| //! # Overview |
| //! |
| //! `once_cell` provides two new cell-like types, [`unsync::OnceCell`] and |
| //! [`sync::OnceCell`]. A `OnceCell` might store arbitrary non-`Copy` types, can |
| //! be assigned to at most once and provides direct access to the stored |
| //! contents. The core API looks *roughly* like this (and there's much more |
| //! inside, read on!): |
| //! |
| //! ```rust,ignore |
| //! impl<T> OnceCell<T> { |
| //! const fn new() -> OnceCell<T> { ... } |
| //! fn set(&self, value: T) -> Result<(), T> { ... } |
| //! fn get(&self) -> Option<&T> { ... } |
| //! } |
| //! ``` |
| //! |
| //! Note that, like with [`RefCell`] and [`Mutex`], the `set` method requires |
| //! only a shared reference. Because of the single assignment restriction `get` |
| //! can return a `&T` instead of `Ref<T>` or `MutexGuard<T>`. |
| //! |
| //! The `sync` flavor is thread-safe (that is, implements the [`Sync`] trait), |
| //! while the `unsync` one is not. |
| //! |
| //! [`unsync::OnceCell`]: unsync/struct.OnceCell.html |
| //! [`sync::OnceCell`]: sync/struct.OnceCell.html |
| //! [`RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html |
| //! [`Mutex`]: https://doc.rust-lang.org/std/sync/struct.Mutex.html |
| //! [`Sync`]: https://doc.rust-lang.org/std/marker/trait.Sync.html |
| //! |
| //! # Recipes |
| //! |
| //! `OnceCell` might be useful for a variety of patterns. |
| //! |
| //! ## Safe Initialization of Global Data |
| //! |
| //! ```rust |
| //! use std::{env, io}; |
| //! |
| //! use once_cell::sync::OnceCell; |
| //! |
| //! #[derive(Debug)] |
| //! pub struct Logger { |
| //! // ... |
| //! } |
| //! static INSTANCE: OnceCell<Logger> = OnceCell::new(); |
| //! |
| //! impl Logger { |
| //! pub fn global() -> &'static Logger { |
| //! INSTANCE.get().expect("logger is not initialized") |
| //! } |
| //! |
| //! fn from_cli(args: env::Args) -> Result<Logger, std::io::Error> { |
| //! // ... |
| //! # Ok(Logger {}) |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! let logger = Logger::from_cli(env::args()).unwrap(); |
| //! INSTANCE.set(logger).unwrap(); |
| //! // use `Logger::global()` from now on |
| //! } |
| //! ``` |
| //! |
| //! ## Lazy Initialized Global Data |
| //! |
| //! This is essentially the `lazy_static!` macro, but without a macro. |
| //! |
| //! ```rust |
| //! use std::{sync::Mutex, collections::HashMap}; |
| //! |
| //! use once_cell::sync::OnceCell; |
| //! |
| //! fn global_data() -> &'static Mutex<HashMap<i32, String>> { |
| //! static INSTANCE: OnceCell<Mutex<HashMap<i32, String>>> = OnceCell::new(); |
| //! INSTANCE.get_or_init(|| { |
| //! let mut m = HashMap::new(); |
| //! m.insert(13, "Spica".to_string()); |
| //! m.insert(74, "Hoyten".to_string()); |
| //! Mutex::new(m) |
| //! }) |
| //! } |
| //! ``` |
| //! |
| //! There are also the [`sync::Lazy`] and [`unsync::Lazy`] convenience types to |
| //! streamline this pattern: |
| //! |
| //! ```rust |
| //! use std::{sync::Mutex, collections::HashMap}; |
| //! use once_cell::sync::Lazy; |
| //! |
| //! static GLOBAL_DATA: Lazy<Mutex<HashMap<i32, String>>> = Lazy::new(|| { |
| //! let mut m = HashMap::new(); |
| //! m.insert(13, "Spica".to_string()); |
| //! m.insert(74, "Hoyten".to_string()); |
| //! Mutex::new(m) |
| //! }); |
| //! |
| //! fn main() { |
| //! println!("{:?}", GLOBAL_DATA.lock().unwrap()); |
| //! } |
| //! ``` |
| //! |
| //! Note that the variable that holds `Lazy` is declared as `static`, *not* |
| //! `const`. This is important: using `const` instead compiles, but works wrong. |
| //! |
| //! [`sync::Lazy`]: sync/struct.Lazy.html |
| //! [`unsync::Lazy`]: unsync/struct.Lazy.html |
| //! |
| //! ## General purpose lazy evaluation |
| //! |
| //! Unlike `lazy_static!`, `Lazy` works with local variables. |
| //! |
| //! ```rust |
| //! use once_cell::unsync::Lazy; |
| //! |
| //! fn main() { |
| //! let ctx = vec![1, 2, 3]; |
| //! let thunk = Lazy::new(|| { |
| //! ctx.iter().sum::<i32>() |
| //! }); |
| //! assert_eq!(*thunk, 6); |
| //! } |
| //! ``` |
| //! |
| //! If you need a lazy field in a struct, you probably should use `OnceCell` |
| //! directly, because that will allow you to access `self` during |
| //! initialization. |
| //! |
| //! ```rust |
| //! use std::{fs, path::PathBuf}; |
| //! |
| //! use once_cell::unsync::OnceCell; |
| //! |
| //! struct Ctx { |
| //! config_path: PathBuf, |
| //! config: OnceCell<String>, |
| //! } |
| //! |
| //! impl Ctx { |
| //! pub fn get_config(&self) -> Result<&str, std::io::Error> { |
| //! let cfg = self.config.get_or_try_init(|| { |
| //! fs::read_to_string(&self.config_path) |
| //! })?; |
| //! Ok(cfg.as_str()) |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! ## Lazily Compiled Regex |
| //! |
| //! This is a `regex!` macro which takes a string literal and returns an |
| //! *expression* that evaluates to a `&'static Regex`: |
| //! |
| //! ``` |
| //! macro_rules! regex { |
| //! ($re:literal $(,)?) => {{ |
| //! static RE: once_cell::sync::OnceCell<regex::Regex> = once_cell::sync::OnceCell::new(); |
| //! RE.get_or_init(|| regex::Regex::new($re).unwrap()) |
| //! }}; |
| //! } |
| //! ``` |
| //! |
| //! This macro can be useful to avoid the "compile regex on every loop |
| //! iteration" problem. |
| //! |
| //! ## Runtime `include_bytes!` |
| //! |
