use super::*; | |
use core::convert::{TryFrom, TryInto}; | |
#[cfg(feature = "serde")] | |
use core::marker::PhantomData; | |
#[cfg(feature = "serde")] | |
use serde::de::{ | |
Deserialize, Deserializer, Error as DeserializeError, SeqAccess, Visitor, | |
}; | |
#[cfg(feature = "serde")] | |
use serde::ser::{Serialize, SerializeSeq, Serializer}; | |
/// Helper to make an `ArrayVec`. | |
/// | |
/// You specify the backing array type, and optionally give all the elements you | |
/// want to initially place into the array. | |
/// | |
/// ```rust | |
/// use tinyvec::*; | |
/// | |
/// // The backing array type can be specified in the macro call | |
/// let empty_av = array_vec!([u8; 16]); | |
/// let some_ints = array_vec!([i32; 4] => 1, 2, 3); | |
/// | |
/// // Or left to inference | |
/// let empty_av: ArrayVec<[u8; 10]> = array_vec!(); | |
/// let some_ints: ArrayVec<[u8; 10]> = array_vec!(5, 6, 7, 8); | |
/// ``` | |
#[macro_export] | |
macro_rules! array_vec { | |
($array_type:ty => $($elem:expr),* $(,)?) => { | |
{ | |
let mut av: $crate::ArrayVec<$array_type> = Default::default(); | |
$( av.push($elem); )* | |
av | |
} | |
}; | |
($array_type:ty) => { | |
$crate::ArrayVec::<$array_type>::default() | |
}; | |
($($elem:expr),*) => { | |
$crate::array_vec!(_ => $($elem),*) | |
}; | |
($elem:expr; $n:expr) => { | |
$crate::ArrayVec::from([$elem; $n]) | |
}; | |
() => { | |
$crate::array_vec!(_) | |
}; | |
} | |
/// An array-backed, vector-like data structure. | |
/// | |
/// * `ArrayVec` has a fixed capacity, equal to the array size. | |
/// * `ArrayVec` has a variable length, as you add and remove elements. Attempts | |
/// to fill the vec beyond its capacity will cause a panic. | |
/// * All of the vec's array slots are always initialized in terms of Rust's | |
/// memory model. When you remove a element from a location, the old value at | |
/// that location is replaced with the type's default value. | |
/// | |
/// The overall API of this type is intended to, as much as possible, emulate | |
/// the API of the [`Vec`](https://doc.rust-lang.org/alloc/vec/struct.Vec.html) | |
/// type. | |
/// | |
/// ## Construction | |
/// | |
/// You can use the `array_vec!` macro similarly to how you might use the `vec!` | |
/// macro. Specify the array type, then optionally give all the initial values | |
/// you want to have. | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let some_ints = array_vec!([i32; 4] => 1, 2, 3); | |
/// assert_eq!(some_ints.len(), 3); | |
/// ``` | |
/// | |
/// The [`default`](ArrayVec::new) for an `ArrayVec` is to have a default | |
/// array with length 0. The [`new`](ArrayVec::new) method is the same as | |
/// calling `default` | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let some_ints = ArrayVec::<[i32; 7]>::default(); | |
/// assert_eq!(some_ints.len(), 0); | |
/// | |
/// let more_ints = ArrayVec::<[i32; 7]>::new(); | |
/// assert_eq!(some_ints, more_ints); | |
/// ``` | |
/// | |
/// If you have an array and want the _whole thing_ so count as being "in" the | |
/// new `ArrayVec` you can use one of the `from` implementations. If you want | |
/// _part of_ the array then you can use | |
/// [`from_array_len`](ArrayVec::from_array_len): | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let some_ints = ArrayVec::from([5, 6, 7, 8]); | |
/// assert_eq!(some_ints.len(), 4); | |
/// | |
/// let more_ints = ArrayVec::from_array_len([5, 6, 7, 8], 2); | |
/// assert_eq!(more_ints.len(), 2); | |
