blob: 389e6d1d897bce8c6b2489f52ee305c160e1884d [file] [log] [blame] [edit]
//! A library to help grow the stack when it runs out of space.
//!
//! This is an implementation of manually instrumented segmented stacks where points in a program's
//! control flow are annotated with "maybe grow the stack here". Each point of annotation indicates
//! how far away from the end of the stack it's allowed to be, plus the amount of stack to allocate
//! if it does reach the end.
//!
//! Once a program has reached the end of its stack, a temporary stack on the heap is allocated and
//! is switched to for the duration of a closure.
//!
//! For a set of lower-level primitives, consider the `psm` crate.
//!
//! # Examples
//!
//! ```
//! // Grow the stack if we are within the "red zone" of 32K, and if we allocate
//! // a new stack allocate 1MB of stack space.
//! //
//! // If we're already in bounds, just run the provided closure on current stack.
//! stacker::maybe_grow(32 * 1024, 1024 * 1024, || {
//! // guaranteed to have at least 32K of stack
//! });
//! ```
#![allow(improper_ctypes)]
#[macro_use]
extern crate cfg_if;
extern crate libc;
#[cfg(windows)]
extern crate windows_sys;
#[macro_use]
extern crate psm;
use std::cell::Cell;
/// Grows the call stack if necessary.
///
/// This function is intended to be called at manually instrumented points in a program where
/// recursion is known to happen quite a bit. This function will check to see if we're within
/// `red_zone` bytes of the end of the stack, and if so it will allocate a new stack of at least
/// `stack_size` bytes.
///
/// The closure `f` is guaranteed to run on a stack with at least `red_zone` bytes, and it will be
/// run on the current stack if there's space available.
#[inline(always)]
pub fn maybe_grow<R, F: FnOnce() -> R>(red_zone: usize, stack_size: usize, callback: F) -> R {
// if we can't guess the remaining stack (unsupported on some platforms) we immediately grow
// the stack and then cache the new stack size (which we do know now because we allocated it.
let enough_space = match remaining_stack() {
Some(remaining) => remaining >= red_zone,
None => false,
};
if enough_space {
callback()
} else {
grow(stack_size, callback)
}
}
/// Always creates a new stack for the passed closure to run on.
/// The closure will still be on the same thread as the caller of `grow`.
/// This will allocate a new stack with at least `stack_size` bytes.
pub fn grow<R, F: FnOnce() -> R>(stack_size: usize, callback: F) -> R {
// To avoid monomorphizing `_grow()` and everything it calls,
// we convert the generic callback to a dynamic one.
let mut opt_callback = Some(callback);
let mut ret = None;
let ret_ref = &mut ret;
// This wrapper around `callback` achieves two things:
// * It converts the `impl FnOnce` to a `dyn FnMut`.
// `dyn` because we want it to not be generic, and
// `FnMut` because we can't pass a `dyn FnOnce` around without boxing it.
// * It eliminates the generic return value, by writing it to the stack of this function.
// Otherwise the closure would have to return an unsized value, which isn't possible.
let dyn_callback: &mut dyn FnMut() = &mut || {
let taken_callback = opt_callback.take().unwrap();
*ret_ref = Some(taken_callback());
};
_grow(stack_size, dyn_callback);
ret.unwrap()
}
/// Queries the amount of remaining stack as interpreted by this library.
///
/// This function will return the amount of stack space left which will be used
/// to determine whether a stack switch should be made or not.
pub fn remaining_stack() -> Option<usize> {
let current_ptr = current_stack_ptr();
get_stack_limit().map(|limit| current_ptr - limit)
}
psm_stack_information!(
yes {
fn current_stack_ptr() -> usize {
psm::stack_pointer() as usize
}
}
no {
#[inline(always)]
fn current_stack_ptr() -> usize {
unsafe {
let mut x = std::mem::MaybeUninit::<u8>::uninit();
// Unlikely to be ever exercised. As a fallback we execute a volatile read to a
// local (to hopefully defeat the optimisations that would make this local a static
// global) and take its address. This way we get a very approximate address of the
// current frame.