| //! The `include_bytes` macro is useful to include test resources, but it slows |
| //! down test compilation a lot. An alternative is to load the resources at |
| //! runtime: |
| //! |
| //! ``` |
| //! use std::path::Path; |
| //! |
| //! use once_cell::sync::OnceCell; |
| //! |
| //! pub struct TestResource { |
| //! path: &'static str, |
| //! cell: OnceCell<Vec<u8>>, |
| //! } |
| //! |
| //! impl TestResource { |
| //! pub const fn new(path: &'static str) -> TestResource { |
| //! TestResource { path, cell: OnceCell::new() } |
| //! } |
| //! pub fn bytes(&self) -> &[u8] { |
| //! self.cell.get_or_init(|| { |
| //! let dir = std::env::var("CARGO_MANIFEST_DIR").unwrap(); |
| //! let path = Path::new(dir.as_str()).join(self.path); |
| //! std::fs::read(&path).unwrap_or_else(|_err| { |
| //! panic!("failed to load test resource: {}", path.display()) |
| //! }) |
| //! }).as_slice() |
| //! } |
| //! } |
| //! |
| //! static TEST_IMAGE: TestResource = TestResource::new("test_data/lena.png"); |
| //! |
| //! #[test] |
| //! fn test_sobel_filter() { |
| //! let rgb: &[u8] = TEST_IMAGE.bytes(); |
| //! // ... |
| //! # drop(rgb); |
| //! } |
| //! ``` |
| //! |
| //! ## `lateinit` |
| //! |
| //! `LateInit` type for delayed initialization. It is reminiscent of Kotlin's |
| //! `lateinit` keyword and allows construction of cyclic data structures: |
| //! |
| //! |
| //! ``` |
| //! use once_cell::sync::OnceCell; |
| //! |
| //! pub struct LateInit<T> { cell: OnceCell<T> } |
| //! |
| //! impl<T> LateInit<T> { |
| //! pub fn init(&self, value: T) { |
| //! assert!(self.cell.set(value).is_ok()) |
| //! } |
| //! } |
| //! |
| //! impl<T> Default for LateInit<T> { |
| //! fn default() -> Self { LateInit { cell: OnceCell::default() } } |
| //! } |
| //! |
| //! impl<T> std::ops::Deref for LateInit<T> { |
| //! type Target = T; |
| //! fn deref(&self) -> &T { |
| //! self.cell.get().unwrap() |
| //! } |
| //! } |
| //! |
| //! #[derive(Default)] |
| //! struct A<'a> { |
| //! b: LateInit<&'a B<'a>>, |
| //! } |
| //! |
| //! #[derive(Default)] |
| //! struct B<'a> { |
| //! a: LateInit<&'a A<'a>> |
| //! } |
| //! |
| //! |
| //! fn build_cycle() { |
| //! let a = A::default(); |
| //! let b = B::default(); |
| //! a.b.init(&b); |
| //! b.a.init(&a); |
| //! |
| //! let _a = &a.b.a.b.a; |
| //! } |
| //! ``` |
| //! |
| //! # Comparison with std |
| //! |
| //! |`!Sync` types | Access Mode | Drawbacks | |
| //! |----------------------|------------------------|-----------------------------------------------| |
| //! |`Cell<T>` | `T` | requires `T: Copy` for `get` | |
| //! |`RefCell<T>` | `RefMut<T>` / `Ref<T>` | may panic at runtime | |
| //! |`unsync::OnceCell<T>` | `&T` | assignable only once | |
| //! |
| //! |`Sync` types | Access Mode | Drawbacks | |
| //! |----------------------|------------------------|-----------------------------------------------| |
| //! |`AtomicT` | `T` | works only with certain `Copy` types | |
| //! |`Mutex<T>` | `MutexGuard<T>` | may deadlock at runtime, may block the thread | |
| //! |`sync::OnceCell<T>` | `&T` | assignable only once, may block the thread | |
| //! |
| //! Technically, calling `get_or_init` will also cause a panic or a deadlock if |
| //! it recursively calls itself. However, because the assignment can happen only |
| //! once, such cases should be more rare than equivalents with `RefCell` and |
| //! `Mutex`. |
| //! |
| //! # Minimum Supported `rustc` Version |
| //! |
| //! If only the `std`, `alloc`, or `race` features are enabled, MSRV will be |
| //! updated conservatively, supporting at least latest 8 versions of the compiler. |
| //! When using other features, like `parking_lot`, MSRV might be updated more |
| //! frequently, up to the latest stable. In both cases, increasing MSRV is *not* |
| //! considered a semver-breaking change and requires only a minor version bump. |
| //! |
| //! # Implementation details |
| //! |
| //! The implementation is based on the |
| //! [`lazy_static`](https://github.com/rust-lang-nursery/lazy-static.rs/) and |
| //! [`lazy_cell`](https://github.com/indiv0/lazycell/) crates and |
| //! [`std::sync::Once`]. In some sense, `once_cell` just streamlines and unifies |
| //! those APIs. |
| //! |
| //! To implement a sync flavor of `OnceCell`, this crates uses either a custom |
| //! re-implementation of `std::sync::Once` or `parking_lot::Mutex`. This is |
| //! controlled by the `parking_lot` feature (disabled by default). Performance |
| //! is the same for both cases, but the `parking_lot` based `OnceCell<T>` is |
| //! smaller by up to 16 bytes. |
| //! |
| //! This crate uses `unsafe`. |
| //! |
| //! [`std::sync::Once`]: https://doc.rust-lang.org/std/sync/struct.Once.html |
| //! |
| //! # F.A.Q. |
| //! |
| //! **Should I use the sync or unsync flavor?** |
| //! |
| //! Because Rust compiler checks thread safety for you, it's impossible to |
| //! accidentally use `unsync` where `sync` is required. So, use `unsync` in |
| //! single-threaded code and `sync` in multi-threaded. It's easy to switch |
| //! between the two if code becomes multi-threaded later. |
| //! |
| //! At the moment, `unsync` has an additional benefit that reentrant |
| //! initialization causes a panic, which might be easier to debug than a |
| //! deadlock. |
| //! |
