blob: 34883129021045db2a442262f7a520bdaa3be7e1 [file] [log] [blame] [edit]
//! Vendored and stripped down version of triomphe
use std::{
alloc::{self, Layout},
cmp::Ordering,
hash::{Hash, Hasher},
marker::PhantomData,
mem::{self, ManuallyDrop},
ops::Deref,
ptr,
sync::atomic::{
self,
Ordering::{Acquire, Relaxed, Release},
},
};
use memoffset::offset_of;
/// A soft limit on the amount of references that may be made to an `Arc`.
///
/// Going above this limit will abort your program (although not
/// necessarily) at _exactly_ `MAX_REFCOUNT + 1` references.
const MAX_REFCOUNT: usize = (isize::MAX) as usize;
/// The object allocated by an Arc<T>
#[repr(C)]
pub(crate) struct ArcInner<T: ?Sized> {
pub(crate) count: atomic::AtomicUsize,
pub(crate) data: T,
}
unsafe impl<T: ?Sized + Sync + Send> Send for ArcInner<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for ArcInner<T> {}
/// An atomically reference counted shared pointer
///
/// See the documentation for [`Arc`] in the standard library. Unlike the
/// standard library `Arc`, this `Arc` does not support weak reference counting.
///
/// [`Arc`]: https://doc.rust-lang.org/stable/std/sync/struct.Arc.html
#[repr(transparent)]
pub(crate) struct Arc<T: ?Sized> {
pub(crate) p: ptr::NonNull<ArcInner<T>>,
pub(crate) phantom: PhantomData<T>,
}
unsafe impl<T: ?Sized + Sync + Send> Send for Arc<T> {}
unsafe impl<T: ?Sized + Sync + Send> Sync for Arc<T> {}
impl<T> Arc<T> {
/// Reconstruct the Arc<T> from a raw pointer obtained from into_raw()
///
/// Note: This raw pointer will be offset in the allocation and must be preceded
/// by the atomic count.
///
/// It is recommended to use OffsetArc for this
#[inline]
pub(crate) unsafe fn from_raw(ptr: *const T) -> Self {
// To find the corresponding pointer to the `ArcInner` we need
// to subtract the offset of the `data` field from the pointer.
let ptr = (ptr as *const u8).sub(offset_of!(ArcInner<T>, data));
Arc { p: ptr::NonNull::new_unchecked(ptr as *mut ArcInner<T>), phantom: PhantomData }
}
}
impl<T: ?Sized> Arc<T> {
#[inline]
fn inner(&self) -> &ArcInner<T> {
// This unsafety is ok because while this arc is alive we're guaranteed
// that the inner pointer is valid. Furthermore, we know that the
// `ArcInner` structure itself is `Sync` because the inner data is
// `Sync` as well, so we're ok loaning out an immutable pointer to these
// contents.
unsafe { &*self.ptr() }
}
// Non-inlined part of `drop`. Just invokes the destructor.
#[inline(never)]
unsafe fn drop_slow(&mut self) {
let _ = Box::from_raw(self.ptr());
}
/// Test pointer equality between the two Arcs, i.e. they must be the _same_
/// allocation
#[inline]
pub(crate) fn ptr_eq(this: &Self, other: &Self) -> bool {
this.ptr() == other.ptr()
}
pub(crate) fn ptr(&self) -> *mut ArcInner<T> {
self.p.as_ptr()
}
}
impl<T: ?Sized> Clone for Arc<T> {
#[inline]
fn clone(&self) -> Self {
// Using a relaxed ordering is alright here, as knowledge of the
// original reference prevents other threads from erroneously deleting
// the object.
//
// As explained in the [Boost documentation][1], Increasing the
// reference counter can always be done with memory_order_relaxed: New
// references to an object can only be formed from an existing
// reference, and passing an existing reference from one thread to
// another must already provide any required synchronization.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
let old_size = self.inner().count.fetch_add(1, Relaxed);
// However we need to guard against massive refcounts in case someone
// is `mem::forget`ing Arcs. If we don't do this the count can overflow
// and users will use-after free. We racily saturate to `isize::MAX` on
// the assumption that there aren't ~2 billion threads incrementing
// the reference count at once. This branch will never be taken in
// any realistic program.