/// | |
/// let no_ints: ArrayVec<[u8; 5]> = ArrayVec::from_array_empty([1, 2, 3, 4, 5]); | |
/// assert_eq!(no_ints.len(), 0); | |
/// ``` | |
#[repr(C)] | |
pub struct ArrayVec<A> { | |
len: u16, | |
pub(crate) data: A, | |
} | |
impl<A> Clone for ArrayVec<A> | |
where | |
A: Array + Clone, | |
A::Item: Clone, | |
{ | |
#[inline] | |
fn clone(&self) -> Self { | |
Self { data: self.data.clone(), len: self.len } | |
} | |
#[inline] | |
fn clone_from(&mut self, o: &Self) { | |
let iter = self | |
.data | |
.as_slice_mut() | |
.iter_mut() | |
.zip(o.data.as_slice()) | |
.take(self.len.max(o.len) as usize); | |
for (dst, src) in iter { | |
dst.clone_from(src) | |
} | |
if let Some(to_drop) = | |
self.data.as_slice_mut().get_mut((o.len as usize)..(self.len as usize)) | |
{ | |
to_drop.iter_mut().for_each(|x| drop(take(x))); | |
} | |
self.len = o.len; | |
} | |
} | |
impl<A> Copy for ArrayVec<A> | |
where | |
A: Array + Copy, | |
A::Item: Copy, | |
{ | |
} | |
impl<A: Array> Default for ArrayVec<A> { | |
fn default() -> Self { | |
Self { len: 0, data: A::default() } | |
} | |
} | |
impl<A: Array> Deref for ArrayVec<A> { | |
type Target = [A::Item]; | |
#[inline(always)] | |
#[must_use] | |
fn deref(&self) -> &Self::Target { | |
&self.data.as_slice()[..self.len as usize] | |
} | |
} | |
impl<A: Array> DerefMut for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
fn deref_mut(&mut self) -> &mut Self::Target { | |
&mut self.data.as_slice_mut()[..self.len as usize] | |
} | |
} | |
impl<A: Array, I: SliceIndex<[A::Item]>> Index<I> for ArrayVec<A> { | |
type Output = <I as SliceIndex<[A::Item]>>::Output; | |
#[inline(always)] | |
#[must_use] | |
fn index(&self, index: I) -> &Self::Output { | |
&self.deref()[index] | |
} | |
} | |
impl<A: Array, I: SliceIndex<[A::Item]>> IndexMut<I> for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
fn index_mut(&mut self, index: I) -> &mut Self::Output { | |
&mut self.deref_mut()[index] | |
} | |
} | |
#[cfg(feature = "serde")] | |
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))] | |
impl<A: Array> Serialize for ArrayVec<A> | |
where | |
A::Item: Serialize, | |
{ | |
#[must_use] | |
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> | |
where | |
S: Serializer, | |
{ | |
let mut seq = serializer.serialize_seq(Some(self.len()))?; | |
for element in self.iter() { | |
seq.serialize_element(element)?; | |
} | |
seq.end() | |
} | |
} | |
#[cfg(feature = "serde")] | |
#[cfg_attr(docs_rs, doc(cfg(feature = "serde")))] | |
impl<'de, A: Array> Deserialize<'de> for ArrayVec<A> | |
where | |
A::Item: Deserialize<'de>, | |
{ | |
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error> | |
where | |
D: Deserializer<'de>, | |
{ | |
deserializer.deserialize_seq(ArrayVecVisitor(PhantomData)) | |
} | |
} | |
#[cfg(all(feature = "arbitrary", feature = "nightly_const_generics"))] | |
#[cfg_attr( | |
docs_rs, | |
doc(cfg(all(feature = "arbitrary", feature = "nightly_const_generics"))) | |
)] | |
impl<'a, T, const N: usize> arbitrary::Arbitrary<'a> for ArrayVec<[T; N]> | |
where | |
T: arbitrary::Arbitrary<'a> + Default, | |
{ | |
fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<Self> { | |
let v = <[T; N]>::arbitrary(u)?; | |
let av = ArrayVec::from(v); | |
Ok(av) | |
} | |
} | |
impl<A: Array> ArrayVec<A> { | |
/// Move all values from `other` into this vec. | |
/// | |
/// ## Panics | |
/// * If the vec overflows its capacity | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 10] => 1, 2, 3); | |
