| use plotters::prelude::*; |
| |
| use rand::SeedableRng; |
| use rand_distr::{Distribution, Normal}; |
| use rand_xorshift::XorShiftRng; |
| |
| use itertools::Itertools; |
| |
| use num_traits::sign::Signed; |
| |
| const OUT_FILE_NAME: &'static str = "plotters-doc-data/errorbar.png"; |
| fn main() -> Result<(), Box<dyn std::error::Error>> { |
| let data = generate_random_data(); |
| let down_sampled = down_sample(&data[..]); |
| |
| let root = BitMapBackend::new(OUT_FILE_NAME, (1024, 768)).into_drawing_area(); |
| |
| root.fill(&WHITE)?; |
| |
| let mut chart = ChartBuilder::on(&root) |
| .caption("Linear Function with Noise", ("sans-serif", 60)) |
| .margin(10) |
| .set_label_area_size(LabelAreaPosition::Left, 40) |
| .set_label_area_size(LabelAreaPosition::Bottom, 40) |
| .build_cartesian_2d(-10f64..10f64, -10f64..10f64)?; |
| |
| chart.configure_mesh().draw()?; |
| |
| chart |
| .draw_series(LineSeries::new(data, &GREEN.mix(0.3)))? |
| .label("Raw Data") |
| .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], &GREEN)); |
| |
| chart.draw_series(LineSeries::new( |
| down_sampled.iter().map(|(x, _, y, _)| (*x, *y)), |
| &BLUE, |
| ))?; |
| |
| chart |
| .draw_series( |
| down_sampled.iter().map(|(x, yl, ym, yh)| { |
| ErrorBar::new_vertical(*x, *yl, *ym, *yh, BLUE.filled(), 20) |
| }), |
| )? |
| .label("Down-sampled") |
| .legend(|(x, y)| PathElement::new(vec![(x, y), (x + 20, y)], &BLUE)); |
| |
| chart |
| .configure_series_labels() |
| .background_style(WHITE.filled()) |
| .draw()?; |
| |
| // To avoid the IO failure being ignored silently, we manually call the present function |
| root.present().expect("Unable to write result to file, please make sure 'plotters-doc-data' dir exists under current dir"); |
| println!("Result has been saved to {}", OUT_FILE_NAME); |
| |
| Ok(()) |
| } |
| |
| fn generate_random_data() -> Vec<(f64, f64)> { |
| let norm_dist = Normal::new(0.0, 1.0).unwrap(); |
| let mut x_rand = XorShiftRng::from_seed(*b"MyFragileSeed123"); |
| let x_iter = norm_dist.sample_iter(&mut x_rand); |
| x_iter |
| .take(20000) |
| .filter(|x| x.abs() <= 4.0) |
| .zip(-10000..10000) |
| .map(|(yn, x)| { |
| ( |
| x as f64 / 1000.0, |
| x as f64 / 1000.0 + yn * x as f64 / 10000.0, |
| ) |
| }) |
| .collect() |
| } |
| |
| fn down_sample(data: &[(f64, f64)]) -> Vec<(f64, f64, f64, f64)> { |
| let down_sampled: Vec<_> = data |
| .iter() |
| .group_by(|x| (x.0 * 1.0).round() / 1.0) |
| .into_iter() |
| .map(|(x, g)| { |
| let mut g: Vec<_> = g.map(|(_, y)| *y).collect(); |
| g.sort_by(|a, b| a.partial_cmp(b).unwrap()); |
| ( |
| x, |
| g[0], |
| g.iter().sum::<f64>() / g.len() as f64, |
| g[g.len() - 1], |
| ) |
| }) |
| .collect(); |
| down_sampled |
| } |
| #[test] |
| fn entry_point() { |
| main().unwrap() |
| } |