| // This module implements Identifier, a short-optimized string allowed to |
| // contain only the ASCII characters hyphen, dot, 0-9, A-Z, a-z. |
| // |
| // As of mid-2021, the distribution of pre-release lengths on crates.io is: |
| // |
| // length count length count length count |
| // 0 355929 11 81 24 2 |
| // 1 208 12 48 25 6 |
| // 2 236 13 55 26 10 |
| // 3 1909 14 25 27 4 |
| // 4 1284 15 15 28 1 |
| // 5 1742 16 35 30 1 |
| // 6 3440 17 9 31 5 |
| // 7 5624 18 6 32 1 |
| // 8 1321 19 12 36 2 |
| // 9 179 20 2 37 379 |
| // 10 65 23 11 |
| // |
| // and the distribution of build metadata lengths is: |
| // |
| // length count length count length count |
| // 0 364445 8 7725 18 1 |
| // 1 72 9 16 19 1 |
| // 2 7 10 85 20 1 |
| // 3 28 11 17 22 4 |
| // 4 9 12 10 26 1 |
| // 5 68 13 9 27 1 |
| // 6 73 14 10 40 5 |
| // 7 53 15 6 |
| // |
| // Therefore it really behooves us to be able to use the entire 8 bytes of a |
| // pointer for inline storage. For both pre-release and build metadata there are |
| // vastly more strings with length exactly 8 bytes than the sum over all lengths |
| // longer than 8 bytes. |
| // |
| // To differentiate the inline representation from the heap allocated long |
| // representation, we'll allocate heap pointers with 2-byte alignment so that |
| // they are guaranteed to have an unset least significant bit. Then in the repr |
| // we store for pointers, we rotate a 1 into the most significant bit of the |
| // most significant byte, which is never set for an ASCII byte. |
| // |
| // Inline repr: |
| // |
| // 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx 0xxxxxxx |
| // |
| // Heap allocated repr: |
| // |
| // 1ppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp pppppppp 0 |
| // ^ most significant bit least significant bit of orig ptr, rotated out ^ |
| // |
| // Since the most significant bit doubles as a sign bit for the similarly sized |
| // signed integer type, the CPU has an efficient instruction for inspecting it, |
| // meaning we can differentiate between an inline repr and a heap allocated repr |
| // in one instruction. Effectively an inline repr always looks like a positive |
| // i64 while a heap allocated repr always looks like a negative i64. |
| // |
| // For the inline repr, we store \0 padding on the end of the stored characters, |
| // and thus the string length is readily determined efficiently by a cttz (count |
| // trailing zeros) or bsf (bit scan forward) instruction. |
| // |
| // For the heap allocated repr, the length is encoded as a base-128 varint at |
| // the head of the allocation. |
| // |
| // Empty strings are stored as an all-1 bit pattern, corresponding to -1i64. |
| // Consequently the all-0 bit pattern is never a legal representation in any |
| // repr, leaving it available as a niche for downstream code. For example this |
| // allows size_of::<Version>() == size_of::<Option<Version>>(). |
| |
| use crate::alloc::alloc::{alloc, dealloc, handle_alloc_error, Layout}; |
| use core::isize; |
| use core::mem; |
| use core::num::{NonZeroU64, NonZeroUsize}; |
| use core::ptr::{self, NonNull}; |
| use core::slice; |
| use core::str; |
| use core::usize; |
| |
| const PTR_BYTES: usize = mem::size_of::<NonNull<u8>>(); |
| |
| // If pointers are already 8 bytes or bigger, then 0. If pointers are smaller |
| // than 8 bytes, then Identifier will contain a byte array to raise its size up |
| // to 8 bytes total. |
| const TAIL_BYTES: usize = 8 * (PTR_BYTES < 8) as usize - PTR_BYTES * (PTR_BYTES < 8) as usize; |
| |
| #[repr(C, align(8))] |
| pub(crate) struct Identifier { |
| head: NonNull<u8>, |
| tail: [u8; TAIL_BYTES], |
| } |
| |
| impl Identifier { |
| pub(crate) const fn empty() -> Self { |
| // This is a separate constant because unsafe function calls are not |
| // allowed in a const fn body, only in a const, until later rustc than |
| // what we support. |
| const HEAD: NonNull<u8> = unsafe { NonNull::new_unchecked(!0 as *mut u8) }; |
| |
| // `mov rax, -1` |
| Identifier { |
| head: HEAD, |
| tail: [!0; TAIL_BYTES], |
| } |
| } |
| |
| // SAFETY: string must be ASCII and not contain \0 bytes. |
| pub(crate) unsafe fn new_unchecked(string: &str) -> Self { |