| //! **Does this crate support async?** |
| //! |
| //! No, but you can use |
| //! [`async_once_cell`](https://crates.io/crates/async_once_cell) instead. |
| //! |
| //! **Does this crate support `no_std`?** |
| //! |
| //! Yes, but with caveats. `OnceCell` is a synchronization primitive which |
| //! _semantically_ relies on blocking. `OnceCell` guarantees that at most one |
| //! `f` will be called to compute the value. If two threads of execution call |
| //! `get_or_init` concurrently, one of them has to wait. |
| //! |
| //! Waiting fundamentally requires OS support. Execution environment needs to |
| //! understand who waits on whom to prevent deadlocks due to priority inversion. |
| //! You _could_ make code to compile by blindly using pure spinlocks, but the |
| //! runtime behavior would be subtly wrong. |
| //! |
| //! Given these constraints, `once_cell` provides the following options: |
| //! |
| //! - The `race` module provides similar, but distinct synchronization primitive |
| //! which is compatible with `no_std`. With `race`, the `f` function can be |
| //! called multiple times by different threads, but only one thread will win |
| //! to install the value. |
| //! - `critical-section` feature (with a `-`, not `_`) uses `critical_section` |
| //! to implement blocking. |
| //! |
| //! **Can I bring my own mutex?** |
| //! |
| //! There is [generic_once_cell](https://crates.io/crates/generic_once_cell) to |
| //! allow just that. |
| //! |
| //! **Should I use `std::cell::OnceCell`, `once_cell`, or `lazy_static`?** |
| //! |
| //! If you can use `std` version (your MSRV is at least 1.70, and you don't need |
| //! extra features `once_cell` provides), use `std`. Otherwise, use `once_cell`. |
| //! Don't use `lazy_static`. |
| //! |
| //! # Related crates |
| //! |
| //! * Most of this crate's functionality is available in `std` starting with |
| //! Rust 1.70. See `std::cell::OnceCell` and `std::sync::OnceLock`. |
| //! * [double-checked-cell](https://github.com/niklasf/double-checked-cell) |
| //! * [lazy-init](https://crates.io/crates/lazy-init) |
| //! * [lazycell](https://crates.io/crates/lazycell) |
| //! * [mitochondria](https://crates.io/crates/mitochondria) |
| //! * [lazy_static](https://crates.io/crates/lazy_static) |
| //! * [async_once_cell](https://crates.io/crates/async_once_cell) |
| //! * [generic_once_cell](https://crates.io/crates/generic_once_cell) (bring |
| //! your own mutex) |
| |
| #![cfg_attr(not(feature = "std"), no_std)] |
| |
| #[cfg(feature = "alloc")] |
| extern crate alloc; |
| |
| #[cfg(all(feature = "critical-section", not(feature = "std")))] |
| #[path = "imp_cs.rs"] |
| mod imp; |
| |
| #[cfg(all(feature = "std", feature = "parking_lot"))] |
| #[path = "imp_pl.rs"] |
| mod imp; |
| |
| #[cfg(all(feature = "std", not(feature = "parking_lot")))] |
| #[path = "imp_std.rs"] |
| mod imp; |
| |
| /// Single-threaded version of `OnceCell`. |
| pub mod unsync { |
| use core::{ |
| cell::{Cell, UnsafeCell}, |
| fmt, mem, |
| ops::{Deref, DerefMut}, |
| panic::{RefUnwindSafe, UnwindSafe}, |
| }; |
| |
| /// A cell which can be written to only once. It is not thread safe. |
| /// |
| /// Unlike [`std::cell::RefCell`], a `OnceCell` provides simple `&` |
| /// references to the contents. |
| /// |
| /// [`std::cell::RefCell`]: https://doc.rust-lang.org/std/cell/struct.RefCell.html |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// assert!(cell.get().is_none()); |
| /// |
| /// let value: &String = cell.get_or_init(|| { |
| /// "Hello, World!".to_string() |
| /// }); |
| /// assert_eq!(value, "Hello, World!"); |
| /// assert!(cell.get().is_some()); |
| /// ``` |
| pub struct OnceCell<T> { |
| // Invariant: written to at most once. |
| inner: UnsafeCell<Option<T>>, |
| } |
| |
| // Similarly to a `Sync` bound on `sync::OnceCell`, we can use |
| // `&unsync::OnceCell` to sneak a `T` through `catch_unwind`, |
| // by initializing the cell in closure and extracting the value in the |
| // `Drop`. |
| impl<T: RefUnwindSafe + UnwindSafe> RefUnwindSafe for OnceCell<T> {} |
| impl<T: UnwindSafe> UnwindSafe for OnceCell<T> {} |
| |
| impl<T> Default for OnceCell<T> { |
| fn default() -> Self { |
| Self::new() |
| } |
| } |
| |
| impl<T: fmt::Debug> fmt::Debug for OnceCell<T> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| match self.get() { |
| Some(v) => f.debug_tuple("OnceCell").field(v).finish(), |
| None => f.write_str("OnceCell(Uninit)"), |
| } |
| } |
| } |
| |
| impl<T: Clone> Clone for OnceCell<T> { |
| fn clone(&self) -> OnceCell<T> { |
| match self.get() { |
| Some(value) => OnceCell::with_value(value.clone()), |
| None => OnceCell::new(), |
| } |
| } |
| |
| fn clone_from(&mut self, source: &Self) { |
| match (self.get_mut(), source.get()) { |
| (Some(this), Some(source)) => this.clone_from(source), |
| _ => *self = source.clone(), |
| } |
| } |
| } |
| |
| impl<T: PartialEq> PartialEq for OnceCell<T> { |
| fn eq(&self, other: &Self) -> bool { |
| self.get() == other.get() |
| } |
| } |
| |
| impl<T: Eq> Eq for OnceCell<T> {} |
| |
| impl<T> From<T> for OnceCell<T> { |
| fn from(value: T) -> Self { |
| OnceCell::with_value(value) |
| } |
| } |
| |
| impl<T> OnceCell<T> { |
| /// Creates a new empty cell. |
| pub const fn new() -> OnceCell<T> { |
| OnceCell { inner: UnsafeCell::new(None) } |
| } |
