| //! Parallel iterator types for [ranges][std::range], |
| //! the type for values created by `a..b` expressions |
| //! |
| //! You will rarely need to interact with this module directly unless you have |
| //! need to name one of the iterator types. |
| //! |
| //! ``` |
| //! use rayon::prelude::*; |
| //! |
| //! let r = (0..100u64).into_par_iter() |
| //! .sum(); |
| //! |
| //! // compare result with sequential calculation |
| //! assert_eq!((0..100).sum::<u64>(), r); |
| //! ``` |
| //! |
| //! [std::range]: https://doc.rust-lang.org/core/ops/struct.Range.html |
| |
| use crate::iter::plumbing::*; |
| use crate::iter::*; |
| use std::char; |
| use std::convert::TryFrom; |
| use std::ops::Range; |
| use std::usize; |
| |
| /// Parallel iterator over a range, implemented for all integer types and `char`. |
| /// |
| /// **Note:** The `zip` operation requires `IndexedParallelIterator` |
| /// which is not implemented for `u64`, `i64`, `u128`, or `i128`. |
| /// |
| /// ``` |
| /// use rayon::prelude::*; |
| /// |
| /// let p = (0..25usize).into_par_iter() |
| /// .zip(0..25usize) |
| /// .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0) |
| /// .map(|(x, y)| x * y) |
| /// .sum::<usize>(); |
| /// |
| /// let s = (0..25usize).zip(0..25) |
| /// .filter(|&(x, y)| x % 5 == 0 || y % 5 == 0) |
| /// .map(|(x, y)| x * y) |
| /// .sum(); |
| /// |
| /// assert_eq!(p, s); |
| /// ``` |
| #[derive(Debug, Clone)] |
| pub struct Iter<T> { |
| range: Range<T>, |
| } |
| |
| /// Implemented for ranges of all primitive integer types and `char`. |
| impl<T> IntoParallelIterator for Range<T> |
| where |
| Iter<T>: ParallelIterator, |
| { |
| type Item = <Iter<T> as ParallelIterator>::Item; |
| type Iter = Iter<T>; |
| |
| fn into_par_iter(self) -> Self::Iter { |
| Iter { range: self } |
| } |
| } |
| |
| struct IterProducer<T> { |
| range: Range<T>, |
| } |
| |
| impl<T> IntoIterator for IterProducer<T> |
| where |
| Range<T>: Iterator, |
| { |
| type Item = <Range<T> as Iterator>::Item; |
| type IntoIter = Range<T>; |
| |
| fn into_iter(self) -> Self::IntoIter { |
| self.range |
| } |
| } |
| |
| /// These traits help drive integer type inference. Without them, an unknown `{integer}` type only |
| /// has constraints on `Iter<{integer}>`, which will probably give up and use `i32`. By adding |
| /// these traits on the item type, the compiler can see a more direct constraint to infer like |
| /// `{integer}: RangeInteger`, which works better. See `test_issue_833` for an example. |
| /// |
| /// They have to be `pub` since they're seen in the public `impl ParallelIterator` constraints, but |
| /// we put them in a private modules so they're not actually reachable in our public API. |
| mod private { |
| use super::*; |
| |
| /// Implementation details of `ParallelIterator for Iter<Self>` |
| pub trait RangeInteger: Sized + Send { |
| private_decl! {} |
| |
| fn drive_unindexed<C>(iter: Iter<Self>, consumer: C) -> C::Result |
| where |
| C: UnindexedConsumer<Self>; |
| |
| fn opt_len(iter: &Iter<Self>) -> Option<usize>; |
| } |
| |
| /// Implementation details of `IndexedParallelIterator for Iter<Self>` |