| let len = string.len(); |
| debug_assert!(len <= isize::MAX as usize); |
| match len as u64 { |
| 0 => Self::empty(), |
| 1..=8 => { |
| let mut bytes = [0u8; mem::size_of::<Identifier>()]; |
| // SAFETY: string is big enough to read len bytes, bytes is big |
| // enough to write len bytes, and they do not overlap. |
| unsafe { ptr::copy_nonoverlapping(string.as_ptr(), bytes.as_mut_ptr(), len) }; |
| // SAFETY: the head field is nonzero because the input string |
| // was at least 1 byte of ASCII and did not contain \0. |
| unsafe { mem::transmute::<[u8; mem::size_of::<Identifier>()], Identifier>(bytes) } |
| } |
| 9..=0xff_ffff_ffff_ffff => { |
| // SAFETY: len is in a range that does not contain 0. |
| let size = bytes_for_varint(unsafe { NonZeroUsize::new_unchecked(len) }) + len; |
| let align = 2; |
| // On 32-bit and 16-bit architecture, check for size overflowing |
| // isize::MAX. Making an allocation request bigger than this to |
| // the allocator is considered UB. All allocations (including |
| // static ones) are limited to isize::MAX so we're guaranteed |
| // len <= isize::MAX, and we know bytes_for_varint(len) <= 5 |
| // because 128**5 > isize::MAX, which means the only problem |
| // that can arise is when isize::MAX - 5 <= len <= isize::MAX. |
| // This is pretty much guaranteed to be malicious input so we |
| // don't need to care about returning a good error message. |
| if mem::size_of::<usize>() < 8 { |
| let max_alloc = usize::MAX / 2 - align; |
| assert!(size <= max_alloc); |
| } |
| // SAFETY: align is not zero, align is a power of two, and |
| // rounding size up to align does not overflow isize::MAX. |
| let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; |
| // SAFETY: layout's size is nonzero. |
| let ptr = unsafe { alloc(layout) }; |
| if ptr.is_null() { |
| handle_alloc_error(layout); |
| } |
| let mut write = ptr; |
| let mut varint_remaining = len; |
| while varint_remaining > 0 { |
| // SAFETY: size is bytes_for_varint(len) bytes + len bytes. |
| // This is writing the first bytes_for_varint(len) bytes. |
| unsafe { ptr::write(write, varint_remaining as u8 | 0x80) }; |
| varint_remaining >>= 7; |
| // SAFETY: still in bounds of the same allocation. |
| write = unsafe { write.add(1) }; |
| } |
| // SAFETY: size is bytes_for_varint(len) bytes + len bytes. This |
| // is writing to the last len bytes. |
| unsafe { ptr::copy_nonoverlapping(string.as_ptr(), write, len) }; |
| Identifier { |
| head: ptr_to_repr(ptr), |
| tail: [0; TAIL_BYTES], |
| } |
| } |
| 0x100_0000_0000_0000..=0xffff_ffff_ffff_ffff => { |
| unreachable!("please refrain from storing >64 petabytes of text in semver version"); |
| } |
| #[cfg(no_exhaustive_int_match)] // rustc <1.33 |
| _ => unreachable!(), |
| } |
| } |
| |
| pub(crate) fn is_empty(&self) -> bool { |
| // `cmp rdi, -1` -- basically: `repr as i64 == -1` |
| let empty = Self::empty(); |
| let is_empty = self.head == empty.head && self.tail == empty.tail; |
| // The empty representation does nothing on Drop. We can't let this one |
| // drop normally because `impl Drop for Identifier` calls is_empty; that |
| // would be an infinite recursion. |
| mem::forget(empty); |
| is_empty |
| } |
| |
| fn is_inline(&self) -> bool { |
| // `test rdi, rdi` -- basically: `repr as i64 >= 0` |
| self.head.as_ptr() as usize >> (PTR_BYTES * 8 - 1) == 0 |
| } |
| |
| fn is_empty_or_inline(&self) -> bool { |
| // `cmp rdi, -2` -- basically: `repr as i64 > -2` |
| self.is_empty() || self.is_inline() |
| } |
| |
| pub(crate) fn as_str(&self) -> &str { |
| if self.is_empty() { |
| "" |
| } else if self.is_inline() { |
| // SAFETY: repr is in the inline representation. |
| unsafe { inline_as_str(self) } |
| } else { |
| // SAFETY: repr is in the heap allocated representation. |
| unsafe { ptr_as_str(&self.head) } |
| } |
| } |
| } |
| |
| impl Clone for Identifier { |
| fn clone(&self) -> Self { |
| if self.is_empty_or_inline() { |
| Identifier { |
| head: self.head, |
| tail: self.tail, |
| } |
| } else { |
| let ptr = repr_to_ptr(self.head); |
| // SAFETY: ptr is one of our own heap allocations. |
| let len = unsafe { decode_len(ptr) }; |
| let size = bytes_for_varint(len) + len.get(); |
