| //! `UnionFind<K>` is a disjoint-set data structure. |
| |
| use super::graph::IndexType; |
| use std::cmp::Ordering; |
| |
| /// `UnionFind<K>` is a disjoint-set data structure. It tracks set membership of *n* elements |
| /// indexed from *0* to *n - 1*. The scalar type is `K` which must be an unsigned integer type. |
| /// |
| /// <http://en.wikipedia.org/wiki/Disjoint-set_data_structure> |
| /// |
| /// Too awesome not to quote: |
| /// |
| /// “The amortized time per operation is **O(α(n))** where **α(n)** is the |
| /// inverse of **f(x) = A(x, x)** with **A** being the extremely fast-growing Ackermann function.” |
| #[derive(Debug, Clone)] |
| pub struct UnionFind<K> { |
| // For element at index *i*, store the index of its parent; the representative itself |
| // stores its own index. This forms equivalence classes which are the disjoint sets, each |
| // with a unique representative. |
| parent: Vec<K>, |
| // It is a balancing tree structure, |
| // so the ranks are logarithmic in the size of the container -- a byte is more than enough. |
| // |
| // Rank is separated out both to save space and to save cache in when searching in the parent |
| // vector. |
| rank: Vec<u8>, |
| } |
| |
| #[inline] |
| unsafe fn get_unchecked<K>(xs: &[K], index: usize) -> &K { |
| debug_assert!(index < xs.len()); |
| xs.get_unchecked(index) |
| } |
| |
| #[inline] |
| unsafe fn get_unchecked_mut<K>(xs: &mut [K], index: usize) -> &mut K { |
| debug_assert!(index < xs.len()); |
| xs.get_unchecked_mut(index) |
| } |
| |
| impl<K> UnionFind<K> |
| where |
| K: IndexType, |
| { |
| /// Create a new `UnionFind` of `n` disjoint sets. |
| pub fn new(n: usize) -> Self { |
| let rank = vec![0; n]; |
| let parent = (0..n).map(K::new).collect::<Vec<K>>(); |
| |
| UnionFind { parent, rank } |
| } |
| |
| /// Return the representative for `x`. |
| /// |
| /// **Panics** if `x` is out of bounds. |
| pub fn find(&self, x: K) -> K { |
| assert!(x.index() < self.parent.len()); |
| unsafe { |
| let mut x = x; |
| loop { |
| // Use unchecked indexing because we can trust the internal set ids. |
| let xparent = *get_unchecked(&self.parent, x.index()); |
| if xparent == x { |
| break; |
| } |
| x = xparent; |
| } |
| x |
| } |
| } |
| |
| /// Return the representative for `x`. |
| /// |
| /// Write back the found representative, flattening the internal |
| /// datastructure in the process and quicken future lookups. |
| /// |
| /// **Panics** if `x` is out of bounds. |
| pub fn find_mut(&mut self, x: K) -> K { |
| assert!(x.index() < self.parent.len()); |
| unsafe { self.find_mut_recursive(x) } |
| } |
| |
| unsafe fn find_mut_recursive(&mut self, mut x: K) -> K { |
| let mut parent = *get_unchecked(&self.parent, x.index()); |
| while parent != x { |
| let grandparent = *get_unchecked(&self.parent, parent.index()); |
| *get_unchecked_mut(&mut self.parent, x.index()) = grandparent; |
| x = parent; |
| parent = grandparent; |
| } |
| x |
| } |
| |
| /// Returns `true` if the given elements belong to the same set, and returns |
| /// `false` otherwise. |
| pub fn equiv(&self, x: K, y: K) -> bool { |
| self.find(x) == self.find(y) |
| } |
| |
| /// Unify the two sets containing `x` and `y`. |
| /// |
| /// Return `false` if the sets were already the same, `true` if they were unified. |
| /// |
| /// **Panics** if `x` or `y` is out of bounds. |
| pub fn union(&mut self, x: K, y: K) -> bool { |
| if x == y { |
| return false; |
| } |
| let xrep = self.find_mut(x); |
| let yrep = self.find_mut(y); |
| |
| if xrep == yrep { |
| return false; |
| } |
| |
| let xrepu = xrep.index(); |
| let yrepu = yrep.index(); |
| let xrank = self.rank[xrepu]; |
| let yrank = self.rank[yrepu]; |
| |
| // The rank corresponds roughly to the depth of the treeset, so put the |
| // smaller set below the larger |
| match xrank.cmp(&yrank) { |
| Ordering::Less => self.parent[xrepu] = yrep, |
| Ordering::Greater => self.parent[yrepu] = xrep, |
| Ordering::Equal => { |
| self.parent[yrepu] = xrep; |
| self.rank[xrepu] += 1; |
| } |
| } |
| true |
| } |
| |
| /// Return a vector mapping each element to its representative. |
| pub fn into_labeling(mut self) -> Vec<K> { |
| // write in the labeling of each element |
| unsafe { |
| for ix in 0..self.parent.len() { |
| let k = *get_unchecked(&self.parent, ix); |
| let xrep = self.find_mut_recursive(k); |
| *self.parent.get_unchecked_mut(ix) = xrep; |
| } |
| } |
| self.parent |
| } |
| } |