blob: cbb6ceafb93be434559cfe069cc8d21eff533472 [file] [log] [blame] [edit]
/*
* Released under the terms of the Apache 2.0 license with LLVM
* exception. See `LICENSE` for details.
*/
//! Lightweight CFG analyses.
use crate::{domtree, postorder, Block, Function, Inst, ProgPoint, RegAllocError};
use alloc::vec;
use alloc::vec::Vec;
use smallvec::{smallvec, SmallVec};
#[derive(Clone, Debug)]
pub struct CFGInfo {
/// Postorder traversal of blocks.
pub postorder: Vec<Block>,
/// Domtree parents, indexed by block.
pub domtree: Vec<Block>,
/// For each instruction, the block it belongs to.
pub insn_block: Vec<Block>,
/// For each block, the first instruction.
pub block_entry: Vec<ProgPoint>,
/// For each block, the last instruction.
pub block_exit: Vec<ProgPoint>,
/// For each block, what is the approximate loop depth?
///
/// This measure is fully precise iff the input CFG is reducible
/// and blocks are in RPO, so that loop backedges are precisely
/// those whose block target indices are less than their source
/// indices. Otherwise, it will be approximate, but should still
/// be usable for heuristic purposes.
pub approx_loop_depth: Vec<u32>,
}
impl CFGInfo {
pub fn new<F: Function>(f: &F) -> Result<CFGInfo, RegAllocError> {
let postorder = postorder::calculate(f.num_blocks(), f.entry_block(), |block| {
f.block_succs(block)
});
let domtree = domtree::calculate(
f.num_blocks(),
|block| f.block_preds(block),
&postorder[..],
f.entry_block(),
);
let mut insn_block = vec![Block::invalid(); f.num_insts()];
let mut block_entry = vec![ProgPoint::before(Inst::invalid()); f.num_blocks()];
let mut block_exit = vec![ProgPoint::before(Inst::invalid()); f.num_blocks()];
let mut backedge_in = vec![0; f.num_blocks()];
let mut backedge_out = vec![0; f.num_blocks()];
for block in 0..f.num_blocks() {
let block = Block::new(block);
for inst in f.block_insns(block).iter() {
insn_block[inst.index()] = block;
}
block_entry[block.index()] = ProgPoint::before(f.block_insns(block).first());
block_exit[block.index()] = ProgPoint::after(f.block_insns(block).last());
// Check critical edge condition: if there is more than
// one predecessor, each must have only one successor
// (this block).
let preds = f.block_preds(block).len() + if block == f.entry_block() { 1 } else { 0 };
if preds > 1 {
for &pred in f.block_preds(block) {
let succs = f.block_succs(pred).len();
if succs > 1 {
return Err(RegAllocError::CritEdge(pred, block));
}
}
}
// Check branch-arg condition: if any successors have more
// than one predecessor (given above, there will only be
// one such successor), then the last instruction of this
// block (the branch) cannot have any args other than the
// blockparams.
let mut require_no_branch_args = false;
for &succ in f.block_succs(block) {
let preds = f.block_preds(succ).len() + if succ == f.entry_block() { 1 } else { 0 };
if preds > 1 {
require_no_branch_args = true;
}
}
if require_no_branch_args {
let last = f.block_insns(block).last();
if !f.inst_operands(last).is_empty() {
return Err(RegAllocError::DisallowedBranchArg(last));
}
}
for &succ in f.block_succs(block) {
if succ.index() <= block.index() {
backedge_in[succ.index()] += 1;
backedge_out[block.index()] += 1;
}
}
}
let mut approx_loop_depth = vec![];
let mut backedge_stack: SmallVec<[usize; 4]> = smallvec![];
let mut cur_depth = 0;
for block in 0..f.num_blocks() {
if backedge_in[block] > 0 {
cur_depth += 1;
backedge_stack.push(backedge_in[block]);
}
approx_loop_depth.push(cur_depth);
while backedge_stack.len() > 0 && backedge_out[block] > 0 {
backedge_out[block] -= 1;
*backedge_stack.last_mut().unwrap() -= 1;
if *backedge_stack.last().unwrap() == 0 {
cur_depth -= 1;
backedge_stack.pop();
}
}
}
Ok(CFGInfo {
postorder,
domtree,
insn_block,
block_entry,
block_exit,
approx_loop_depth,
})
}
pub fn dominates(&self, a: Block, b: Block) -> bool {
domtree::dominates(&self.domtree[..], a, b)
}
}