| pub trait IndexedRangeInteger: RangeInteger { |
| private_decl! {} |
| |
| fn drive<C>(iter: Iter<Self>, consumer: C) -> C::Result |
| where |
| C: Consumer<Self>; |
| |
| fn len(iter: &Iter<Self>) -> usize; |
| |
| fn with_producer<CB>(iter: Iter<Self>, callback: CB) -> CB::Output |
| where |
| CB: ProducerCallback<Self>; |
| } |
| } |
| use private::{IndexedRangeInteger, RangeInteger}; |
| |
| impl<T: RangeInteger> ParallelIterator for Iter<T> { |
| type Item = T; |
| |
| fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| where |
| C: UnindexedConsumer<T>, |
| { |
| T::drive_unindexed(self, consumer) |
| } |
| |
| #[inline] |
| fn opt_len(&self) -> Option<usize> { |
| T::opt_len(self) |
| } |
| } |
| |
| impl<T: IndexedRangeInteger> IndexedParallelIterator for Iter<T> { |
| fn drive<C>(self, consumer: C) -> C::Result |
| where |
| C: Consumer<T>, |
| { |
| T::drive(self, consumer) |
| } |
| |
| #[inline] |
| fn len(&self) -> usize { |
| T::len(self) |
| } |
| |
| fn with_producer<CB>(self, callback: CB) -> CB::Output |
| where |
| CB: ProducerCallback<T>, |
| { |
| T::with_producer(self, callback) |
| } |
| } |
| |
| macro_rules! indexed_range_impl { |
| ( $t:ty ) => { |
| impl RangeInteger for $t { |
| private_impl! {} |
| |
| fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result |
| where |
| C: UnindexedConsumer<$t>, |
| { |
| bridge(iter, consumer) |
| } |
| |
| fn opt_len(iter: &Iter<$t>) -> Option<usize> { |
| Some(iter.range.len()) |
| } |
| } |
| |
| impl IndexedRangeInteger for $t { |
| private_impl! {} |
| |
| fn drive<C>(iter: Iter<$t>, consumer: C) -> C::Result |
| where |
| C: Consumer<$t>, |
| { |
| bridge(iter, consumer) |
| } |
| |
| fn len(iter: &Iter<$t>) -> usize { |
| iter.range.len() |
| } |
| |
| fn with_producer<CB>(iter: Iter<$t>, callback: CB) -> CB::Output |
| where |
| CB: ProducerCallback<$t>, |
| { |
| callback.callback(IterProducer { range: iter.range }) |
| } |
| } |
| |
| impl Producer for IterProducer<$t> { |
| type Item = <Range<$t> as Iterator>::Item; |
| type IntoIter = Range<$t>; |
| fn into_iter(self) -> Self::IntoIter { |
| self.range |
| } |
| |
| fn split_at(self, index: usize) -> (Self, Self) { |
| assert!(index <= self.range.len()); |
| // For signed $t, the length and requested index could be greater than $t::MAX, and |
| // then `index as $t` could wrap to negative, so wrapping_add is necessary. |
| let mid = self.range.start.wrapping_add(index as $t); |
| let left = self.range.start..mid; |
| let right = mid..self.range.end; |
| (IterProducer { range: left }, IterProducer { range: right }) |
| } |
| } |
| }; |
| } |
| |
| trait UnindexedRangeLen<L> { |
| fn len(&self) -> L; |
| } |
| |
| macro_rules! unindexed_range_impl { |
| ( $t:ty, $len_t:ty ) => { |
| impl UnindexedRangeLen<$len_t> for Range<$t> { |
| fn len(&self) -> $len_t { |
| let &Range { start, end } = self; |
| if end > start { |
| end.wrapping_sub(start) as $len_t |
| } else { |
| 0 |
| } |
| } |
| } |
| |
| impl RangeInteger for $t { |
| private_impl! {} |
| |
| fn drive_unindexed<C>(iter: Iter<$t>, consumer: C) -> C::Result |