| |
| /// Creates a new initialized cell. |
| pub const fn with_value(value: T) -> OnceCell<T> { |
| OnceCell { inner: UnsafeCell::new(Some(value)) } |
| } |
| |
| /// Gets a reference to the underlying value. |
| /// |
| /// Returns `None` if the cell is empty. |
| #[inline] |
| pub fn get(&self) -> Option<&T> { |
| // Safe due to `inner`'s invariant of being written to at most once. |
| // Had multiple writes to `inner` been allowed, a reference to the |
| // value we return now would become dangling by a write of a |
| // different value later. |
| unsafe { &*self.inner.get() }.as_ref() |
| } |
| |
| /// Gets a mutable reference to the underlying value. |
| /// |
| /// Returns `None` if the cell is empty. |
| /// |
| /// This method is allowed to violate the invariant of writing to a `OnceCell` |
| /// at most once because it requires `&mut` access to `self`. As with all |
| /// interior mutability, `&mut` access permits arbitrary modification: |
| /// |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let mut cell: OnceCell<u32> = OnceCell::new(); |
| /// cell.set(92).unwrap(); |
| /// *cell.get_mut().unwrap() = 93; |
| /// assert_eq!(cell.get(), Some(&93)); |
| /// ``` |
| #[inline] |
| pub fn get_mut(&mut self) -> Option<&mut T> { |
| // Safe because we have unique access |
| unsafe { &mut *self.inner.get() }.as_mut() |
| } |
| |
| /// Sets the contents of this cell to `value`. |
| /// |
| /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was |
| /// full. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// assert!(cell.get().is_none()); |
| /// |
| /// assert_eq!(cell.set(92), Ok(())); |
| /// assert_eq!(cell.set(62), Err(62)); |
| /// |
| /// assert!(cell.get().is_some()); |
| /// ``` |
| pub fn set(&self, value: T) -> Result<(), T> { |
| match self.try_insert(value) { |
| Ok(_) => Ok(()), |
| Err((_, value)) => Err(value), |
| } |
| } |
| |
| /// Like [`set`](Self::set), but also returns a reference to the final cell value. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// assert!(cell.get().is_none()); |
| /// |
| /// assert_eq!(cell.try_insert(92), Ok(&92)); |
| /// assert_eq!(cell.try_insert(62), Err((&92, 62))); |
| /// |
| /// assert!(cell.get().is_some()); |
| /// ``` |
| pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> { |
| if let Some(old) = self.get() { |
| return Err((old, value)); |
| } |
| |
| let slot = unsafe { &mut *self.inner.get() }; |
| // This is the only place where we set the slot, no races |
| // due to reentrancy/concurrency are possible, and we've |
| // checked that slot is currently `None`, so this write |
| // maintains the `inner`'s invariant. |
| *slot = Some(value); |
| Ok(unsafe { slot.as_ref().unwrap_unchecked() }) |
| } |
| |
| /// Gets the contents of the cell, initializing it with `f` |
| /// if the cell was empty. |
| /// |
| /// # Panics |
| /// |
| /// If `f` panics, the panic is propagated to the caller, and the cell |
| /// remains uninitialized. |
| /// |
| /// It is an error to reentrantly initialize the cell from `f`. Doing |
| /// so results in a panic. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// let value = cell.get_or_init(|| 92); |
| /// assert_eq!(value, &92); |
| /// let value = cell.get_or_init(|| unreachable!()); |
| /// assert_eq!(value, &92); |
| /// ``` |
| pub fn get_or_init<F>(&self, f: F) -> &T |
| where |
| F: FnOnce() -> T, |
| { |
| enum Void {} |
| match self.get_or_try_init(|| Ok::<T, Void>(f())) { |
| Ok(val) => val, |
| Err(void) => match void {}, |
| } |
| } |
| |
| /// Gets the contents of the cell, initializing it with `f` if |
| /// the cell was empty. If the cell was empty and `f` failed, an |
| /// error is returned. |
| /// |
| /// # Panics |
| /// |
| /// If `f` panics, the panic is propagated to the caller, and the cell |
| /// remains uninitialized. |
| /// |
| /// It is an error to reentrantly initialize the cell from `f`. Doing |
| /// so results in a panic. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(())); |
| /// assert!(cell.get().is_none()); |
| /// let value = cell.get_or_try_init(|| -> Result<i32, ()> { |
| /// Ok(92) |
| /// }); |
| /// assert_eq!(value, Ok(&92)); |
| /// assert_eq!(cell.get(), Some(&92)) |
| /// ``` |
| pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> |
| where |
| F: FnOnce() -> Result<T, E>, |
| { |
| if let Some(val) = self.get() { |
| return Ok(val); |
| } |
| let val = f()?; |
| // Note that *some* forms of reentrant initialization might lead to |
| // UB (see `reentrant_init` test). I believe that just removing this |
| // `assert`, while keeping `set/get` would be sound, but it seems |
| // better to panic, rather than to silently use an old value. |
| assert!(self.set(val).is_ok(), "reentrant init"); |
| Ok(unsafe { self.get().unwrap_unchecked() }) |
| } |
| |
| /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state. |
| /// |
| /// Has no effect and returns `None` if the `OnceCell` hasn't been initialized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let mut cell: OnceCell<String> = OnceCell::new(); |
| /// assert_eq!(cell.take(), None); |
| /// |
| /// let mut cell = OnceCell::new(); |
| /// cell.set("hello".to_string()).unwrap(); |
| /// assert_eq!(cell.take(), Some("hello".to_string())); |
| /// assert_eq!(cell.get(), None); |
| /// ``` |
| /// |