/// let mut av2 = array_vec!([i32; 10] => 4, 5, 6); | |
/// av.append(&mut av2); | |
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); | |
/// assert_eq!(av2, &[][..]); | |
/// ``` | |
#[inline] | |
pub fn append(&mut self, other: &mut Self) { | |
assert!( | |
self.try_append(other).is_none(), | |
"ArrayVec::append> total length {} exceeds capacity {}!", | |
self.len() + other.len(), | |
A::CAPACITY | |
); | |
} | |
/// Move all values from `other` into this vec. | |
/// If appending would overflow the capacity, Some(other) is returned. | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 7] => 1, 2, 3); | |
/// let mut av2 = array_vec!([i32; 7] => 4, 5, 6); | |
/// av.append(&mut av2); | |
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); | |
/// assert_eq!(av2, &[][..]); | |
/// | |
/// let mut av3 = array_vec!([i32; 7] => 7, 8, 9); | |
/// assert!(av.try_append(&mut av3).is_some()); | |
/// assert_eq!(av, &[1, 2, 3, 4, 5, 6][..]); | |
/// assert_eq!(av3, &[7, 8, 9][..]); | |
/// ``` | |
#[inline] | |
pub fn try_append<'other>( | |
&mut self, other: &'other mut Self, | |
) -> Option<&'other mut Self> { | |
let new_len = self.len() + other.len(); | |
if new_len > A::CAPACITY { | |
return Some(other); | |
} | |
let iter = other.iter_mut().map(take); | |
for item in iter { | |
self.push(item); | |
} | |
other.set_len(0); | |
return None; | |
} | |
/// A `*mut` pointer to the backing array. | |
/// | |
/// ## Safety | |
/// | |
/// This pointer has provenance over the _entire_ backing array. | |
#[inline(always)] | |
#[must_use] | |
pub fn as_mut_ptr(&mut self) -> *mut A::Item { | |
self.data.as_slice_mut().as_mut_ptr() | |
} | |
/// Performs a `deref_mut`, into unique slice form. | |
#[inline(always)] | |
#[must_use] | |
pub fn as_mut_slice(&mut self) -> &mut [A::Item] { | |
self.deref_mut() | |
} | |
/// A `*const` pointer to the backing array. | |
/// | |
/// ## Safety | |
/// | |
/// This pointer has provenance over the _entire_ backing array. | |
#[inline(always)] | |
#[must_use] | |
pub fn as_ptr(&self) -> *const A::Item { | |
self.data.as_slice().as_ptr() | |
} | |
/// Performs a `deref`, into shared slice form. | |
#[inline(always)] | |
#[must_use] | |
pub fn as_slice(&self) -> &[A::Item] { | |
self.deref() | |
} | |
/// The capacity of the `ArrayVec`. | |
/// | |
/// This is fixed based on the array type, but can't yet be made a `const fn` | |
/// on Stable Rust. | |
#[inline(always)] | |
#[must_use] | |
pub fn capacity(&self) -> usize { | |
// Note: This shouldn't use A::CAPACITY, because unsafe code can't rely on | |
// any Array invariants. This ensures that at the very least, the returned | |
// value is a valid length for a subslice of the backing array. | |
self.data.as_slice().len() | |
} | |
/// Truncates the `ArrayVec` down to length 0. | |
#[inline(always)] | |
pub fn clear(&mut self) { | |
self.truncate(0) | |
} | |
/// Creates a draining iterator that removes the specified range in the vector | |
/// and yields the removed items. | |
/// | |
/// ## Panics | |
/// * If the start is greater than the end | |
/// * If the end is past the edge of the vec. | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4] => 1, 2, 3); | |
/// let av2: ArrayVec<[i32; 4]> = av.drain(1..).collect(); | |
/// assert_eq!(av.as_slice(), &[1][..]); | |
/// assert_eq!(av2.as_slice(), &[2, 3][..]); | |
/// | |
/// av.drain(..); | |
/// assert_eq!(av.as_slice(), &[]); | |
/// ``` | |
#[inline] | |