| where |
| C: UnindexedConsumer<$t>, |
| { |
| #[inline] |
| fn offset(start: $t) -> impl Fn(usize) -> $t { |
| move |i| start.wrapping_add(i as $t) |
| } |
| |
| if let Some(len) = iter.opt_len() { |
| // Drive this in indexed mode for better `collect`. |
| (0..len) |
| .into_par_iter() |
| .map(offset(iter.range.start)) |
| .drive(consumer) |
| } else { |
| bridge_unindexed(IterProducer { range: iter.range }, consumer) |
| } |
| } |
| |
| fn opt_len(iter: &Iter<$t>) -> Option<usize> { |
| usize::try_from(iter.range.len()).ok() |
| } |
| } |
| |
| impl UnindexedProducer for IterProducer<$t> { |
| type Item = $t; |
| |
| fn split(mut self) -> (Self, Option<Self>) { |
| let index = self.range.len() / 2; |
| if index > 0 { |
| let mid = self.range.start.wrapping_add(index as $t); |
| let right = mid..self.range.end; |
| self.range.end = mid; |
| (self, Some(IterProducer { range: right })) |
| } else { |
| (self, None) |
| } |
| } |
| |
| fn fold_with<F>(self, folder: F) -> F |
| where |
| F: Folder<Self::Item>, |
| { |
| folder.consume_iter(self) |
| } |
| } |
| }; |
| } |
| |
| // all Range<T> with ExactSizeIterator |
| indexed_range_impl! {u8} |
| indexed_range_impl! {u16} |
| indexed_range_impl! {u32} |
| indexed_range_impl! {usize} |
| indexed_range_impl! {i8} |
| indexed_range_impl! {i16} |
| indexed_range_impl! {i32} |
| indexed_range_impl! {isize} |
| |
| // other Range<T> with just Iterator |
| unindexed_range_impl! {u64, u64} |
| unindexed_range_impl! {i64, u64} |
| unindexed_range_impl! {u128, u128} |
| unindexed_range_impl! {i128, u128} |
| |
| // char is special because of the surrogate range hole |
| macro_rules! convert_char { |
| ( $self:ident . $method:ident ( $( $arg:expr ),* ) ) => {{ |
| let start = $self.range.start as u32; |
| let end = $self.range.end as u32; |
| if start < 0xD800 && 0xE000 < end { |
| // chain the before and after surrogate range fragments |
| (start..0xD800) |
| .into_par_iter() |
| .chain(0xE000..end) |
| .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) }) |
| .$method($( $arg ),*) |
| } else { |
| // no surrogate range to worry about |
| (start..end) |
| .into_par_iter() |
| .map(|codepoint| unsafe { char::from_u32_unchecked(codepoint) }) |
| .$method($( $arg ),*) |
| } |
| }}; |
| } |
| |
| impl ParallelIterator for Iter<char> { |
| type Item = char; |
| |
| fn drive_unindexed<C>(self, consumer: C) -> C::Result |
| where |
| C: UnindexedConsumer<Self::Item>, |
| { |
| convert_char!(self.drive(consumer)) |
| } |
| |
| fn opt_len(&self) -> Option<usize> { |
| Some(self.len()) |
| } |
| } |
| |
| impl IndexedParallelIterator for Iter<char> { |
| // Split at the surrogate range first if we're allowed to |
| fn drive<C>(self, consumer: C) -> C::Result |
| where |
| C: Consumer<Self::Item>, |
| { |
| convert_char!(self.drive(consumer)) |
| } |
| |
| fn len(&self) -> usize { |
| // Taken from <char as Step>::steps_between |
| let start = self.range.start as u32; |
| let end = self.range.end as u32; |
| if start < end { |
| let mut count = end - start; |
| if start < 0xD800 && 0xE000 <= end { |
| count -= 0x800 |
| } |
| count as usize |
