| // Copyright 2015 Brian Smith. |
| // |
| // Permission to use, copy, modify, and/or distribute this software for any |
| // purpose with or without fee is hereby granted, provided that the above |
| // copyright notice and this permission notice appear in all copies. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES |
| // WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| // MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY |
| // SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| // WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION |
| // OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN |
| // CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| |
| //! PBKDF2 derivation and verification. |
| //! |
| //! Use `derive` to derive PBKDF2 outputs. Use `verify` to verify secret |
| //! against previously-derived outputs. |
| //! |
| //! PBKDF2 is specified in [RFC 2898 Section 5.2] with test vectors given in |
| //! [RFC 6070]. See also [NIST Special Publication 800-132]. |
| //! |
| //! [RFC 2898 Section 5.2]: https://tools.ietf.org/html/rfc2898#section-5.2 |
| //! [RFC 6070]: https://tools.ietf.org/html/rfc6070 |
| //! [NIST Special Publication 800-132]: |
| //! http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-132.pdf |
| //! |
| //! # Examples |
| //! |
| //! ## Password Database Example |
| //! |
| //! ``` |
| //! use ring::{digest, pbkdf2}; |
| //! use std::{collections::HashMap, num::NonZeroU32}; |
| //! |
| //! static PBKDF2_ALG: pbkdf2::Algorithm = pbkdf2::PBKDF2_HMAC_SHA256; |
| //! const CREDENTIAL_LEN: usize = digest::SHA256_OUTPUT_LEN; |
| //! pub type Credential = [u8; CREDENTIAL_LEN]; |
| //! |
| //! enum Error { |
| //! WrongUsernameOrPassword |
| //! } |
| //! |
| //! struct PasswordDatabase { |
| //! pbkdf2_iterations: NonZeroU32, |
| //! db_salt_component: [u8; 16], |
| //! |
| //! // Normally this would be a persistent database. |
| //! storage: HashMap<String, Credential>, |
| //! } |
| //! |
| //! impl PasswordDatabase { |
| //! pub fn store_password(&mut self, username: &str, password: &str) { |
| //! let salt = self.salt(username); |
| //! let mut to_store: Credential = [0u8; CREDENTIAL_LEN]; |
| //! pbkdf2::derive(PBKDF2_ALG, self.pbkdf2_iterations, &salt, |
| //! password.as_bytes(), &mut to_store); |
| //! self.storage.insert(String::from(username), to_store); |
| //! } |
| //! |
| //! pub fn verify_password(&self, username: &str, attempted_password: &str) |
| //! -> Result<(), Error> { |
| //! match self.storage.get(username) { |
| //! Some(actual_password) => { |
| //! let salt = self.salt(username); |
| //! pbkdf2::verify(PBKDF2_ALG, self.pbkdf2_iterations, &salt, |
| //! attempted_password.as_bytes(), |
| //! actual_password) |
| //! .map_err(|_| Error::WrongUsernameOrPassword) |
| //! }, |
| //! |
| //! None => Err(Error::WrongUsernameOrPassword) |
| //! } |
| //! } |
| //! |
| //! // The salt should have a user-specific component so that an attacker |
| //! // cannot crack one password for multiple users in the database. It |
| //! // should have a database-unique component so that an attacker cannot |
| //! // crack the same user's password across databases in the unfortunate |
| //! // but common case that the user has used the same password for |
| //! // multiple systems. |
| //! fn salt(&self, username: &str) -> Vec<u8> { |
| //! let mut salt = Vec::with_capacity(self.db_salt_component.len() + |
| //! username.as_bytes().len()); |
| //! salt.extend(self.db_salt_component.as_ref()); |
| //! salt.extend(username.as_bytes()); |
| //! salt |
| //! } |
| //! } |
| //! |
| //! fn main() { |
| //! // Normally these parameters would be loaded from a configuration file. |
| //! let mut db = PasswordDatabase { |
| //! pbkdf2_iterations: NonZeroU32::new(100_000).unwrap(), |
| //! db_salt_component: [ |
| //! // This value was generated from a secure PRNG. |
| //! 0xd6, 0x26, 0x98, 0xda, 0xf4, 0xdc, 0x50, 0x52, |
| //! 0x24, 0xf2, 0x27, 0xd1, 0xfe, 0x39, 0x01, 0x8a |
| //! ], |
| //! storage: HashMap::new(), |
| //! }; |
| //! |
| //! db.store_password("alice", "@74d7]404j|W}6u"); |
| //! |
| //! // An attempt to log in with the wrong password fails. |
| //! assert!(db.verify_password("alice", "wrong password").is_err()); |
| //! |
| //! // Normally there should be an expoentially-increasing delay between |
| //! // attempts to further protect against online attacks. |
| //! |
| //! // An attempt to log in with the right password succeeds. |
| //! assert!(db.verify_password("alice", "@74d7]404j|W}6u").is_ok()); |
| //! } |
| |
| use crate::{constant_time, digest, error, hmac, polyfill}; |
| use core::num::NonZeroU32; |
| |
| /// A PBKDF2 algorithm. |
| #[derive(Clone, Copy, PartialEq, Eq)] |
| pub struct Algorithm(hmac::Algorithm); |
| |
| /// PBKDF2 using HMAC-SHA1. |
