| //! ***Unstable.*** Graph generation. |
| //! |
| //! ***Unstable: API may change at any time.*** Depends on `feature = "generate"`. |
| //! |
| |
| use crate::graph::NodeIndex; |
| use crate::{Directed, EdgeType, Graph}; |
| |
| // A DAG has the property that the adjacency matrix is lower triangular, |
| // diagonal zero. |
| // |
| // This means we only allow edges i → j where i < j. |
| // |
| // The set of all DAG of a particular size is simply the power set of all |
| // possible edges. |
| // |
| // For a graph of n=3 nodes we have (n - 1) * n / 2 = 3 possible edges. |
| |
| /// A graph generator of “all” graphs of a particular size. |
| /// |
| /// ***Unstable: API may change at any time.*** Depends on `feature = "generate"`. |
| pub struct Generator<Ty> { |
| acyclic: bool, |
| selfloops: bool, |
| nodes: usize, |
| /// number of possible edges |
| nedges: usize, |
| /// current edge bitmap |
| bits: u64, |
| g: Graph<(), (), Ty>, |
| } |
| |
| impl Generator<Directed> { |
| /// Generate all possible Directed acyclic graphs (DAGs) of a particular number of vertices. |
| /// |
| /// These are only generated with one per isomorphism, so they use |
| /// one canonical node labeling where node *i* can only have edges to node *j* if *i < j*. |
| /// |
| /// For a graph of *k* vertices there are *e = (k - 1) k / 2* possible edges and |
| /// *2<sup>e</sup>* DAGs. |
| pub fn directed_acyclic(nodes: usize) -> Self { |
| assert!(nodes != 0); |
| let nedges = (nodes - 1) * nodes / 2; |
| assert!(nedges < 64); |
| Generator { |
| acyclic: true, |
| selfloops: false, |
| nodes: nodes, |
| nedges: nedges, |
| bits: !0, |
| g: Graph::with_capacity(nodes, nedges), |
| } |
| } |
| } |
| |
| impl<Ty: EdgeType> Generator<Ty> { |
| /// Generate all possible graphs of a particular number of vertices. |
| /// |
| /// All permutations are generated, so the graphs are not unique down to isomorphism. |
| /// |
| /// For a graph of *k* vertices there are *e = k²* possible edges and |
| /// *2<sup>k<sup>2</sup></sup>* graphs. |
| pub fn all(nodes: usize, allow_selfloops: bool) -> Self { |
| let scale = if Ty::is_directed() { 1 } else { 2 }; |
| let nedges = if allow_selfloops { |
| (nodes * nodes - nodes) / scale + nodes |
| } else { |
| (nodes * nodes) / scale - nodes |
| }; |
| assert!(nedges < 64); |
| Generator { |
| acyclic: false, |
| selfloops: allow_selfloops, |
| nodes: nodes, |
| nedges: nedges, |
| bits: !0, |
| g: Graph::with_capacity(nodes, nedges), |
| } |
| } |
| |
| fn state_to_graph(&mut self) -> &Graph<(), (), Ty> { |
| self.g.clear(); |
| for _ in 0..self.nodes { |
| self.g.add_node(()); |
| } |
| // For a DAG: |
| // interpret the bits in order, it's a lower triangular matrix: |
| // a b c d |
| // a x x x x |
| // b 0 x x x |
| // c 1 2 x x |
| // d 3 4 5 x |
| let mut bit = 0; |
| for i in 0..self.nodes { |
| let start = if self.acyclic || !self.g.is_directed() { |
| i |
| } else { |
| 0 |
| }; |
| for j in start..self.nodes { |
| if i == j && !self.selfloops { |
| continue; |
| } |
| if self.bits & (1u64 << bit) != 0 { |
| self.g.add_edge(NodeIndex::new(i), NodeIndex::new(j), ()); |
| } |
| |
| bit += 1; |
| } |
| } |
| &self.g |
| } |
| |
| pub fn next_ref(&mut self) -> Option<&Graph<(), (), Ty>> { |
| if self.bits == !0 { |
| self.bits = 0; |
| } else { |
| self.bits += 1; |
| if self.bits >= 1u64 << self.nedges { |
| return None; |
| } |
| } |
| Some(self.state_to_graph()) |
| } |
| } |
| |
| impl<Ty: EdgeType> Iterator for Generator<Ty> { |
| type Item = Graph<(), (), Ty>; |
| |
| fn next(&mut self) -> Option<Self::Item> { |
| self.next_ref().cloned() |
| } |
| } |