| } else { |
| 0 |
| } |
| } |
| |
| fn with_producer<CB>(self, callback: CB) -> CB::Output |
| where |
| CB: ProducerCallback<Self::Item>, |
| { |
| convert_char!(self.with_producer(callback)) |
| } |
| } |
| |
| #[test] |
| fn check_range_split_at_overflow() { |
| // Note, this split index overflows i8! |
| let producer = IterProducer { range: -100i8..100 }; |
| let (left, right) = producer.split_at(150); |
| let r1: i32 = left.range.map(i32::from).sum(); |
| let r2: i32 = right.range.map(i32::from).sum(); |
| assert_eq!(r1 + r2, -100); |
| } |
| |
| #[test] |
| fn test_i128_len_doesnt_overflow() { |
| use std::{i128, u128}; |
| |
| // Using parse because some versions of rust don't allow long literals |
| let octillion: i128 = "1000000000000000000000000000".parse().unwrap(); |
| let producer = IterProducer { |
| range: 0..octillion, |
| }; |
| |
| assert_eq!(octillion as u128, producer.range.len()); |
| assert_eq!(octillion as u128, (0..octillion).len()); |
| assert_eq!(2 * octillion as u128, (-octillion..octillion).len()); |
| |
| assert_eq!(u128::MAX, (i128::MIN..i128::MAX).len()); |
| } |
| |
| #[test] |
| fn test_u64_opt_len() { |
| use std::{u64, usize}; |
| assert_eq!(Some(100), (0..100u64).into_par_iter().opt_len()); |
| assert_eq!( |
| Some(usize::MAX), |
| (0..usize::MAX as u64).into_par_iter().opt_len() |
| ); |
| if (usize::MAX as u64) < u64::MAX { |
| assert_eq!( |
| None, |
| (0..(usize::MAX as u64).wrapping_add(1)) |
| .into_par_iter() |
| .opt_len() |
| ); |
| assert_eq!(None, (0..u64::MAX).into_par_iter().opt_len()); |
| } |
| } |
| |
| #[test] |
| fn test_u128_opt_len() { |
| use std::{u128, usize}; |
| assert_eq!(Some(100), (0..100u128).into_par_iter().opt_len()); |
| assert_eq!( |
| Some(usize::MAX), |
| (0..usize::MAX as u128).into_par_iter().opt_len() |
| ); |
| assert_eq!(None, (0..1 + usize::MAX as u128).into_par_iter().opt_len()); |
| assert_eq!(None, (0..u128::MAX).into_par_iter().opt_len()); |
| } |
| |
| // `usize as i64` can overflow, so make sure to wrap it appropriately |
| // when using the `opt_len` "indexed" mode. |
| #[test] |
| #[cfg(target_pointer_width = "64")] |
| fn test_usize_i64_overflow() { |
| use crate::ThreadPoolBuilder; |
| use std::i64; |
| |
| let iter = (-2..i64::MAX).into_par_iter(); |
| assert_eq!(iter.opt_len(), Some(i64::MAX as usize + 2)); |
| |
| // always run with multiple threads to split into, or this will take forever... |
| let pool = ThreadPoolBuilder::new().num_threads(8).build().unwrap(); |
| pool.install(|| assert_eq!(iter.find_last(|_| true), Some(i64::MAX - 1))); |
| } |
| |
| #[test] |
| fn test_issue_833() { |
| fn is_even(n: i64) -> bool { |
| n % 2 == 0 |
| } |
| |
| // The integer type should be inferred from `is_even` |
| let v: Vec<_> = (1..100).into_par_iter().filter(|&x| is_even(x)).collect(); |
| assert!(v.into_iter().eq((2..100).step_by(2))); |
| |
| // Try examples with indexed iterators too |
| let pos = (0..100).into_par_iter().position_any(|x| x == 50i16); |
| assert_eq!(pos, Some(50usize)); |
| |
| assert!((0..100) |
| .into_par_iter() |
| .zip(0..100) |
| .all(|(a, b)| i16::eq(&a, &b))); |
| } |