pub fn drain<R>(&mut self, range: R) -> ArrayVecDrain<'_, A::Item> | |
where | |
R: RangeBounds<usize>, | |
{ | |
ArrayVecDrain::new(self, range) | |
} | |
/// Returns the inner array of the `ArrayVec`. | |
/// | |
/// This returns the full array, even if the `ArrayVec` length is currently | |
/// less than that. | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::{array_vec, ArrayVec}; | |
/// let mut favorite_numbers = array_vec!([i32; 5] => 87, 48, 33, 9, 26); | |
/// assert_eq!(favorite_numbers.clone().into_inner(), [87, 48, 33, 9, 26]); | |
/// | |
/// favorite_numbers.pop(); | |
/// assert_eq!(favorite_numbers.into_inner(), [87, 48, 33, 9, 0]); | |
/// ``` | |
/// | |
/// A use for this function is to build an array from an iterator by first | |
/// collecting it into an `ArrayVec`. | |
/// | |
/// ```rust | |
/// # use tinyvec::ArrayVec; | |
/// let arr_vec: ArrayVec<[i32; 10]> = (1..=3).cycle().take(10).collect(); | |
/// let inner = arr_vec.into_inner(); | |
/// assert_eq!(inner, [1, 2, 3, 1, 2, 3, 1, 2, 3, 1]); | |
/// ``` | |
#[inline] | |
pub fn into_inner(self) -> A { | |
self.data | |
} | |
/// Clone each element of the slice into this `ArrayVec`. | |
/// | |
/// ## Panics | |
/// * If the `ArrayVec` would overflow, this will panic. | |
#[inline] | |
pub fn extend_from_slice(&mut self, sli: &[A::Item]) | |
where | |
A::Item: Clone, | |
{ | |
if sli.is_empty() { | |
return; | |
} | |
let new_len = self.len as usize + sli.len(); | |
assert!( | |
new_len <= A::CAPACITY, | |
"ArrayVec::extend_from_slice> total length {} exceeds capacity {}!", | |
new_len, | |
A::CAPACITY | |
); | |
let target = &mut self.data.as_slice_mut()[self.len as usize..new_len]; | |
target.clone_from_slice(sli); | |
self.set_len(new_len); | |
} | |
/// Fill the vector until its capacity has been reached. | |
/// | |
/// Successively fills unused space in the spare slice of the vector with | |
/// elements from the iterator. It then returns the remaining iterator | |
/// without exhausting it. This also allows appending the head of an | |
/// infinite iterator. | |
/// | |
/// This is an alternative to `Extend::extend` method for cases where the | |
/// length of the iterator can not be checked. Since this vector can not | |
/// reallocate to increase its capacity, it is unclear what to do with | |
/// remaining elements in the iterator and the iterator itself. The | |
/// interface also provides no way to communicate this to the caller. | |
/// | |
/// ## Panics | |
/// * If the `next` method of the provided iterator panics. | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4]); | |
/// let mut to_inf = av.fill(0..); | |
/// assert_eq!(&av[..], [0, 1, 2, 3]); | |
/// assert_eq!(to_inf.next(), Some(4)); | |
/// ``` | |
#[inline] | |
pub fn fill<I: IntoIterator<Item = A::Item>>( | |
&mut self, iter: I, | |
) -> I::IntoIter { | |
// If this is written as a call to push for each element in iter, the | |
// compiler emits code that updates the length for every element. The | |
// additional complexity from that length update is worth nearly 2x in | |
// the runtime of this function. | |
let mut iter = iter.into_iter(); | |
let mut pushed = 0; | |
let to_take = self.capacity() - self.len(); | |
let target = &mut self.data.as_slice_mut()[self.len as usize..]; | |
for element in iter.by_ref().take(to_take) { | |
target[pushed] = element; | |
pushed += 1; | |
} | |
self.len += pushed as u16; | |
iter | |
} | |
/// Wraps up an array and uses the given length as the initial length. | |