x.as_mut_ptr().write_volatile(42);
x.as_ptr() as usize
}
}
}
);
thread_local! {
static STACK_LIMIT: Cell<Option<usize>> = Cell::new(unsafe {
guess_os_stack_limit()
})
}
#[inline(always)]
fn get_stack_limit() -> Option<usize> {
STACK_LIMIT.with(|s| s.get())
}
#[inline(always)]
#[allow(unused)]
fn set_stack_limit(l: Option<usize>) {
STACK_LIMIT.with(|s| s.set(l))
}
psm_stack_manipulation! {
yes {
struct StackRestoreGuard {
new_stack: *mut std::ffi::c_void,
stack_bytes: usize,
old_stack_limit: Option<usize>,
}
impl StackRestoreGuard {
#[cfg(target_arch = "wasm32")]
unsafe fn new(stack_bytes: usize, _page_size: usize) -> StackRestoreGuard {
let layout = std::alloc::Layout::from_size_align(stack_bytes, 16).unwrap();
let ptr = std::alloc::alloc(layout);
assert!(!ptr.is_null(), "unable to allocate stack");
StackRestoreGuard {
new_stack: ptr as *mut _,
stack_bytes,
old_stack_limit: get_stack_limit(),
}
}
#[cfg(not(target_arch = "wasm32"))]
unsafe fn new(stack_bytes: usize, page_size: usize) -> StackRestoreGuard {
let new_stack = libc::mmap(
std::ptr::null_mut(),
stack_bytes,
libc::PROT_NONE,
libc::MAP_PRIVATE |
libc::MAP_ANON,
-1, // Some implementations assert fd = -1 if MAP_ANON is specified
0
);
if new_stack == libc::MAP_FAILED {
let error = std::io::Error::last_os_error();
panic!("allocating stack failed with: {}", error)
}
let guard = StackRestoreGuard {
new_stack,
stack_bytes,
old_stack_limit: get_stack_limit(),
};
let above_guard_page = new_stack.add(page_size);
#[cfg(not(target_os = "openbsd"))]
let result = libc::mprotect(
above_guard_page,
stack_bytes - page_size,
libc::PROT_READ | libc::PROT_WRITE
);
#[cfg(target_os = "openbsd")]
let result = if libc::mmap(
above_guard_page,
stack_bytes - page_size,
libc::PROT_READ | libc::PROT_WRITE,
libc::MAP_FIXED | libc::MAP_PRIVATE | libc::MAP_ANON | libc::MAP_STACK,
-1,
0) == above_guard_page {
0
} else {
-1
};
if result == -1 {
let error = std::io::Error::last_os_error();
drop(guard);
panic!("setting stack permissions failed with: {}", error)
}
guard
}
}
impl Drop for StackRestoreGuard {
fn drop(&mut self) {
#[cfg(target_arch = "wasm32")]
unsafe {
std::alloc::dealloc(
self.new_stack as *mut u8,
std::alloc::Layout::from_size_align_unchecked(self.stack_bytes, 16),
);
}
#[cfg(not(target_arch = "wasm32"))]
unsafe {
// FIXME: check the error code and decide what to do with it.
// Perhaps a debug_assertion?
libc::munmap(self.new_stack, self.stack_bytes);
}
set_stack_limit(self.old_stack_limit);
}
}
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
// Calculate a number of pages we want to allocate for the new stack.
// For maximum portability we want to produce a stack that is aligned to a page and has
// a size that’s a multiple of page size. Furthermore we want to allocate two extras pages
// for the stack guard. To achieve that we do our calculations in number of pages and
// convert to bytes last.
let page_size = page_size();
let requested_pages = stack_size
.checked_add(page_size - 1)
.expect("unreasonably large stack requested") / page_size;
let stack_pages = std::cmp::max(1, requested_pages) + 2;
let stack_bytes = stack_pages.checked_mul(page_size)
.expect("unreasonably large stack requested");
// Next, there are a couple of approaches to how we allocate the new stack. We take the
// most obvious path and use `mmap`. We also `mprotect` a guard page into our
// allocation.
