blob: 856a9f63c258b3565698d6af34d862e86f95ed1a [file] [log] [blame] [edit]
//! Working with abstract syntax trees.
//!
//! In rowan, syntax trees are transient objects. That means that we create
//! trees when we need them, and tear them down to save memory. In this
//! architecture, hanging on to a particular syntax node for a long time is
//! ill-advisable, as that keeps the whole tree resident.
//!
//! Instead, we provide a [`SyntaxNodePtr`] type, which stores information about
//! the _location_ of a particular syntax node in a tree. It's a small type
//! which can be cheaply stored, and which can be resolved to a real
//! [`SyntaxNode`] when necessary.
//!
//! We also provide an [`AstNode`] trait for typed AST wrapper APIs over rowan
//! nodes.
use std::{
fmt,
hash::{Hash, Hasher},
iter::successors,
marker::PhantomData,
};
use crate::{Language, SyntaxNode, SyntaxNodeChildren, TextRange};
/// The main trait to go from untyped [`SyntaxNode`] to a typed AST. The
/// conversion itself has zero runtime cost: AST and syntax nodes have exactly
/// the same representation: a pointer to the tree root and a pointer to the
/// node itself.
pub trait AstNode {
type Language: Language;
fn can_cast(kind: <Self::Language as Language>::Kind) -> bool
where
Self: Sized;
fn cast(node: SyntaxNode<Self::Language>) -> Option<Self>
where
Self: Sized;
fn syntax(&self) -> &SyntaxNode<Self::Language>;
fn clone_for_update(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_for_update()).unwrap()
}
fn clone_subtree(&self) -> Self
where
Self: Sized,
{
Self::cast(self.syntax().clone_subtree()).unwrap()
}
}
/// A "pointer" to a [`SyntaxNode`], via location in the source code.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct SyntaxNodePtr<L: Language> {
kind: L::Kind,
range: TextRange,
}
impl<L: Language> SyntaxNodePtr<L> {
/// Returns a [`SyntaxNodePtr`] for the node.
pub fn new(node: &SyntaxNode<L>) -> Self {
Self { kind: node.kind(), range: node.text_range() }
}
/// Like [`Self::try_to_node`] but panics instead of returning `None` on
/// failure.
pub fn to_node(&self, root: &SyntaxNode<L>) -> SyntaxNode<L> {
self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}"))
}
/// "Dereferences" the pointer to get the [`SyntaxNode`] it points to.
///
/// Returns `None` if the node is not found, so make sure that the `root`
/// syntax tree is equivalent to (i.e. is build from the same text from) the
/// tree which was originally used to get this [`SyntaxNodePtr`].
///
/// Also returns `None` if `root` is not actually a root (i.e. it has a
/// parent).
///
/// The complexity is linear in the depth of the tree and logarithmic in
/// tree width. As most trees are shallow, thinking about this as
/// `O(log(N))` in the size of the tree is not too wrong!
pub fn try_to_node(&self, root: &SyntaxNode<L>) -> Option<SyntaxNode<L>> {
if root.parent().is_some() {
return None;
}
successors(Some(root.clone()), |node| node.child_or_token_at_range(self.range)?.into_node())
.find(|it| it.text_range() == self.range && it.kind() == self.kind)
}
/// Casts this to an [`AstPtr`] to the given node type if possible.
pub fn cast<N: AstNode<Language = L>>(self) -> Option<AstPtr<N>> {
if !N::can_cast(self.kind) {
return None;
}
Some(AstPtr { raw: self })
}
/// Returns the kind of the syntax node this points to.
pub fn kind(&self) -> L::Kind {
self.kind
}
/// Returns the range of the syntax node this points to.
pub fn text_range(&self) -> TextRange {
self.range
}
}
/// Like [`SyntaxNodePtr`], but remembers the type of node.
pub struct AstPtr<N: AstNode> {
raw: SyntaxNodePtr<N::Language>,
}
impl<N: AstNode> AstPtr<N> {
/// Returns an [`AstPtr`] for the node.
pub fn new(node: &N) -> Self {
Self { raw: SyntaxNodePtr::new(node.syntax()) }
}
/// Like `Self::try_to_node` but panics on failure.
pub fn to_node(&self, root: &SyntaxNode<N::Language>) -> N {
self.try_to_node(root).unwrap_or_else(|| panic!("can't resolve {self:?} with {root:?}"))
}
/// Given the root node containing the node `n` that `self` is a pointer to,
/// returns `n` if possible. See [`SyntaxNodePtr::try_to_node`].
pub fn try_to_node(&self, root: &SyntaxNode<N::Language>) -> Option<N> {
N::cast(self.raw.try_to_node(root)?)
}
/// Returns the underlying [`SyntaxNodePtr`].
pub fn syntax_node_ptr(&self) -> SyntaxNodePtr<N::Language> {
self.raw.clone()
}
/// Casts this to an [`AstPtr`] to the given node type if possible.
pub fn cast<U: AstNode<Language = N::Language>>(self) -> Option<AstPtr<U>> {
if !U::can_cast(self.raw.kind) {
return None;
}
Some(AstPtr { raw: self.raw })
}
}
impl<N: AstNode> fmt::Debug for AstPtr<N> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("AstPtr").field("raw", &self.raw).finish()
}
}
impl<N: AstNode> Clone for AstPtr<N> {
fn clone(&self) -> Self {
Self { raw: self.raw.clone() }
}
}
impl<N: AstNode> PartialEq for AstPtr<N> {
fn eq(&self, other: &AstPtr<N>) -> bool {
self.raw == other.raw
}
}
impl<N: AstNode> Eq for AstPtr<N> {}
impl<N: AstNode> Hash for AstPtr<N> {
fn hash<H: Hasher>(&self, state: &mut H) {
self.raw.hash(state)
}
}
impl<N: AstNode> From<AstPtr<N>> for SyntaxNodePtr<N::Language> {
fn from(ptr: AstPtr<N>) -> SyntaxNodePtr<N::Language> {
ptr.raw
}
}
#[derive(Debug, Clone)]
pub struct AstChildren<N: AstNode> {
inner: SyntaxNodeChildren<N::Language>,
ph: PhantomData<N>,
}
impl<N: AstNode> AstChildren<N> {
fn new(parent: &SyntaxNode<N::Language>) -> Self {
AstChildren { inner: parent.children(), ph: PhantomData }
}
}
impl<N: AstNode> Iterator for AstChildren<N> {
type Item = N;
fn next(&mut self) -> Option<N> {
self.inner.find_map(N::cast)
}
}
pub mod support {
use super::{AstChildren, AstNode};
use crate::{Language, SyntaxNode, SyntaxToken};
pub fn child<N: AstNode>(parent: &SyntaxNode<N::Language>) -> Option<N> {
parent.children().find_map(N::cast)
}
pub fn children<N: AstNode>(parent: &SyntaxNode<N::Language>) -> AstChildren<N> {
AstChildren::new(parent)
}
pub fn token<L: Language>(parent: &SyntaxNode<L>, kind: L::Kind) -> Option<SyntaxToken<L>> {
parent.children_with_tokens().filter_map(|it| it.into_token()).find(|it| it.kind() == kind)
}
}