/// | |
/// If you want to simply use the full array, use `from` instead. | |
/// | |
/// ## Panics | |
/// | |
/// * The length specified must be less than or equal to the capacity of the | |
/// array. | |
#[inline] | |
#[must_use] | |
#[allow(clippy::match_wild_err_arm)] | |
pub fn from_array_len(data: A, len: usize) -> Self { | |
match Self::try_from_array_len(data, len) { | |
Ok(out) => out, | |
Err(_) => panic!( | |
"ArrayVec::from_array_len> length {} exceeds capacity {}!", | |
len, | |
A::CAPACITY | |
), | |
} | |
} | |
/// Inserts an item at the position given, moving all following elements +1 | |
/// index. | |
/// | |
/// ## Panics | |
/// * If `index` > `len` | |
/// * If the capacity is exhausted | |
/// | |
/// ## Example | |
/// ```rust | |
/// use tinyvec::*; | |
/// let mut av = array_vec!([i32; 10] => 1, 2, 3); | |
/// av.insert(1, 4); | |
/// assert_eq!(av.as_slice(), &[1, 4, 2, 3]); | |
/// av.insert(4, 5); | |
/// assert_eq!(av.as_slice(), &[1, 4, 2, 3, 5]); | |
/// ``` | |
#[inline] | |
pub fn insert(&mut self, index: usize, item: A::Item) { | |
let x = self.try_insert(index, item); | |
assert!(x.is_none(), "ArrayVec::insert> capacity overflow!"); | |
} | |
/// Tries to insert an item at the position given, moving all following | |
/// elements +1 index. | |
/// Returns back the element if the capacity is exhausted, | |
/// otherwise returns None. | |
/// | |
/// ## Panics | |
/// * If `index` > `len` | |
/// | |
/// ## Example | |
/// ```rust | |
/// use tinyvec::*; | |
/// let mut av = array_vec!([&'static str; 4] => "one", "two", "three"); | |
/// av.insert(1, "four"); | |
/// assert_eq!(av.as_slice(), &["one", "four", "two", "three"]); | |
/// assert_eq!(av.try_insert(4, "five"), Some("five")); | |
/// ``` | |
#[inline] | |
pub fn try_insert( | |
&mut self, index: usize, mut item: A::Item, | |
) -> Option<A::Item> { | |
assert!( | |
index <= self.len as usize, | |
"ArrayVec::try_insert> index {} is out of bounds {}", | |
index, | |
self.len | |
); | |
// A previous implementation used self.try_push and slice::rotate_right | |
// rotate_right and rotate_left generate a huge amount of code and fail to | |
// inline; calling them here incurs the cost of all the cases they | |
// handle even though we're rotating a usually-small array by a constant | |
// 1 offset. This swap-based implementation benchmarks much better for | |
// small array lengths in particular. | |
if (self.len as usize) < A::CAPACITY { | |
self.len += 1; | |
} else { | |
return Some(item); | |
} | |
let target = &mut self.as_mut_slice()[index..]; | |
for i in 0..target.len() { | |
core::mem::swap(&mut item, &mut target[i]); | |
} | |
return None; | |
} | |
/// Checks if the length is 0. | |
#[inline(always)] | |
#[must_use] | |
pub fn is_empty(&self) -> bool { | |
self.len == 0 | |
} | |
/// The length of the `ArrayVec` (in elements). | |
#[inline(always)] | |
#[must_use] | |
pub fn len(&self) -> usize { | |
self.len as usize | |
} | |
/// Makes a new, empty `ArrayVec`. | |
#[inline(always)] | |
#[must_use] | |
pub fn new() -> Self { | |
Self::default() | |
} | |
/// Remove and return the last element of the vec, if there is one. | |
/// | |
/// ## Failure | |
/// * If the vec is empty you get `None`. | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 10] => 1, 2); | |
/// assert_eq!(av.pop(), Some(2)); | |
/// assert_eq!(av.pop(), Some(1)); | |
/// assert_eq!(av.pop(), None); | |
/// ``` | |
#[inline] | |
pub fn pop(&mut self) -> Option<A::Item> { | |