//
// We use a guard pattern to ensure we deallocate the allocated stack when we leave
// this function and also try to uphold various safety invariants required by `psm`
// (such as not unwinding from the callback we pass to it).
//
// Other than that this code has no meaningful gotchas.
unsafe {
let guard = StackRestoreGuard::new(stack_bytes, page_size);
let above_guard_page = guard.new_stack.add(page_size);
set_stack_limit(Some(above_guard_page as usize));
let panic = psm::on_stack(above_guard_page as *mut _, stack_size, move || {
std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback)).err()
});
drop(guard);
if let Some(p) = panic {
std::panic::resume_unwind(p);
}
}
}
fn page_size() -> usize {
// FIXME: consider caching the page size.
#[cfg(not(target_arch = "wasm32"))]
unsafe { libc::sysconf(libc::_SC_PAGE_SIZE) as usize }
#[cfg(target_arch = "wasm32")]
{ 65536 }
}
}
no {
#[cfg(not(windows))]
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
drop(stack_size);
callback();
}
}
}
cfg_if! {
if #[cfg(windows)] {
use std::ptr;
use std::io;
use libc::c_void;
use windows_sys::Win32::System::Threading::{SwitchToFiber, IsThreadAFiber, ConvertThreadToFiber,
CreateFiber, DeleteFiber, ConvertFiberToThread, SetThreadStackGuarantee
};
use windows_sys::Win32::Foundation::BOOL;
use windows_sys::Win32::System::Memory::VirtualQuery;
// Make sure the libstacker.a (implemented in C) is linked.
// See https://github.com/rust-lang/rust/issues/65610
#[link(name="stacker")]
extern {
fn __stacker_get_current_fiber() -> *mut c_void;
}
struct FiberInfo<F> {
callback: std::mem::MaybeUninit<F>,
panic: Option<Box<dyn std::any::Any + Send + 'static>>,
parent_fiber: *mut c_void,
}
unsafe extern "system" fn fiber_proc<F: FnOnce()>(data: *mut c_void) {
// This function is the entry point to our inner fiber, and as argument we get an
// instance of `FiberInfo`. We will set-up the "runtime" for the callback and execute
// it.
let data = &mut *(data as *mut FiberInfo<F>);
let old_stack_limit = get_stack_limit();
set_stack_limit(guess_os_stack_limit());
let callback = data.callback.as_ptr();
data.panic = std::panic::catch_unwind(std::panic::AssertUnwindSafe(callback.read())).err();
// Restore to the previous Fiber
set_stack_limit(old_stack_limit);
SwitchToFiber(data.parent_fiber);
}
fn _grow(stack_size: usize, callback: &mut dyn FnMut()) {
// Fibers (or stackful coroutines) is the only official way to create new stacks on the
// same thread on Windows. So in order to extend the stack we create fiber and switch
// to it so we can use it's stack. After running `callback` within our fiber, we switch
// back to the current stack and destroy the fiber and its associated stack.
unsafe {
let was_fiber = IsThreadAFiber() == 1 as BOOL;
let mut data = FiberInfo {
callback: std::mem::MaybeUninit::new(callback),
panic: None,
parent_fiber: {
if was_fiber {
// Get a handle to the current fiber. We need to use a C implementation
// for this as GetCurrentFiber is an header only function.
__stacker_get_current_fiber()
} else {
// Convert the current thread to a fiber, so we are able to switch back
// to the current stack. Threads coverted to fibers still act like
// regular threads, but they have associated fiber data. We later
// convert it back to a regular thread and free the fiber data.
ConvertThreadToFiber(ptr::null_mut())
}
},
};
if data.parent_fiber.is_null() {
panic!("unable to convert thread to fiber: {}", io::Error::last_os_error());
}
let fiber = CreateFiber(
stack_size as usize,
Some(fiber_proc::<&mut dyn FnMut()>),
&mut data as *mut FiberInfo<&mut dyn FnMut()> as *mut _,
);
if fiber.is_null() {
panic!("unable to allocate fiber: {}", io::Error::last_os_error());
}
// Switch to the fiber we created. This changes stacks and starts executing
// fiber_proc on it. fiber_proc will run `callback` and then switch back to run the
// next statement.
