| for &(deg, rad) in &DEG_RAD_PAIRS { |
| assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-6); |
| assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-6); |
| |
| let (deg, rad) = (deg as f32, rad as f32); |
| assert!((FloatCore::to_degrees(rad) - deg).abs() < 1e-5); |
| assert!((FloatCore::to_radians(deg) - rad).abs() < 1e-5); |
| } |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| #[test] |
| fn convert_deg_rad_std() { |
| for &(deg, rad) in &DEG_RAD_PAIRS { |
| use crate::Float; |
| |
| assert!((Float::to_degrees(rad) - deg).abs() < 1e-6); |
| assert!((Float::to_radians(deg) - rad).abs() < 1e-6); |
| |
| let (deg, rad) = (deg as f32, rad as f32); |
| assert!((Float::to_degrees(rad) - deg).abs() < 1e-5); |
| assert!((Float::to_radians(deg) - rad).abs() < 1e-5); |
| } |
| } |
| |
| #[test] |
| fn to_degrees_rounding() { |
| use crate::float::FloatCore; |
| |
| assert_eq!( |
| FloatCore::to_degrees(1_f32), |
| 57.2957795130823208767981548141051703 |
| ); |
| } |
| |
| #[test] |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn extra_logs() { |
| use crate::float::{Float, FloatConst}; |
| |
| fn check<F: Float + FloatConst>(diff: F) { |
| let _2 = F::from(2.0).unwrap(); |
| assert!((F::LOG10_2() - F::log10(_2)).abs() < diff); |
| assert!((F::LOG10_2() - F::LN_2() / F::LN_10()).abs() < diff); |
| |
| let _10 = F::from(10.0).unwrap(); |
| assert!((F::LOG2_10() - F::log2(_10)).abs() < diff); |
| assert!((F::LOG2_10() - F::LN_10() / F::LN_2()).abs() < diff); |
| } |
| |
| check::<f32>(1e-6); |
| check::<f64>(1e-12); |
| } |
| |
| #[test] |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn copysign() { |
| use crate::float::Float; |
| test_copysign_generic(2.0_f32, -2.0_f32, f32::nan()); |
| test_copysign_generic(2.0_f64, -2.0_f64, f64::nan()); |
| test_copysignf(2.0_f32, -2.0_f32, f32::nan()); |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn test_copysignf(p: f32, n: f32, nan: f32) { |
| use crate::float::Float; |
| use core::ops::Neg; |
| |
| assert!(p.is_sign_positive()); |
| assert!(n.is_sign_negative()); |
| assert!(nan.is_nan()); |
| |
| assert_eq!(p, Float::copysign(p, p)); |
| assert_eq!(p.neg(), Float::copysign(p, n)); |
| |
| assert_eq!(n, Float::copysign(n, n)); |
| assert_eq!(n.neg(), Float::copysign(n, p)); |
| |
| assert!(Float::copysign(nan, p).is_sign_positive()); |
| assert!(Float::copysign(nan, n).is_sign_negative()); |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn test_copysign_generic<F: crate::float::Float + ::core::fmt::Debug>(p: F, n: F, nan: F) { |
| assert!(p.is_sign_positive()); |
| assert!(n.is_sign_negative()); |
| assert!(nan.is_nan()); |
| assert!(!nan.is_subnormal()); |
| |
| assert_eq!(p, p.copysign(p)); |
| assert_eq!(p.neg(), p.copysign(n)); |
| |
| assert_eq!(n, n.copysign(n)); |
| assert_eq!(n.neg(), n.copysign(p)); |
| |
| assert!(nan.copysign(p).is_sign_positive()); |
| assert!(nan.copysign(n).is_sign_negative()); |
| } |
| |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn test_subnormal<F: crate::float::Float + ::core::fmt::Debug>() { |
| let min_positive = F::min_positive_value(); |
| let lower_than_min = min_positive / F::from(2.0f32).unwrap(); |
| assert!(!min_positive.is_subnormal()); |
| assert!(lower_than_min.is_subnormal()); |
| } |
| |
| #[test] |
| #[cfg(any(feature = "std", feature = "libm"))] |
| fn subnormal() { |
| test_subnormal::<f64>(); |
| test_subnormal::<f32>(); |
| } |
| |
| #[test] |
| fn total_cmp() { |
| use crate::float::TotalOrder; |
| use core::cmp::Ordering; |
| use core::{f32, f64}; |
| |
| fn check_eq<T: TotalOrder>(x: T, y: T) { |
| assert_eq!(x.total_cmp(&y), Ordering::Equal); |
| } |
| fn check_lt<T: TotalOrder>(x: T, y: T) { |
| assert_eq!(x.total_cmp(&y), Ordering::Less); |
| } |
| fn check_gt<T: TotalOrder>(x: T, y: T) { |
| assert_eq!(x.total_cmp(&y), Ordering::Greater); |
| } |
| |
| check_eq(f64::NAN, f64::NAN); |
| check_eq(f32::NAN, f32::NAN); |
| |
| check_lt(-0.0_f64, 0.0_f64); |
| check_lt(-0.0_f32, 0.0_f32); |
| |
| // x87 registers don't preserve the exact value of signaling NaN: |
| // https://github.com/rust-lang/rust/issues/115567 |
| #[cfg(not(target_arch = "x86"))] |
| { |
| let s_nan = f64::from_bits(0x7ff4000000000000); |
| let q_nan = f64::from_bits(0x7ff8000000000000); |
| check_lt(s_nan, q_nan); |
| |
| let neg_s_nan = f64::from_bits(0xfff4000000000000); |
| let neg_q_nan = f64::from_bits(0xfff8000000000000); |
| check_lt(neg_q_nan, neg_s_nan); |
| |
| let s_nan = f32::from_bits(0x7fa00000); |
| let q_nan = f32::from_bits(0x7fc00000); |
| check_lt(s_nan, q_nan); |
| |
| let neg_s_nan = f32::from_bits(0xffa00000); |
| let neg_q_nan = f32::from_bits(0xffc00000); |
| check_lt(neg_q_nan, neg_s_nan); |
| } |
| |
| check_lt(-f64::NAN, f64::NEG_INFINITY); |
| check_gt(1.0_f64, -f64::NAN); |
| check_lt(f64::INFINITY, f64::NAN); |
| check_gt(f64::NAN, 1.0_f64); |
| |
| check_lt(-f32::NAN, f32::NEG_INFINITY); |
| check_gt(1.0_f32, -f32::NAN); |
| check_lt(f32::INFINITY, f32::NAN); |
| check_gt(f32::NAN, 1.0_f32); |
| } |
| } |