| /// This method is allowed to violate the invariant of writing to a `OnceCell` |
| /// at most once because it requires `&mut` access to `self`. As with all |
| /// interior mutability, `&mut` access permits arbitrary modification: |
| /// |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let mut cell: OnceCell<u32> = OnceCell::new(); |
| /// cell.set(92).unwrap(); |
| /// cell = OnceCell::new(); |
| /// ``` |
| pub fn take(&mut self) -> Option<T> { |
| mem::take(self).into_inner() |
| } |
| |
| /// Consumes the `OnceCell`, returning the wrapped value. |
| /// |
| /// Returns `None` if the cell was empty. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell: OnceCell<String> = OnceCell::new(); |
| /// assert_eq!(cell.into_inner(), None); |
| /// |
| /// let cell = OnceCell::new(); |
| /// cell.set("hello".to_string()).unwrap(); |
| /// assert_eq!(cell.into_inner(), Some("hello".to_string())); |
| /// ``` |
| pub fn into_inner(self) -> Option<T> { |
| // Because `into_inner` takes `self` by value, the compiler statically verifies |
| // that it is not currently borrowed. So it is safe to move out `Option<T>`. |
| self.inner.into_inner() |
| } |
| } |
| |
| /// A value which is initialized on the first access. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::Lazy; |
| /// |
| /// let lazy: Lazy<i32> = Lazy::new(|| { |
| /// println!("initializing"); |
| /// 92 |
| /// }); |
| /// println!("ready"); |
| /// println!("{}", *lazy); |
| /// println!("{}", *lazy); |
| /// |
| /// // Prints: |
| /// // ready |
| /// // initializing |
| /// // 92 |
| /// // 92 |
| /// ``` |
| pub struct Lazy<T, F = fn() -> T> { |
| cell: OnceCell<T>, |
| init: Cell<Option<F>>, |
| } |
| |
| impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {} |
| |
| impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish() |
| } |
| } |
| |
| impl<T, F> Lazy<T, F> { |
| /// Creates a new lazy value with the given initializing function. |
| /// |
| /// # Example |
| /// ``` |
| /// # fn main() { |
| /// use once_cell::unsync::Lazy; |
| /// |
| /// let hello = "Hello, World!".to_string(); |
| /// |
| /// let lazy = Lazy::new(|| hello.to_uppercase()); |
| /// |
| /// assert_eq!(&*lazy, "HELLO, WORLD!"); |
| /// # } |
| /// ``` |
| pub const fn new(init: F) -> Lazy<T, F> { |
| Lazy { cell: OnceCell::new(), init: Cell::new(Some(init)) } |
| } |
| |
| /// Consumes this `Lazy` returning the stored value. |
| /// |
| /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise. |
| pub fn into_value(this: Lazy<T, F>) -> Result<T, F> { |
| let cell = this.cell; |
| let init = this.init; |
| cell.into_inner().ok_or_else(|| { |
| init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned")) |
| }) |
| } |
| } |
| |
| impl<T, F: FnOnce() -> T> Lazy<T, F> { |
| /// Forces the evaluation of this lazy value and returns a reference to |
| /// the result. |
| /// |
| /// This is equivalent to the `Deref` impl, but is explicit. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::Lazy; |
| /// |
| /// let lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::force(&lazy), &92); |
| /// assert_eq!(&*lazy, &92); |
| /// ``` |
| pub fn force(this: &Lazy<T, F>) -> &T { |
| this.cell.get_or_init(|| match this.init.take() { |
| Some(f) => f(), |
| None => panic!("Lazy instance has previously been poisoned"), |
| }) |
| } |
| |
| /// Forces the evaluation of this lazy value and returns a mutable reference to |
| /// the result. |
| /// |
| /// This is equivalent to the `DerefMut` impl, but is explicit. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::Lazy; |
| /// |
| /// let mut lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::force_mut(&mut lazy), &92); |
| /// assert_eq!(*lazy, 92); |
| /// ``` |
| pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T { |
| if this.cell.get_mut().is_none() { |
| let value = match this.init.get_mut().take() { |
| Some(f) => f(), |
| None => panic!("Lazy instance has previously been poisoned"), |
| }; |
| this.cell = OnceCell::with_value(value); |
| } |
| this.cell.get_mut().unwrap_or_else(|| unreachable!()) |
| } |
| |
| /// Gets the reference to the result of this lazy value if |
| /// it was initialized, otherwise returns `None`. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::Lazy; |
| /// |
| /// let lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::get(&lazy), None); |
| /// assert_eq!(&*lazy, &92); |
| /// assert_eq!(Lazy::get(&lazy), Some(&92)); |
| /// ``` |
| pub fn get(this: &Lazy<T, F>) -> Option<&T> { |
| this.cell.get() |
| } |
| |
| /// Gets the mutable reference to the result of this lazy value if |
| /// it was initialized, otherwise returns `None`. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::unsync::Lazy; |
| /// |
| /// let mut lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::get_mut(&mut lazy), None); |
| /// assert_eq!(*lazy, 92); |
| /// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92)); |
| /// ``` |
| pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> { |
| this.cell.get_mut() |
| } |
| } |
| |
| impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> { |
| type Target = T; |
| fn deref(&self) -> &T { |
| Lazy::force(self) |
| } |
| } |
| |
| impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> { |
| fn deref_mut(&mut self) -> &mut T { |
| Lazy::force_mut(self) |
| } |