SwitchToFiber(fiber);
DeleteFiber(fiber);
// Clean-up.
if !was_fiber && ConvertFiberToThread() == 0 {
// FIXME: Perhaps should not panic here?
panic!("unable to convert back to thread: {}", io::Error::last_os_error());
}
if let Some(p) = data.panic {
std::panic::resume_unwind(p);
}
}
}
#[inline(always)]
fn get_thread_stack_guarantee() -> usize {
let min_guarantee = if cfg!(target_pointer_width = "32") {
0x1000
} else {
0x2000
};
let mut stack_guarantee = 0;
unsafe {
// Read the current thread stack guarantee
// This is the stack reserved for stack overflow
// exception handling.
// This doesn't return the true value so we need
// some further logic to calculate the real stack
// guarantee. This logic is what is used on x86-32 and
// x86-64 Windows 10. Other versions and platforms may differ
SetThreadStackGuarantee(&mut stack_guarantee)
};
std::cmp::max(stack_guarantee, min_guarantee) as usize + 0x1000
}
#[inline(always)]
unsafe fn guess_os_stack_limit() -> Option<usize> {
// Query the allocation which contains our stack pointer in order
// to discover the size of the stack
//
// FIXME: we could read stack base from the TIB, specifically the 3rd element of it.
type QueryT = windows_sys::Win32::System::Memory::MEMORY_BASIC_INFORMATION;
let mut mi = std::mem::MaybeUninit::<QueryT>::uninit();
VirtualQuery(
psm::stack_pointer() as *const _,
mi.as_mut_ptr(),
std::mem::size_of::<QueryT>() as usize,
);
Some(mi.assume_init().AllocationBase as usize + get_thread_stack_guarantee() + 0x1000)
}
} else if #[cfg(any(target_os = "linux", target_os="solaris", target_os = "netbsd"))] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
assert_eq!(libc::pthread_getattr_np(libc::pthread_self(),
attr.as_mut_ptr()), 0);
let mut stackaddr = std::ptr::null_mut();
let mut stacksize = 0;
assert_eq!(libc::pthread_attr_getstack(
attr.as_ptr(), &mut stackaddr, &mut stacksize
), 0);
assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
Some(stackaddr as usize)
}
} else if #[cfg(any(target_os = "freebsd", target_os = "dragonfly", target_os = "illumos"))] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
let mut attr = std::mem::MaybeUninit::<libc::pthread_attr_t>::uninit();
assert_eq!(libc::pthread_attr_init(attr.as_mut_ptr()), 0);
assert_eq!(libc::pthread_attr_get_np(libc::pthread_self(), attr.as_mut_ptr()), 0);
let mut stackaddr = std::ptr::null_mut();
let mut stacksize = 0;
assert_eq!(libc::pthread_attr_getstack(
attr.as_ptr(), &mut stackaddr, &mut stacksize
), 0);
assert_eq!(libc::pthread_attr_destroy(attr.as_mut_ptr()), 0);
Some(stackaddr as usize)
}
} else if #[cfg(target_os = "openbsd")] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
let mut stackinfo = std::mem::MaybeUninit::<libc::stack_t>::uninit();
assert_eq!(libc::pthread_stackseg_np(libc::pthread_self(), stackinfo.as_mut_ptr()), 0);
Some(stackinfo.assume_init().ss_sp as usize - stackinfo.assume_init().ss_size)
}
} else if #[cfg(target_os = "macos")] {
unsafe fn guess_os_stack_limit() -> Option<usize> {
Some(libc::pthread_get_stackaddr_np(libc::pthread_self()) as usize -
libc::pthread_get_stacksize_np(libc::pthread_self()) as usize)
}
} else {
// fallback for other platforms is to always increase the stack if we're on
// the root stack. After we increased the stack once, we know the new stack
// size and don't need this pessimization anymore
#[inline(always)]
unsafe fn guess_os_stack_limit() -> Option<usize> {
None
}
}
}