if self.len > 0 { | |
self.len -= 1; | |
let out = take(&mut self.data.as_slice_mut()[self.len as usize]); | |
Some(out) | |
} else { | |
None | |
} | |
} | |
/// Place an element onto the end of the vec. | |
/// | |
/// ## Panics | |
/// * If the length of the vec would overflow the capacity. | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 2]); | |
/// assert_eq!(&av[..], []); | |
/// av.push(1); | |
/// assert_eq!(&av[..], [1]); | |
/// av.push(2); | |
/// assert_eq!(&av[..], [1, 2]); | |
/// // av.push(3); this would overflow the ArrayVec and panic! | |
/// ``` | |
#[inline(always)] | |
pub fn push(&mut self, val: A::Item) { | |
let x = self.try_push(val); | |
assert!(x.is_none(), "ArrayVec::push> capacity overflow!"); | |
} | |
/// Tries to place an element onto the end of the vec.\ | |
/// Returns back the element if the capacity is exhausted, | |
/// otherwise returns None. | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 2]); | |
/// assert_eq!(av.as_slice(), []); | |
/// assert_eq!(av.try_push(1), None); | |
/// assert_eq!(&av[..], [1]); | |
/// assert_eq!(av.try_push(2), None); | |
/// assert_eq!(&av[..], [1, 2]); | |
/// assert_eq!(av.try_push(3), Some(3)); | |
/// ``` | |
#[inline(always)] | |
pub fn try_push(&mut self, val: A::Item) -> Option<A::Item> { | |
debug_assert!(self.len as usize <= A::CAPACITY); | |
let itemref = match self.data.as_slice_mut().get_mut(self.len as usize) { | |
None => return Some(val), | |
Some(x) => x, | |
}; | |
*itemref = val; | |
self.len += 1; | |
return None; | |
} | |
/// Removes the item at `index`, shifting all others down by one index. | |
/// | |
/// Returns the removed element. | |
/// | |
/// ## Panics | |
/// | |
/// * If the index is out of bounds. | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4] => 1, 2, 3); | |
/// assert_eq!(av.remove(1), 2); | |
/// assert_eq!(&av[..], [1, 3]); | |
/// ``` | |
#[inline] | |
pub fn remove(&mut self, index: usize) -> A::Item { | |
let targets: &mut [A::Item] = &mut self.deref_mut()[index..]; | |
let item = take(&mut targets[0]); | |
// A previous implementation used rotate_left | |
// rotate_right and rotate_left generate a huge amount of code and fail to | |
// inline; calling them here incurs the cost of all the cases they | |
// handle even though we're rotating a usually-small array by a constant | |
// 1 offset. This swap-based implementation benchmarks much better for | |
// small array lengths in particular. | |
for i in 0..targets.len() - 1 { | |
targets.swap(i, i + 1); | |
} | |
self.len -= 1; | |
item | |
} | |
/// As [`resize_with`](ArrayVec::resize_with) | |
/// and it clones the value as the closure. | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::*; | |
/// | |
/// let mut av = array_vec!([&str; 10] => "hello"); | |
/// av.resize(3, "world"); | |
/// assert_eq!(&av[..], ["hello", "world", "world"]); | |
/// | |
/// let mut av = array_vec!([i32; 10] => 1, 2, 3, 4); | |
/// av.resize(2, 0); | |
/// assert_eq!(&av[..], [1, 2]); | |
/// ``` | |
#[inline] | |
pub fn resize(&mut self, new_len: usize, new_val: A::Item) | |
where | |
A::Item: Clone, | |
{ | |
self.resize_with(new_len, || new_val.clone()) | |
} | |
/// Resize the vec to the new length. | |
/// | |
/// If it needs to be longer, it's filled with repeated calls to the provided | |
/// function. If it needs to be shorter, it's truncated. | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::*; | |
/// | |