| let align = 2; |
| // SAFETY: align is not zero, align is a power of two, and rounding |
| // size up to align does not overflow isize::MAX. This is just |
| // duplicating a previous allocation where all of these guarantees |
| // were already made. |
| let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; |
| // SAFETY: layout's size is nonzero. |
| let clone = unsafe { alloc(layout) }; |
| if clone.is_null() { |
| handle_alloc_error(layout); |
| } |
| // SAFETY: new allocation cannot overlap the previous one (this was |
| // not a realloc). The argument ptrs are readable/writeable |
| // respectively for size bytes. |
| unsafe { ptr::copy_nonoverlapping(ptr, clone, size) } |
| Identifier { |
| head: ptr_to_repr(clone), |
| tail: [0; TAIL_BYTES], |
| } |
| } |
| } |
| } |
| |
| impl Drop for Identifier { |
| fn drop(&mut self) { |
| if self.is_empty_or_inline() { |
| return; |
| } |
| let ptr = repr_to_ptr_mut(self.head); |
| // SAFETY: ptr is one of our own heap allocations. |
| let len = unsafe { decode_len(ptr) }; |
| let size = bytes_for_varint(len) + len.get(); |
| let align = 2; |
| // SAFETY: align is not zero, align is a power of two, and rounding |
| // size up to align does not overflow isize::MAX. These guarantees were |
| // made when originally allocating this memory. |
| let layout = unsafe { Layout::from_size_align_unchecked(size, align) }; |
| // SAFETY: ptr was previously allocated by the same allocator with the |
| // same layout. |
| unsafe { dealloc(ptr, layout) } |
| } |
| } |
| |
| impl PartialEq for Identifier { |
| fn eq(&self, rhs: &Self) -> bool { |
| if self.is_empty_or_inline() { |
| // Fast path (most common) |
| self.head == rhs.head && self.tail == rhs.tail |
| } else if rhs.is_empty_or_inline() { |
| false |
| } else { |
| // SAFETY: both reprs are in the heap allocated representation. |
| unsafe { ptr_as_str(&self.head) == ptr_as_str(&rhs.head) } |
| } |
| } |
| } |
| |
| unsafe impl Send for Identifier {} |
| unsafe impl Sync for Identifier {} |
| |
| // We use heap pointers that are 2-byte aligned, meaning they have an |
| // insignificant 0 in the least significant bit. We take advantage of that |
| // unneeded bit to rotate a 1 into the most significant bit to make the repr |
| // distinguishable from ASCII bytes. |
| fn ptr_to_repr(original: *mut u8) -> NonNull<u8> { |
| // `mov eax, 1` |
| // `shld rax, rdi, 63` |
| let modified = (original as usize | 1).rotate_right(1); |
| |
| // `original + (modified - original)`, but being mindful of provenance. |
| let diff = modified.wrapping_sub(original as usize); |
| let modified = original.wrapping_add(diff); |
| |
| // SAFETY: the most significant bit of repr is known to be set, so the value |
| // is not zero. |
| unsafe { NonNull::new_unchecked(modified) } |
| } |
| |
| // Shift out the 1 previously placed into the most significant bit of the least |
| // significant byte. Shift in a low 0 bit to reconstruct the original 2-byte |
| // aligned pointer. |
| fn repr_to_ptr(modified: NonNull<u8>) -> *const u8 { |
| // `lea rax, [rdi + rdi]` |
| let modified = modified.as_ptr(); |
| let original = (modified as usize) << 1; |
| |
| // `modified + (original - modified)`, but being mindful of provenance. |
| let diff = original.wrapping_sub(modified as usize); |
| modified.wrapping_add(diff) |
| } |
| |
| fn repr_to_ptr_mut(repr: NonNull<u8>) -> *mut u8 { |
| repr_to_ptr(repr) as *mut u8 |
| } |
| |
| // Compute the length of the inline string, assuming the argument is in short |
| // string representation. Short strings are stored as 1 to 8 nonzero ASCII |
| // bytes, followed by \0 padding for the remaining bytes. |
| // |
| // SAFETY: the identifier must indeed be in the inline representation. |
| unsafe fn inline_len(repr: &Identifier) -> NonZeroUsize { |
| // SAFETY: Identifier's layout is align(8) and at least size 8. We're doing |
| // an aligned read of the first 8 bytes from it. The bytes are not all zero |
| // because inline strings are at least 1 byte long and cannot contain \0. |
| let repr = unsafe { ptr::read(repr as *const Identifier as *const NonZeroU64) }; |
| |
| // Rustc >=1.53 has intrinsics for counting zeros on a non-zeroable integer. |