| } |
| |
| impl<T: Default> Default for Lazy<T> { |
| /// Creates a new lazy value using `Default` as the initializing function. |
| fn default() -> Lazy<T> { |
| Lazy::new(T::default) |
| } |
| } |
| } |
| |
| /// Thread-safe, blocking version of `OnceCell`. |
| #[cfg(any(feature = "std", feature = "critical-section"))] |
| pub mod sync { |
| use core::{ |
| cell::Cell, |
| fmt, mem, |
| ops::{Deref, DerefMut}, |
| panic::RefUnwindSafe, |
| }; |
| |
| use super::imp::OnceCell as Imp; |
| |
| /// A thread-safe cell which can be written to only once. |
| /// |
| /// `OnceCell` provides `&` references to the contents without RAII guards. |
| /// |
| /// Reading a non-`None` value out of `OnceCell` establishes a |
| /// happens-before relationship with a corresponding write. For example, if |
| /// thread A initializes the cell with `get_or_init(f)`, and thread B |
| /// subsequently reads the result of this call, B also observes all the side |
| /// effects of `f`. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// static CELL: OnceCell<String> = OnceCell::new(); |
| /// assert!(CELL.get().is_none()); |
| /// |
| /// std::thread::spawn(|| { |
| /// let value: &String = CELL.get_or_init(|| { |
| /// "Hello, World!".to_string() |
| /// }); |
| /// assert_eq!(value, "Hello, World!"); |
| /// }).join().unwrap(); |
| /// |
| /// let value: Option<&String> = CELL.get(); |
| /// assert!(value.is_some()); |
| /// assert_eq!(value.unwrap().as_str(), "Hello, World!"); |
| /// ``` |
| pub struct OnceCell<T>(Imp<T>); |
| |
| impl<T> Default for OnceCell<T> { |
| fn default() -> OnceCell<T> { |
| OnceCell::new() |
| } |
| } |
| |
| impl<T: fmt::Debug> fmt::Debug for OnceCell<T> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| match self.get() { |
| Some(v) => f.debug_tuple("OnceCell").field(v).finish(), |
| None => f.write_str("OnceCell(Uninit)"), |
| } |
| } |
| } |
| |
| impl<T: Clone> Clone for OnceCell<T> { |
| fn clone(&self) -> OnceCell<T> { |
| match self.get() { |
| Some(value) => Self::with_value(value.clone()), |
| None => Self::new(), |
| } |
| } |
| |
| fn clone_from(&mut self, source: &Self) { |
| match (self.get_mut(), source.get()) { |
| (Some(this), Some(source)) => this.clone_from(source), |
| _ => *self = source.clone(), |
| } |
| } |
| } |
| |
| impl<T> From<T> for OnceCell<T> { |
| fn from(value: T) -> Self { |
| Self::with_value(value) |
| } |
| } |
| |
| impl<T: PartialEq> PartialEq for OnceCell<T> { |
| fn eq(&self, other: &OnceCell<T>) -> bool { |
| self.get() == other.get() |
| } |
| } |
| |
| impl<T: Eq> Eq for OnceCell<T> {} |
| |
| impl<T> OnceCell<T> { |
| /// Creates a new empty cell. |
| pub const fn new() -> OnceCell<T> { |
| OnceCell(Imp::new()) |
| } |
| |
| /// Creates a new initialized cell. |
| pub const fn with_value(value: T) -> OnceCell<T> { |
| OnceCell(Imp::with_value(value)) |
| } |
| |
| /// Gets the reference to the underlying value. |
| /// |
| /// Returns `None` if the cell is empty, or being initialized. This |
| /// method never blocks. |
| pub fn get(&self) -> Option<&T> { |
| if self.0.is_initialized() { |
| // Safe b/c value is initialized. |
| Some(unsafe { self.get_unchecked() }) |
| } else { |
| None |
| } |
| } |
| |
| /// Gets the reference to the underlying value, blocking the current |
| /// thread until it is set. |
| /// |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let mut cell = std::sync::Arc::new(OnceCell::new()); |
| /// let t = std::thread::spawn({ |
| /// let cell = std::sync::Arc::clone(&cell); |
| /// move || cell.set(92).unwrap() |
| /// }); |
| /// |
| /// // Returns immediately, but might return None. |
| /// let _value_or_none = cell.get(); |
| /// |
| /// // Will return 92, but might block until the other thread does `.set`. |
| /// let value: &u32 = cell.wait(); |
| /// assert_eq!(*value, 92); |
| /// t.join().unwrap(); |
| /// ``` |
| #[cfg(feature = "std")] |
| pub fn wait(&self) -> &T { |
| if !self.0.is_initialized() { |
| self.0.wait() |
| } |
| debug_assert!(self.0.is_initialized()); |
| // Safe b/c of the wait call above and the fact that we didn't |
| // relinquish our borrow. |
| unsafe { self.get_unchecked() } |
| } |
| |
| /// Gets the mutable reference to the underlying value. |
| /// |
| /// Returns `None` if the cell is empty. |
| /// |
| /// This method is allowed to violate the invariant of writing to a `OnceCell` |
| /// at most once because it requires `&mut` access to `self`. As with all |
| /// interior mutability, `&mut` access permits arbitrary modification: |
| /// |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let mut cell: OnceCell<u32> = OnceCell::new(); |
| /// cell.set(92).unwrap(); |
| /// cell = OnceCell::new(); |
| /// ``` |
| #[inline] |
| pub fn get_mut(&mut self) -> Option<&mut T> { |
| self.0.get_mut() |
| } |
| |
| /// Get the reference to the underlying value, without checking if the |
| /// cell is initialized. |
| /// |
| /// # Safety |
| /// |
| /// Caller must ensure that the cell is in initialized state, and that |
| /// the contents are acquired by (synchronized to) this thread. |
| #[inline] |
| pub unsafe fn get_unchecked(&self) -> &T { |
| self.0.get_unchecked() |
| } |
| |
| /// Sets the contents of this cell to `value`. |
| /// |
| /// Returns `Ok(())` if the cell was empty and `Err(value)` if it was |
