blob: d7ed1377d4714a0d98d6da1bd19a2441437cf961 [file] [log] [blame] [edit]
extern crate proc_macro;
use proc_macro::TokenStream;
use proc_macro2::{Span, TokenStream as TokenStream2, TokenTree};
use quote::quote;
use syn::parse::{Nothing, ParseStream};
use syn::punctuated::Punctuated;
use syn::{
parse_macro_input, token, Data, DeriveInput, Error, Expr, Field, Path, Result, Token, Type,
};
#[proc_macro_derive(RefCast, attributes(trivial))]
pub fn derive_ref_cast(input: TokenStream) -> TokenStream {
let input = parse_macro_input!(input as DeriveInput);
expand(input)
.unwrap_or_else(Error::into_compile_error)
.into()
}
fn expand(input: DeriveInput) -> Result<TokenStream2> {
check_repr(&input)?;
let name = &input.ident;
let name_str = name.to_string();
let (impl_generics, ty_generics, where_clause) = input.generics.split_for_impl();
let fields = fields(&input)?;
let from = only_field_ty(fields)?;
let trivial = trivial_fields(fields)?;
let assert_trivial_fields = if !trivial.is_empty() {
Some(quote! {
if false {
#(
::ref_cast::private::assert_trivial::<#trivial>();
)*
}
})
} else {
None
};
Ok(quote! {
impl #impl_generics ::ref_cast::RefCast for #name #ty_generics #where_clause {
type From = #from;
#[inline]
fn ref_cast(_from: &Self::From) -> &Self {
#assert_trivial_fields
#[cfg(debug_assertions)]
{
#[allow(unused_imports)]
use ::ref_cast::private::LayoutUnsized;
::ref_cast::private::assert_layout::<Self, Self::From>(
#name_str,
::ref_cast::private::Layout::<Self>::SIZE,
::ref_cast::private::Layout::<Self::From>::SIZE,
::ref_cast::private::Layout::<Self>::ALIGN,
::ref_cast::private::Layout::<Self::From>::ALIGN,
);
}
unsafe {
&*(_from as *const Self::From as *const Self)
}
}
#[inline]
fn ref_cast_mut(_from: &mut Self::From) -> &mut Self {
#[cfg(debug_assertions)]
{
#[allow(unused_imports)]
use ::ref_cast::private::LayoutUnsized;
::ref_cast::private::assert_layout::<Self, Self::From>(
#name_str,
::ref_cast::private::Layout::<Self>::SIZE,
::ref_cast::private::Layout::<Self::From>::SIZE,
::ref_cast::private::Layout::<Self>::ALIGN,
::ref_cast::private::Layout::<Self::From>::ALIGN,
);
}
unsafe {
&mut *(_from as *mut Self::From as *mut Self)
}
}
}
})
}
fn check_repr(input: &DeriveInput) -> Result<()> {
let mut has_repr = false;
let mut errors = None;
let mut push_error = |error| match &mut errors {
Some(errors) => Error::combine(errors, error),
None => errors = Some(error),
};
for attr in &input.attrs {
if attr.path.is_ident("repr") {
if let Err(error) = attr.parse_args_with(|input: ParseStream| {
while !input.is_empty() {
let path = input.call(Path::parse_mod_style)?;
if path.is_ident("C") || path.is_ident("transparent") {
has_repr = true;
} else if path.is_ident("packed") {
// ignore
} else {
let meta_item_span = if input.peek(token::Paren) {
let group: TokenTree = input.parse()?;
quote!(#path #group)
} else if input.peek(Token![=]) {
let eq_token: Token![=] = input.parse()?;
let value: Expr = input.parse()?;
quote!(#path #eq_token #value)
} else {
quote!(#path)
};
let msg = if path.is_ident("align") {
"aligned repr on struct that implements RefCast is not supported"
} else {
"unrecognized repr on struct that implements RefCast"
};
push_error(Error::new_spanned(meta_item_span, msg));
}
if !input.is_empty() {
input.parse::<Token![,]>()?;
}
}
Ok(())
}) {
push_error(error);
}
}
}
if !has_repr {
let mut requires_repr = Error::new(
Span::call_site(),
"RefCast trait requires #[repr(C)] or #[repr(transparent)]",
);
if let Some(errors) = errors {
requires_repr.combine(errors);
}
errors = Some(requires_repr);
}
match errors {
None => Ok(()),
Some(errors) => Err(errors),
}
}
type Fields = Punctuated<Field, Token![,]>;
fn fields(input: &DeriveInput) -> Result<&Fields> {
use syn::Fields;
match &input.data {
Data::Struct(data) => match &data.fields {
Fields::Named(fields) => Ok(&fields.named),
Fields::Unnamed(fields) => Ok(&fields.unnamed),
Fields::Unit => Err(Error::new(
Span::call_site(),
"RefCast does not support unit structs",
)),
},
Data::Enum(_) => Err(Error::new(
Span::call_site(),
"RefCast does not support enums",
)),
Data::Union(_) => Err(Error::new(
Span::call_site(),
"RefCast does not support unions",
)),
}
}
fn only_field_ty(fields: &Fields) -> Result<&Type> {
let is_trivial = decide_trivial(fields)?;
let mut only_field = None;
for field in fields {
if !is_trivial(field)? {
if only_field.take().is_some() {
break;
}
only_field = Some(&field.ty);
}
}
only_field.ok_or_else(|| {
Error::new(
Span::call_site(),
"RefCast requires a struct with a single field",
)
})
}
fn trivial_fields(fields: &Fields) -> Result<Vec<&Type>> {
let is_trivial = decide_trivial(fields)?;
let mut trivial = Vec::new();
for field in fields {
if is_trivial(field)? {
trivial.push(&field.ty);
}
}
Ok(trivial)
}
fn decide_trivial(fields: &Fields) -> Result<fn(&Field) -> Result<bool>> {
for field in fields {
if is_explicit_trivial(field)? {
return Ok(is_explicit_trivial);
}
}
Ok(is_implicit_trivial)
}
fn is_implicit_trivial(field: &Field) -> Result<bool> {
match &field.ty {
Type::Tuple(ty) => Ok(ty.elems.is_empty()),
Type::Path(ty) => Ok(ty.path.segments.last().unwrap().ident == "PhantomData"),
_ => Ok(false),
}
}
fn is_explicit_trivial(field: &Field) -> Result<bool> {
for attr in &field.attrs {
if attr.path.is_ident("trivial") {
syn::parse2::<Nothing>(attr.tokens.clone())?;
return Ok(true);
}
}
Ok(false)
}