//
// We abort because such a program is incredibly degenerate, and we
// don't care to support it.
if old_size > MAX_REFCOUNT {
std::process::abort();
}
unsafe { Arc { p: ptr::NonNull::new_unchecked(self.ptr()), phantom: PhantomData } }
}
}
impl<T: ?Sized> Deref for Arc<T> {
type Target = T;
#[inline]
fn deref(&self) -> &T {
&self.inner().data
}
}
impl<T: ?Sized> Arc<T> {
/// Provides mutable access to the contents _if_ the `Arc` is uniquely owned.
#[inline]
pub(crate) fn get_mut(this: &mut Self) -> Option<&mut T> {
if this.is_unique() {
unsafe {
// See make_mut() for documentation of the threadsafety here.
Some(&mut (*this.ptr()).data)
}
} else {
None
}
}
/// Whether or not the `Arc` is uniquely owned (is the refcount 1?).
pub(crate) fn is_unique(&self) -> bool {
// See the extensive discussion in [1] for why this needs to be Acquire.
//
// [1] https://github.com/servo/servo/issues/21186
self.inner().count.load(Acquire) == 1
}
}
impl<T: ?Sized> Drop for Arc<T> {
#[inline]
fn drop(&mut self) {
// Because `fetch_sub` is already atomic, we do not need to synchronize
// with other threads unless we are going to delete the object.
if self.inner().count.fetch_sub(1, Release) != 1 {
return;
}
// FIXME(bholley): Use the updated comment when [2] is merged.
//
// This load is needed to prevent reordering of use of the data and
// deletion of the data. Because it is marked `Release`, the decreasing
// of the reference count synchronizes with this `Acquire` load. This
// means that use of the data happens before decreasing the reference
// count, which happens before this load, which happens before the
// deletion of the data.
//
// As explained in the [Boost documentation][1],
//
// > It is important to enforce any possible access to the object in one
// > thread (through an existing reference) to *happen before* deleting
// > the object in a different thread. This is achieved by a "release"
// > operation after dropping a reference (any access to the object
// > through this reference must obviously happened before), and an
// > "acquire" operation before deleting the object.
//
// [1]: (www.boost.org/doc/libs/1_55_0/doc/html/atomic/usage_examples.html)
// [2]: https://github.com/rust-lang/rust/pull/41714
self.inner().count.load(Acquire);
unsafe {
self.drop_slow();
}
}
}
impl<T: ?Sized + PartialEq> PartialEq for Arc<T> {
fn eq(&self, other: &Arc<T>) -> bool {
Self::ptr_eq(self, other) || *(*self) == *(*other)
}
fn ne(&self, other: &Arc<T>) -> bool {
!Self::ptr_eq(self, other) && *(*self) != *(*other)
}
}
impl<T: ?Sized + PartialOrd> PartialOrd for Arc<T> {
fn partial_cmp(&self, other: &Arc<T>) -> Option<Ordering> {
(**self).partial_cmp(&**other)
}
fn lt(&self, other: &Arc<T>) -> bool {
*(*self) < *(*other)
}
fn le(&self, other: &Arc<T>) -> bool {
*(*self) <= *(*other)
}
fn gt(&self, other: &Arc<T>) -> bool {
*(*self) > *(*other)
}
fn ge(&self, other: &Arc<T>) -> bool {
*(*self) >= *(*other)
}
}
impl<T: ?Sized + Ord> Ord for Arc<T> {
fn cmp(&self, other: &Arc<T>) -> Ordering {
(**self).cmp(&**other)
}
}
impl<T: ?Sized + Eq> Eq for Arc<T> {}
impl<T: ?Sized + Hash> Hash for Arc<T> {
fn hash<H: Hasher>(&self, state: &mut H) {
(**self).hash(state)
}
}
#[derive(Debug, Eq, PartialEq, Hash, PartialOrd)]
#[repr(C)]
pub(crate) struct HeaderSlice<H, T: ?Sized> {
pub(crate) header: H,
length: usize,
slice: T,
}
impl<H, T> HeaderSlice<H, [T]> {
pub(crate) fn slice(&self) -> &[T] {
&self.slice
}
}
impl<H, T> Deref for HeaderSlice<H, [T; 0]> {
type Target = HeaderSlice<H, [T]>;
fn deref(&self) -> &Self::Target {
unsafe {
let len = self.length;
let fake_slice: *const [T] =
ptr::slice_from_raw_parts(self as *const _ as *const T, len);
&*(fake_slice as *const HeaderSlice<H, [T]>)
}
}
}
/// A "thin" `Arc` containing dynamically sized data
///
/// This is functionally equivalent to `Arc<(H, [T])>`
///
/// When you create an `Arc` containing a dynamically sized type
/// like `HeaderSlice<H, [T]>`, the `Arc` is represented on the stack
/// as a "fat pointer", where the length of the slice is stored
/// alongside the `Arc`'s pointer. In some situations you may wish to
/// have a thin pointer instead, perhaps for FFI compatibility
/// or space efficiency.