| /// full. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// static CELL: OnceCell<i32> = OnceCell::new(); |
| /// |
| /// fn main() { |
| /// assert!(CELL.get().is_none()); |
| /// |
| /// std::thread::spawn(|| { |
| /// assert_eq!(CELL.set(92), Ok(())); |
| /// }).join().unwrap(); |
| /// |
| /// assert_eq!(CELL.set(62), Err(62)); |
| /// assert_eq!(CELL.get(), Some(&92)); |
| /// } |
| /// ``` |
| pub fn set(&self, value: T) -> Result<(), T> { |
| match self.try_insert(value) { |
| Ok(_) => Ok(()), |
| Err((_, value)) => Err(value), |
| } |
| } |
| |
| /// Like [`set`](Self::set), but also returns a reference to the final cell value. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use once_cell::unsync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// assert!(cell.get().is_none()); |
| /// |
| /// assert_eq!(cell.try_insert(92), Ok(&92)); |
| /// assert_eq!(cell.try_insert(62), Err((&92, 62))); |
| /// |
| /// assert!(cell.get().is_some()); |
| /// ``` |
| pub fn try_insert(&self, value: T) -> Result<&T, (&T, T)> { |
| let mut value = Some(value); |
| let res = self.get_or_init(|| unsafe { value.take().unwrap_unchecked() }); |
| match value { |
| None => Ok(res), |
| Some(value) => Err((res, value)), |
| } |
| } |
| |
| /// Gets the contents of the cell, initializing it with `f` if the cell |
| /// was empty. |
| /// |
| /// Many threads may call `get_or_init` concurrently with different |
| /// initializing functions, but it is guaranteed that only one function |
| /// will be executed. |
| /// |
| /// # Panics |
| /// |
| /// If `f` panics, the panic is propagated to the caller, and the cell |
| /// remains uninitialized. |
| /// |
| /// It is an error to reentrantly initialize the cell from `f`. The |
| /// exact outcome is unspecified. Current implementation deadlocks, but |
| /// this may be changed to a panic in the future. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// let value = cell.get_or_init(|| 92); |
| /// assert_eq!(value, &92); |
| /// let value = cell.get_or_init(|| unreachable!()); |
| /// assert_eq!(value, &92); |
| /// ``` |
| pub fn get_or_init<F>(&self, f: F) -> &T |
| where |
| F: FnOnce() -> T, |
| { |
| enum Void {} |
| match self.get_or_try_init(|| Ok::<T, Void>(f())) { |
| Ok(val) => val, |
| Err(void) => match void {}, |
| } |
| } |
| |
| /// Gets the contents of the cell, initializing it with `f` if |
| /// the cell was empty. If the cell was empty and `f` failed, an |
| /// error is returned. |
| /// |
| /// # Panics |
| /// |
| /// If `f` panics, the panic is propagated to the caller, and |
| /// the cell remains uninitialized. |
| /// |
| /// It is an error to reentrantly initialize the cell from `f`. |
| /// The exact outcome is unspecified. Current implementation |
| /// deadlocks, but this may be changed to a panic in the future. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let cell = OnceCell::new(); |
| /// assert_eq!(cell.get_or_try_init(|| Err(())), Err(())); |
| /// assert!(cell.get().is_none()); |
| /// let value = cell.get_or_try_init(|| -> Result<i32, ()> { |
| /// Ok(92) |
| /// }); |
| /// assert_eq!(value, Ok(&92)); |
| /// assert_eq!(cell.get(), Some(&92)) |
| /// ``` |
| pub fn get_or_try_init<F, E>(&self, f: F) -> Result<&T, E> |
| where |
| F: FnOnce() -> Result<T, E>, |
| { |
| // Fast path check |
| if let Some(value) = self.get() { |
| return Ok(value); |
| } |
| |
| self.0.initialize(f)?; |
| |
| // Safe b/c value is initialized. |
| debug_assert!(self.0.is_initialized()); |
| Ok(unsafe { self.get_unchecked() }) |
| } |
| |
| /// Takes the value out of this `OnceCell`, moving it back to an uninitialized state. |
| /// |
| /// Has no effect and returns `None` if the `OnceCell` hasn't been initialized. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let mut cell: OnceCell<String> = OnceCell::new(); |
| /// assert_eq!(cell.take(), None); |
| /// |
| /// let mut cell = OnceCell::new(); |
| /// cell.set("hello".to_string()).unwrap(); |
| /// assert_eq!(cell.take(), Some("hello".to_string())); |
| /// assert_eq!(cell.get(), None); |
| /// ``` |
| /// |
| /// This method is allowed to violate the invariant of writing to a `OnceCell` |
| /// at most once because it requires `&mut` access to `self`. As with all |
| /// interior mutability, `&mut` access permits arbitrary modification: |
| /// |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let mut cell: OnceCell<u32> = OnceCell::new(); |
| /// cell.set(92).unwrap(); |
| /// cell = OnceCell::new(); |
| /// ``` |
| pub fn take(&mut self) -> Option<T> { |
| mem::take(self).into_inner() |
| } |
| |
| /// Consumes the `OnceCell`, returning the wrapped value. Returns |
| /// `None` if the cell was empty. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use once_cell::sync::OnceCell; |
| /// |
| /// let cell: OnceCell<String> = OnceCell::new(); |
| /// assert_eq!(cell.into_inner(), None); |
| /// |
| /// let cell = OnceCell::new(); |
| /// cell.set("hello".to_string()).unwrap(); |
| /// assert_eq!(cell.into_inner(), Some("hello".to_string())); |
| /// ``` |
| #[inline] |
| pub fn into_inner(self) -> Option<T> { |
| self.0.into_inner() |
| } |
| } |
| |
| /// A value which is initialized on the first access. |
| /// |
| /// This type is thread-safe and can be used in statics. |
| /// |
| /// # Example |