| pub static PBKDF2_HMAC_SHA1: Algorithm = Algorithm(hmac::HMAC_SHA1_FOR_LEGACY_USE_ONLY); |
| |
| /// PBKDF2 using HMAC-SHA256. |
| pub static PBKDF2_HMAC_SHA256: Algorithm = Algorithm(hmac::HMAC_SHA256); |
| |
| /// PBKDF2 using HMAC-SHA384. |
| pub static PBKDF2_HMAC_SHA384: Algorithm = Algorithm(hmac::HMAC_SHA384); |
| |
| /// PBKDF2 using HMAC-SHA512. |
| pub static PBKDF2_HMAC_SHA512: Algorithm = Algorithm(hmac::HMAC_SHA512); |
| |
| /// Fills `out` with the key derived using PBKDF2 with the given inputs. |
| /// |
| /// Do not use `derive` as part of verifying a secret; use `verify` instead, to |
| /// minimize the effectiveness of timing attacks. |
| /// |
| /// `out.len()` must be no larger than the digest length * (2**32 - 1), per the |
| /// PBKDF2 specification. |
| /// |
| /// | Parameter | RFC 2898 Section 5.2 Term |
| /// |-------------|------------------------------------------- |
| /// | digest_alg | PRF (HMAC with the given digest algorithm) |
| /// | iterations | c (iteration count) |
| /// | salt | S (salt) |
| /// | secret | P (password) |
| /// | out | dk (derived key) |
| /// | out.len() | dkLen (derived key length) |
| /// |
| /// # Panics |
| /// |
| /// `derive` panics if `out.len()` is larger than (2**32 - 1) * the digest |
| /// algorithm's output length, per the PBKDF2 specification. |
| pub fn derive( |
| algorithm: Algorithm, |
| iterations: NonZeroU32, |
| salt: &[u8], |
| secret: &[u8], |
| out: &mut [u8], |
| ) { |
| let digest_alg = algorithm.0.digest_algorithm(); |
| let output_len = digest_alg.output_len; |
| |
| // This implementation's performance is asymptotically optimal as described |
| // in https://jbp.io/2015/08/11/pbkdf2-performance-matters/. However, it |
| // hasn't been optimized to the same extent as fastpbkdf2. In particular, |
| // this implementation is probably doing a lot of unnecessary copying. |
| |
| let secret = hmac::Key::new(algorithm.0, secret); |
| |
| // Clear |out|. |
| polyfill::slice::fill(out, 0); |
| |
| let mut idx: u32 = 0; |
| |
| for chunk in out.chunks_mut(output_len) { |
| idx = idx.checked_add(1).expect("derived key too long"); |
| derive_block(&secret, iterations, salt, idx, chunk); |
| } |
| } |
| |
| fn derive_block(secret: &hmac::Key, iterations: NonZeroU32, salt: &[u8], idx: u32, out: &mut [u8]) { |
| let mut ctx = hmac::Context::with_key(secret); |
| ctx.update(salt); |
| ctx.update(&u32::to_be_bytes(idx)); |
| |
| let mut u = ctx.sign(); |
| |
| let mut remaining: u32 = iterations.into(); |
| loop { |
| for i in 0..out.len() { |
| out[i] ^= u.as_ref()[i]; |
| } |
| |
| if remaining == 1 { |
| break; |
| } |
| remaining -= 1; |
| |
| u = hmac::sign(secret, u.as_ref()); |
| } |
| } |
| |
| /// Verifies that a previously-derived (e.g., using `derive`) PBKDF2 value |
| /// matches the PBKDF2 value derived from the other inputs. |
| /// |
| /// The comparison is done in constant time to prevent timing attacks. The |
| /// comparison will fail if `previously_derived` is empty (has a length of |
| /// zero). |
| /// |
| /// | Parameter | RFC 2898 Section 5.2 Term |
| /// |----------------------------|-------------------------------------------- |
| /// | digest_alg | PRF (HMAC with the given digest algorithm). |
| /// | `iterations` | c (iteration count) |
| /// | `salt` | S (salt) |
| /// | `secret` | P (password) |
| /// | `previously_derived` | dk (derived key) |
| /// | `previously_derived.len()` | dkLen (derived key length) |
| /// |
| /// # Panics |
| /// |
| /// `verify` panics if `out.len()` is larger than (2**32 - 1) * the digest |
| /// algorithm's output length, per the PBKDF2 specification. |
| pub fn verify( |
| algorithm: Algorithm, |
| iterations: NonZeroU32, |
| salt: &[u8], |
| secret: &[u8], |
| previously_derived: &[u8], |
| ) -> Result<(), error::Unspecified> { |
| let digest_alg = algorithm.0.digest_algorithm(); |
| |
| if previously_derived.is_empty() { |
| return Err(error::Unspecified); |
| } |
| |
| let mut derived_buf = [0u8; digest::MAX_OUTPUT_LEN]; |
| |
| let output_len = digest_alg.output_len; |
| let secret = hmac::Key::new(algorithm.0, secret); |
| let mut idx: u32 = 0; |
| |
| let mut matches = 1; |
| |
| for previously_derived_chunk in previously_derived.chunks(output_len) { |
| idx = idx.checked_add(1).expect("derived key too long"); |
| |
| let derived_chunk = &mut derived_buf[..previously_derived_chunk.len()]; |
| polyfill::slice::fill(derived_chunk, 0); |
| |
| derive_block(&secret, iterations, salt, idx, derived_chunk); |
| |
| // XXX: This isn't fully constant-time-safe. TODO: Fix that. |
| let current_block_matches = |
| if constant_time::verify_slices_are_equal(derived_chunk, previously_derived_chunk) |
| .is_ok() |
| { |
| 1 |
| } else { |
| 0 |
| }; |
| |
| matches &= current_block_matches; |
| } |
| |
| if matches == 0 { |
| return Err(error::Unspecified); |
| } |
| |
| Ok(()) |
| } |