///
/// Note that we use `[T; 0]` in order to have the right alignment for `T`.
///
/// `ThinArc` solves this by storing the length in the allocation itself,
/// via `HeaderSlice`.
#[repr(transparent)]
pub(crate) struct ThinArc<H, T> {
ptr: ptr::NonNull<ArcInner<HeaderSlice<H, [T; 0]>>>,
phantom: PhantomData<(H, T)>,
}
unsafe impl<H: Sync + Send, T: Sync + Send> Send for ThinArc<H, T> {}
unsafe impl<H: Sync + Send, T: Sync + Send> Sync for ThinArc<H, T> {}
// Synthesize a fat pointer from a thin pointer.
fn thin_to_thick<H, T>(
thin: *mut ArcInner<HeaderSlice<H, [T; 0]>>,
) -> *mut ArcInner<HeaderSlice<H, [T]>> {
let len = unsafe { (*thin).data.length };
let fake_slice: *mut [T] = ptr::slice_from_raw_parts_mut(thin as *mut T, len);
// Transplants metadata.
fake_slice as *mut ArcInner<HeaderSlice<H, [T]>>
}
impl<H, T> ThinArc<H, T> {
/// Temporarily converts |self| into a bonafide Arc and exposes it to the
/// provided callback. The refcount is not modified.
#[inline]
pub(crate) fn with_arc<F, U>(&self, f: F) -> U
where
F: FnOnce(&Arc<HeaderSlice<H, [T]>>) -> U,
{
// Synthesize transient Arc, which never touches the refcount of the ArcInner.
let transient = unsafe {
ManuallyDrop::new(Arc {
p: ptr::NonNull::new_unchecked(thin_to_thick(self.ptr.as_ptr())),
phantom: PhantomData,
})
};
// Expose the transient Arc to the callback, which may clone it if it wants.
let result = f(&transient);
// Forward the result.
result
}
/// Creates a `ThinArc` for a HeaderSlice using the given header struct and
/// iterator to generate the slice.
pub(crate) fn from_header_and_iter<I>(header: H, mut items: I) -> Self
where
I: Iterator<Item = T> + ExactSizeIterator,
{
assert_ne!(mem::size_of::<T>(), 0, "Need to think about ZST");
let num_items = items.len();
// Offset of the start of the slice in the allocation.
let inner_to_data_offset = offset_of!(ArcInner<HeaderSlice<H, [T; 0]>>, data);
let data_to_slice_offset = offset_of!(HeaderSlice<H, [T; 0]>, slice);
let slice_offset = inner_to_data_offset + data_to_slice_offset;
// Compute the size of the real payload.
let slice_size = mem::size_of::<T>().checked_mul(num_items).expect("size overflows");
let usable_size = slice_offset.checked_add(slice_size).expect("size overflows");
// Round up size to alignment.
let align = mem::align_of::<ArcInner<HeaderSlice<H, [T; 0]>>>();
let size = usable_size.wrapping_add(align - 1) & !(align - 1);
assert!(size >= usable_size, "size overflows");
let layout = Layout::from_size_align(size, align).expect("invalid layout");
let ptr: *mut ArcInner<HeaderSlice<H, [T; 0]>>;
unsafe {
let buffer = alloc::alloc(layout);
if buffer.is_null() {
alloc::handle_alloc_error(layout);
}
// // Synthesize the fat pointer. We do this by claiming we have a direct
// // pointer to a [T], and then changing the type of the borrow. The key
// // point here is that the length portion of the fat pointer applies
// // only to the number of elements in the dynamically-sized portion of
// // the type, so the value will be the same whether it points to a [T]
// // or something else with a [T] as its last member.