| // On many architectures these are more efficient than counting on ordinary |
| // zeroable integers (bsf vs cttz). On rustc <1.53 without those intrinsics, |
| // we count zeros in the u64 rather than the NonZeroU64. |
| #[cfg(no_nonzero_bitscan)] |
| let repr = repr.get(); |
| |
| #[cfg(target_endian = "little")] |
| let zero_bits_on_string_end = repr.leading_zeros(); |
| #[cfg(target_endian = "big")] |
| let zero_bits_on_string_end = repr.trailing_zeros(); |
| |
| let nonzero_bytes = 8 - zero_bits_on_string_end as usize / 8; |
| |
| // SAFETY: repr is nonzero, so it has at most 63 zero bits on either end, |
| // thus at least one nonzero byte. |
| unsafe { NonZeroUsize::new_unchecked(nonzero_bytes) } |
| } |
| |
| // SAFETY: repr must be in the inline representation, i.e. at least 1 and at |
| // most 8 nonzero ASCII bytes padded on the end with \0 bytes. |
| unsafe fn inline_as_str(repr: &Identifier) -> &str { |
| let ptr = repr as *const Identifier as *const u8; |
| let len = unsafe { inline_len(repr) }.get(); |
| // SAFETY: we are viewing the nonzero ASCII prefix of the inline repr's |
| // contents as a slice of bytes. Input/output lifetimes are correctly |
| // associated. |
| let slice = unsafe { slice::from_raw_parts(ptr, len) }; |
| // SAFETY: the string contents are known to be only ASCII bytes, which are |
| // always valid UTF-8. |
| unsafe { str::from_utf8_unchecked(slice) } |
| } |
| |
| // Decode varint. Varints consist of between one and eight base-128 digits, each |
| // of which is stored in a byte with most significant bit set. Adjacent to the |
| // varint in memory there is guaranteed to be at least 9 ASCII bytes, each of |
| // which has an unset most significant bit. |
| // |
| // SAFETY: ptr must be one of our own heap allocations, with the varint header |
| // already written. |
| unsafe fn decode_len(ptr: *const u8) -> NonZeroUsize { |
| // SAFETY: There is at least one byte of varint followed by at least 9 bytes |
| // of string content, which is at least 10 bytes total for the allocation, |
| // so reading the first two is no problem. |
| let [first, second] = unsafe { ptr::read(ptr as *const [u8; 2]) }; |
| if second < 0x80 { |
| // SAFETY: the length of this heap allocated string has been encoded as |
| // one base-128 digit, so the length is at least 9 and at most 127. It |
| // cannot be zero. |
| unsafe { NonZeroUsize::new_unchecked((first & 0x7f) as usize) } |
| } else { |
| return unsafe { decode_len_cold(ptr) }; |
| |
| // Identifiers 128 bytes or longer. This is not exercised by any crate |
| // version currently published to crates.io. |
| #[cold] |
| #[inline(never)] |
| unsafe fn decode_len_cold(mut ptr: *const u8) -> NonZeroUsize { |
| let mut len = 0; |
| let mut shift = 0; |
| loop { |
| // SAFETY: varint continues while there are bytes having the |
| // most significant bit set, i.e. until we start hitting the |
| // ASCII string content with msb unset. |
| let byte = unsafe { *ptr }; |
| if byte < 0x80 { |
| // SAFETY: the string length is known to be 128 bytes or |
| // longer. |
| return unsafe { NonZeroUsize::new_unchecked(len) }; |
| } |
| // SAFETY: still in bounds of the same allocation. |
| ptr = unsafe { ptr.add(1) }; |
| len += ((byte & 0x7f) as usize) << shift; |
| shift += 7; |
| } |
| } |
| } |
| } |
| |
| // SAFETY: repr must be in the heap allocated representation, with varint header |
| // and string contents already written. |
| unsafe fn ptr_as_str(repr: &NonNull<u8>) -> &str { |
| let ptr = repr_to_ptr(*repr); |
| let len = unsafe { decode_len(ptr) }; |
| let header = bytes_for_varint(len); |
| let slice = unsafe { slice::from_raw_parts(ptr.add(header), len.get()) }; |
| // SAFETY: all identifier contents are ASCII bytes, which are always valid |
| // UTF-8. |
| unsafe { str::from_utf8_unchecked(slice) } |
| } |
| |
| // Number of base-128 digits required for the varint representation of a length. |
| fn bytes_for_varint(len: NonZeroUsize) -> usize { |
| #[cfg(no_nonzero_bitscan)] // rustc <1.53 |
| let len = len.get(); |
| |
| let usize_bits = mem::size_of::<usize>() * 8; |
| let len_bits = usize_bits - len.leading_zeros() as usize; |
| (len_bits + 6) / 7 |
| } |