| /// |
| /// ``` |
| /// use std::collections::HashMap; |
| /// |
| /// use once_cell::sync::Lazy; |
| /// |
| /// static HASHMAP: Lazy<HashMap<i32, String>> = Lazy::new(|| { |
| /// println!("initializing"); |
| /// let mut m = HashMap::new(); |
| /// m.insert(13, "Spica".to_string()); |
| /// m.insert(74, "Hoyten".to_string()); |
| /// m |
| /// }); |
| /// |
| /// fn main() { |
| /// println!("ready"); |
| /// std::thread::spawn(|| { |
| /// println!("{:?}", HASHMAP.get(&13)); |
| /// }).join().unwrap(); |
| /// println!("{:?}", HASHMAP.get(&74)); |
| /// |
| /// // Prints: |
| /// // ready |
| /// // initializing |
| /// // Some("Spica") |
| /// // Some("Hoyten") |
| /// } |
| /// ``` |
| pub struct Lazy<T, F = fn() -> T> { |
| cell: OnceCell<T>, |
| init: Cell<Option<F>>, |
| } |
| |
| impl<T: fmt::Debug, F> fmt::Debug for Lazy<T, F> { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| f.debug_struct("Lazy").field("cell", &self.cell).field("init", &"..").finish() |
| } |
| } |
| |
| // We never create a `&F` from a `&Lazy<T, F>` so it is fine to not impl |
| // `Sync` for `F`. We do create a `&mut Option<F>` in `force`, but this is |
| // properly synchronized, so it only happens once so it also does not |
| // contribute to this impl. |
| unsafe impl<T, F: Send> Sync for Lazy<T, F> where OnceCell<T>: Sync {} |
| // auto-derived `Send` impl is OK. |
| |
| impl<T, F: RefUnwindSafe> RefUnwindSafe for Lazy<T, F> where OnceCell<T>: RefUnwindSafe {} |
| |
| impl<T, F> Lazy<T, F> { |
| /// Creates a new lazy value with the given initializing |
| /// function. |
| pub const fn new(f: F) -> Lazy<T, F> { |
| Lazy { cell: OnceCell::new(), init: Cell::new(Some(f)) } |
| } |
| |
| /// Consumes this `Lazy` returning the stored value. |
| /// |
| /// Returns `Ok(value)` if `Lazy` is initialized and `Err(f)` otherwise. |
| pub fn into_value(this: Lazy<T, F>) -> Result<T, F> { |
| let cell = this.cell; |
| let init = this.init; |
| cell.into_inner().ok_or_else(|| { |
| init.take().unwrap_or_else(|| panic!("Lazy instance has previously been poisoned")) |
| }) |
| } |
| } |
| |
| impl<T, F: FnOnce() -> T> Lazy<T, F> { |
| /// Forces the evaluation of this lazy value and |
| /// returns a reference to the result. This is equivalent |
| /// to the `Deref` impl, but is explicit. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::Lazy; |
| /// |
| /// let lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::force(&lazy), &92); |
| /// assert_eq!(&*lazy, &92); |
| /// ``` |
| pub fn force(this: &Lazy<T, F>) -> &T { |
| this.cell.get_or_init(|| match this.init.take() { |
| Some(f) => f(), |
| None => panic!("Lazy instance has previously been poisoned"), |
| }) |
| } |
| |
| /// Forces the evaluation of this lazy value and |
| /// returns a mutable reference to the result. This is equivalent |
| /// to the `Deref` impl, but is explicit. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::Lazy; |
| /// |
| /// let mut lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::force_mut(&mut lazy), &mut 92); |
| /// ``` |
| pub fn force_mut(this: &mut Lazy<T, F>) -> &mut T { |
| if this.cell.get_mut().is_none() { |
| let value = match this.init.get_mut().take() { |
| Some(f) => f(), |
| None => panic!("Lazy instance has previously been poisoned"), |
| }; |
| this.cell = OnceCell::with_value(value); |
| } |
| this.cell.get_mut().unwrap_or_else(|| unreachable!()) |
| } |
| |
| /// Gets the reference to the result of this lazy value if |
| /// it was initialized, otherwise returns `None`. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::Lazy; |
| /// |
| /// let lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::get(&lazy), None); |
| /// assert_eq!(&*lazy, &92); |
| /// assert_eq!(Lazy::get(&lazy), Some(&92)); |
| /// ``` |
| pub fn get(this: &Lazy<T, F>) -> Option<&T> { |
| this.cell.get() |
| } |
| |
| /// Gets the reference to the result of this lazy value if |
| /// it was initialized, otherwise returns `None`. |
| /// |
| /// # Example |
| /// ``` |
| /// use once_cell::sync::Lazy; |
| /// |
| /// let mut lazy = Lazy::new(|| 92); |
| /// |
| /// assert_eq!(Lazy::get_mut(&mut lazy), None); |
| /// assert_eq!(&*lazy, &92); |
| /// assert_eq!(Lazy::get_mut(&mut lazy), Some(&mut 92)); |
| /// ``` |
| pub fn get_mut(this: &mut Lazy<T, F>) -> Option<&mut T> { |
| this.cell.get_mut() |
| } |
| } |
| |
| impl<T, F: FnOnce() -> T> Deref for Lazy<T, F> { |
| type Target = T; |
| fn deref(&self) -> &T { |
| Lazy::force(self) |
| } |
| } |
| |
| impl<T, F: FnOnce() -> T> DerefMut for Lazy<T, F> { |
| fn deref_mut(&mut self) -> &mut T { |
| Lazy::force_mut(self) |
| } |
| } |
| |
| impl<T: Default> Default for Lazy<T> { |
| /// Creates a new lazy value using `Default` as the initializing function. |
| fn default() -> Lazy<T> { |
| Lazy::new(T::default) |
| } |
| } |
| |
| /// ```compile_fail |
| /// struct S(*mut ()); |
| /// unsafe impl Sync for S {} |
| /// |
| /// fn share<T: Sync>(_: &T) {} |
| /// share(&once_cell::sync::OnceCell::<S>::new()); |
| /// ``` |
| /// |
| /// ```compile_fail |
| /// struct S(*mut ()); |
| /// unsafe impl Sync for S {} |
| /// |
| /// fn share<T: Sync>(_: &T) {} |
| /// share(&once_cell::sync::Lazy::<S>::new(|| unimplemented!())); |
| /// ``` |
| fn _dummy() {} |
| } |
| |
| #[cfg(feature = "race")] |
| pub mod race; |