/// let mut av = array_vec!([i32; 10] => 1, 2, 3); | |
/// av.resize_with(5, Default::default); | |
/// assert_eq!(&av[..], [1, 2, 3, 0, 0]); | |
/// | |
/// let mut av = array_vec!([i32; 10]); | |
/// let mut p = 1; | |
/// av.resize_with(4, || { | |
/// p *= 2; | |
/// p | |
/// }); | |
/// assert_eq!(&av[..], [2, 4, 8, 16]); | |
/// ``` | |
#[inline] | |
pub fn resize_with<F: FnMut() -> A::Item>( | |
&mut self, new_len: usize, mut f: F, | |
) { | |
match new_len.checked_sub(self.len as usize) { | |
None => self.truncate(new_len), | |
Some(new_elements) => { | |
for _ in 0..new_elements { | |
self.push(f()); | |
} | |
} | |
} | |
} | |
/// Walk the vec and keep only the elements that pass the predicate given. | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::*; | |
/// | |
/// let mut av = array_vec!([i32; 10] => 1, 1, 2, 3, 3, 4); | |
/// av.retain(|&x| x % 2 == 0); | |
/// assert_eq!(&av[..], [2, 4]); | |
/// ``` | |
#[inline] | |
pub fn retain<F: FnMut(&A::Item) -> bool>(&mut self, mut acceptable: F) { | |
// Drop guard to contain exactly the remaining elements when the test | |
// panics. | |
struct JoinOnDrop<'vec, Item> { | |
items: &'vec mut [Item], | |
done_end: usize, | |
// Start of tail relative to `done_end`. | |
tail_start: usize, | |
} | |
impl<Item> Drop for JoinOnDrop<'_, Item> { | |
fn drop(&mut self) { | |
self.items[self.done_end..].rotate_left(self.tail_start); | |
} | |
} | |
let mut rest = JoinOnDrop { | |
items: &mut self.data.as_slice_mut()[..self.len as usize], | |
done_end: 0, | |
tail_start: 0, | |
}; | |
let len = self.len as usize; | |
for idx in 0..len { | |
// Loop start invariant: idx = rest.done_end + rest.tail_start | |
if !acceptable(&rest.items[idx]) { | |
let _ = take(&mut rest.items[idx]); | |
self.len -= 1; | |
rest.tail_start += 1; | |
} else { | |
rest.items.swap(rest.done_end, idx); | |
rest.done_end += 1; | |
} | |
} | |
} | |
/// Forces the length of the vector to `new_len`. | |
/// | |
/// ## Panics | |
/// * If `new_len` is greater than the vec's capacity. | |
/// | |
/// ## Safety | |
/// * This is a fully safe operation! The inactive memory already counts as | |
/// "initialized" by Rust's rules. | |
/// * Other than "the memory is initialized" there are no other guarantees | |
/// regarding what you find in the inactive portion of the vec. | |
#[inline(always)] | |
pub fn set_len(&mut self, new_len: usize) { | |
if new_len > A::CAPACITY { | |
// Note(Lokathor): Technically we don't have to panic here, and we could | |
// just let some other call later on trigger a panic on accident when the | |
// length is wrong. However, it's a lot easier to catch bugs when things | |
// are more "fail-fast". | |
panic!( | |
"ArrayVec::set_len> new length {} exceeds capacity {}", | |
new_len, | |
A::CAPACITY | |
) | |
} | |
let new_len: u16 = new_len | |
.try_into() | |
.expect("ArrayVec::set_len> new length is not in range 0..=u16::MAX"); | |
self.len = new_len; | |
} | |
/// Splits the collection at the point given. | |
/// | |
/// * `[0, at)` stays in this vec | |
/// * `[at, len)` ends up in the new vec. | |
/// | |
/// ## Panics | |
/// * if at > len | |
/// | |
/// ## Example | |
/// | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4] => 1, 2, 3); | |
/// let av2 = av.split_off(1); | |
/// assert_eq!(&av[..], [1]); | |
/// assert_eq!(&av2[..], [2, 3]); | |
/// ``` | |
#[inline] | |
pub fn split_off(&mut self, at: usize) -> Self { | |
// FIXME: should this just use drain into the output? | |
if at > self.len() { | |