// let fake_slice: &mut [T] = slice::from_raw_parts_mut(buffer as *mut T, num_items);
// ptr = fake_slice as *mut [T] as *mut ArcInner<HeaderSlice<H, [T]>>;
ptr = buffer as *mut _;
let count = atomic::AtomicUsize::new(1);
// Write the data.
//
// Note that any panics here (i.e. from the iterator) are safe, since
// we'll just leak the uninitialized memory.
ptr::write(ptr::addr_of_mut!((*ptr).count), count);
ptr::write(ptr::addr_of_mut!((*ptr).data.header), header);
ptr::write(ptr::addr_of_mut!((*ptr).data.length), num_items);
if num_items != 0 {
let mut current = ptr::addr_of_mut!((*ptr).data.slice) as *mut T;
debug_assert_eq!(current as usize - buffer as usize, slice_offset);
for _ in 0..num_items {
ptr::write(
current,
items.next().expect("ExactSizeIterator over-reported length"),
);
current = current.offset(1);
}
assert!(items.next().is_none(), "ExactSizeIterator under-reported length");
// We should have consumed the buffer exactly.
debug_assert_eq!(current as *mut u8, buffer.add(usable_size));
}
assert!(items.next().is_none(), "ExactSizeIterator under-reported length");
}
ThinArc { ptr: unsafe { ptr::NonNull::new_unchecked(ptr) }, phantom: PhantomData }
}
}
impl<H, T> Deref for ThinArc<H, T> {
type Target = HeaderSlice<H, [T]>;
#[inline]
fn deref(&self) -> &Self::Target {
unsafe { &(*thin_to_thick(self.ptr.as_ptr())).data }
}
}
impl<H, T> Clone for ThinArc<H, T> {
#[inline]
fn clone(&self) -> Self {
ThinArc::with_arc(self, |a| Arc::into_thin(a.clone()))
}
}
impl<H, T> Drop for ThinArc<H, T> {
#[inline]
fn drop(&mut self) {
let _ = Arc::from_thin(ThinArc { ptr: self.ptr, phantom: PhantomData });
}
}
impl<H, T> Arc<HeaderSlice<H, [T]>> {
/// Converts an `Arc` into a `ThinArc`. This consumes the `Arc`, so the refcount
/// is not modified.
#[inline]
pub(crate) fn into_thin(a: Self) -> ThinArc<H, T> {
assert_eq!(a.length, a.slice.len(), "Length needs to be correct for ThinArc to work");
let fat_ptr: *mut ArcInner<HeaderSlice<H, [T]>> = a.ptr();
mem::forget(a);
let thin_ptr = fat_ptr as *mut [usize] as *mut usize;
ThinArc {
ptr: unsafe {
ptr::NonNull::new_unchecked(thin_ptr as *mut ArcInner<HeaderSlice<H, [T; 0]>>)
},
phantom: PhantomData,
}
}
/// Converts a `ThinArc` into an `Arc`. This consumes the `ThinArc`, so the refcount
/// is not modified.
#[inline]
pub(crate) fn from_thin(a: ThinArc<H, T>) -> Self {
let ptr = thin_to_thick(a.ptr.as_ptr());
mem::forget(a);
unsafe { Arc { p: ptr::NonNull::new_unchecked(ptr), phantom: PhantomData } }
}
}
impl<H: PartialEq, T: PartialEq> PartialEq for ThinArc<H, T> {
#[inline]
fn eq(&self, other: &ThinArc<H, T>) -> bool {
**self == **other
}
}
impl<H: Eq, T: Eq> Eq for ThinArc<H, T> {}
impl<H: Hash, T: Hash> Hash for ThinArc<H, T> {
fn hash<HSR: Hasher>(&self, state: &mut HSR) {
(**self).hash(state)
}
}