| // Copyright 2018 Developers of the Rand project. |
| // Copyright 2013-2017 The Rust Project Developers. |
| // |
| // Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or |
| // https://www.apache.org/licenses/LICENSE-2.0> or the MIT license |
| // <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your |
| // option. This file may not be copied, modified, or distributed |
| // except according to those terms. |
| |
| //! Utilities for random number generation |
| //! |
| //! Rand provides utilities to generate random numbers, to convert them to |
| //! useful types and distributions, and some randomness-related algorithms. |
| //! |
| //! # Quick Start |
| //! |
| //! To get you started quickly, the easiest and highest-level way to get |
| //! a random value is to use [`random()`]; alternatively you can use |
| //! [`thread_rng()`]. The [`Rng`] trait provides a useful API on all RNGs, while |
| //! the [`distributions`] and [`seq`] modules provide further |
| //! functionality on top of RNGs. |
| //! |
| //! ``` |
| //! use rand::prelude::*; |
| //! |
| //! if rand::random() { // generates a boolean |
| //! // Try printing a random unicode code point (probably a bad idea)! |
| //! println!("char: {}", rand::random::<char>()); |
| //! } |
| //! |
| //! let mut rng = rand::thread_rng(); |
| //! let y: f64 = rng.gen(); // generates a float between 0 and 1 |
| //! |
| //! let mut nums: Vec<i32> = (1..100).collect(); |
| //! nums.shuffle(&mut rng); |
| //! ``` |
| //! |
| //! # The Book |
| //! |
| //! For the user guide and further documentation, please read |
| //! [The Rust Rand Book](https://rust-random.github.io/book). |
| |
| #![doc( |
| html_logo_url = "https://www.rust-lang.org/logos/rust-logo-128x128-blk.png", |
| html_favicon_url = "https://www.rust-lang.org/favicon.ico", |
| html_root_url = "https://rust-random.github.io/rand/" |
| )] |
| #![deny(missing_docs)] |
| #![deny(missing_debug_implementations)] |
| #![doc(test(attr(allow(unused_variables), deny(warnings))))] |
| #![no_std] |
| #![cfg_attr(feature = "simd_support", feature(stdsimd))] |
| #![cfg_attr(feature = "nightly", feature(slice_partition_at_index))] |
| #![cfg_attr(doc_cfg, feature(doc_cfg))] |
| #![allow( |
| clippy::float_cmp, |
| clippy::neg_cmp_op_on_partial_ord, |
| )] |
| |
| #[cfg(feature = "std")] extern crate std; |
| #[cfg(feature = "alloc")] extern crate alloc; |
| |
| #[allow(unused)] |
| macro_rules! trace { ($($x:tt)*) => ( |
| #[cfg(feature = "log")] { |
| log::trace!($($x)*) |
| } |
| ) } |
| #[allow(unused)] |
| macro_rules! debug { ($($x:tt)*) => ( |
| #[cfg(feature = "log")] { |
| log::debug!($($x)*) |
| } |
| ) } |
| #[allow(unused)] |
| macro_rules! info { ($($x:tt)*) => ( |
| #[cfg(feature = "log")] { |
| log::info!($($x)*) |
| } |
| ) } |
| #[allow(unused)] |
| macro_rules! warn { ($($x:tt)*) => ( |
| #[cfg(feature = "log")] { |
| log::warn!($($x)*) |
| } |
| ) } |
| #[allow(unused)] |
| macro_rules! error { ($($x:tt)*) => ( |
| #[cfg(feature = "log")] { |
| log::error!($($x)*) |
| } |
| ) } |
| |
| // Re-exports from rand_core |
| pub use rand_core::{CryptoRng, Error, RngCore, SeedableRng}; |
| |
| // Public modules |
| pub mod distributions; |
| pub mod prelude; |
| mod rng; |
| pub mod rngs; |
| pub mod seq; |
| |
| // Public exports |
| #[cfg(all(feature = "std", feature = "std_rng"))] |
| pub use crate::rngs::thread::thread_rng; |
| pub use rng::{Fill, Rng}; |
| |
| #[cfg(all(feature = "std", feature = "std_rng"))] |
| use crate::distributions::{Distribution, Standard}; |
| |
| /// Generates a random value using the thread-local random number generator. |
| /// |
| /// This is simply a shortcut for `thread_rng().gen()`. See [`thread_rng`] for |
| /// documentation of the entropy source and [`Standard`] for documentation of |
| /// distributions and type-specific generation. |
| /// |
| /// # Provided implementations |
| /// |
| /// The following types have provided implementations that |
| /// generate values with the following ranges and distributions: |
| /// |
| /// * Integers (`i32`, `u32`, `isize`, `usize`, etc.): Uniformly distributed |
| /// over all values of the type. |
| /// * `char`: Uniformly distributed over all Unicode scalar values, i.e. all |
| /// code points in the range `0...0x10_FFFF`, except for the range |
| /// `0xD800...0xDFFF` (the surrogate code points). This includes |
| /// unassigned/reserved code points. |
| /// * `bool`: Generates `false` or `true`, each with probability 0.5. |
| /// * Floating point types (`f32` and `f64`): Uniformly distributed in the |
| /// half-open range `[0, 1)`. See notes below. |
| /// * Wrapping integers (`Wrapping<T>`), besides the type identical to their |
| /// normal integer variants. |
| /// |
| /// Also supported is the generation of the following |
| /// compound types where all component types are supported: |
| /// |
| /// * Tuples (up to 12 elements): each element is generated sequentially. |
| /// * Arrays (up to 32 elements): each element is generated sequentially; |
| /// see also [`Rng::fill`] which supports arbitrary array length for integer |
| /// types and tends to be faster for `u32` and smaller types. |
| /// * `Option<T>` first generates a `bool`, and if true generates and returns |
| /// `Some(value)` where `value: T`, otherwise returning `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// let x = rand::random::<u8>(); |
| /// println!("{}", x); |
| /// |
| /// let y = rand::random::<f64>(); |
| /// println!("{}", y); |
| /// |
| /// if rand::random() { // generates a boolean |
| /// println!("Better lucky than good!"); |
| /// } |
| /// ``` |
| /// |
| /// If you're calling `random()` in a loop, caching the generator as in the |
| /// following example can increase performance. |
| /// |
| /// ``` |
| /// use rand::Rng; |
| /// |
| /// let mut v = vec![1, 2, 3]; |
| /// |
| /// for x in v.iter_mut() { |
| /// *x = rand::random() |
| /// } |
| /// |
| /// // can be made faster by caching thread_rng |
| /// |
| /// let mut rng = rand::thread_rng(); |
| /// |
| /// for x in v.iter_mut() { |
| /// *x = rng.gen(); |
| /// } |
| /// ``` |
| /// |
| /// [`Standard`]: distributions::Standard |
| #[cfg(all(feature = "std", feature = "std_rng"))] |
| #[cfg_attr(doc_cfg, doc(cfg(all(feature = "std", feature = "std_rng"))))] |
| #[inline] |
| pub fn random<T>() -> T |
| where Standard: Distribution<T> { |
| thread_rng().gen() |
| } |
| |
| #[cfg(test)] |
| mod test { |
| use super::*; |
| |
| /// Construct a deterministic RNG with the given seed |
| pub fn rng(seed: u64) -> impl RngCore { |
| // For tests, we want a statistically good, fast, reproducible RNG. |
| // PCG32 will do fine, and will be easy to embed if we ever need to. |
| const INC: u64 = 11634580027462260723; |
| rand_pcg::Pcg32::new(seed, INC) |
| } |
| |
| #[test] |
| #[cfg(all(feature = "std", feature = "std_rng"))] |
| fn test_random() { |
| // not sure how to test this aside from just getting some values |
| let _n: usize = random(); |
| let _f: f32 = random(); |
| let _o: Option<Option<i8>> = random(); |
| let _many: ( |
| (), |
| (usize, isize, Option<(u32, (bool,))>), |
| (u8, i8, u16, i16, u32, i32, u64, i64), |
| (f32, (f64, (f64,))), |
| ) = random(); |
| } |
| } |