panic!( | |
"ArrayVec::split_off> at value {} exceeds length of {}", | |
at, self.len | |
); | |
} | |
let mut new = Self::default(); | |
let moves = &mut self.as_mut_slice()[at..]; | |
let split_len = moves.len(); | |
let targets = &mut new.data.as_slice_mut()[..split_len]; | |
moves.swap_with_slice(targets); | |
/* moves.len() <= u16::MAX, so these are surely in u16 range */ | |
new.len = split_len as u16; | |
self.len = at as u16; | |
new | |
} | |
/// Creates a splicing iterator that removes the specified range in the | |
/// vector, yields the removed items, and replaces them with elements from | |
/// the provided iterator. | |
/// | |
/// `splice` fuses the provided iterator, so elements after the first `None` | |
/// are ignored. | |
/// | |
/// ## Panics | |
/// * If the start is greater than the end. | |
/// * If the end is past the edge of the vec. | |
/// * If the provided iterator panics. | |
/// * If the new length would overflow the capacity of the array. Because | |
/// `ArrayVecSplice` adds elements to this vec in its destructor when | |
/// necessary, this panic would occur when it is dropped. | |
/// | |
/// ## Example | |
/// ```rust | |
/// use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4] => 1, 2, 3); | |
/// let av2: ArrayVec<[i32; 4]> = av.splice(1.., 4..=6).collect(); | |
/// assert_eq!(av.as_slice(), &[1, 4, 5, 6][..]); | |
/// assert_eq!(av2.as_slice(), &[2, 3][..]); | |
/// | |
/// av.splice(.., None); | |
/// assert_eq!(av.as_slice(), &[]); | |
/// ``` | |
#[inline] | |
pub fn splice<R, I>( | |
&mut self, range: R, replacement: I, | |
) -> ArrayVecSplice<'_, A, core::iter::Fuse<I::IntoIter>> | |
where | |
R: RangeBounds<usize>, | |
I: IntoIterator<Item = A::Item>, | |
{ | |
use core::ops::Bound; | |
let start = match range.start_bound() { | |
Bound::Included(x) => *x, | |
Bound::Excluded(x) => x.saturating_add(1), | |
Bound::Unbounded => 0, | |
}; | |
let end = match range.end_bound() { | |
Bound::Included(x) => x.saturating_add(1), | |
Bound::Excluded(x) => *x, | |
Bound::Unbounded => self.len(), | |
}; | |
assert!( | |
start <= end, | |
"ArrayVec::splice> Illegal range, {} to {}", | |
start, | |
end | |
); | |
assert!( | |
end <= self.len(), | |
"ArrayVec::splice> Range ends at {} but length is only {}!", | |
end, | |
self.len() | |
); | |
ArrayVecSplice { | |
removal_start: start, | |
removal_end: end, | |
parent: self, | |
replacement: replacement.into_iter().fuse(), | |
} | |
} | |
/// Remove an element, swapping the end of the vec into its place. | |
/// | |
/// ## Panics | |
/// * If the index is out of bounds. | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([&str; 4] => "foo", "bar", "quack", "zap"); | |
/// | |
/// assert_eq!(av.swap_remove(1), "bar"); | |
/// assert_eq!(&av[..], ["foo", "zap", "quack"]); | |
/// | |
/// assert_eq!(av.swap_remove(0), "foo"); | |
/// assert_eq!(&av[..], ["quack", "zap"]); | |
/// ``` | |
#[inline] | |
pub fn swap_remove(&mut self, index: usize) -> A::Item { | |
assert!( | |
index < self.len(), | |
"ArrayVec::swap_remove> index {} is out of bounds {}", | |
index, | |
self.len | |
); | |
if index == self.len() - 1 { | |
self.pop().unwrap() | |
} else { | |
let i = self.pop().unwrap(); | |
replace(&mut self[index], i) | |
} | |
} | |
/// Reduces the vec's length to the given value. | |
/// | |
/// If the vec is already shorter than the input, nothing happens. | |
#[inline] | |
pub fn truncate(&mut self, new_len: usize) { | |
if new_len >= self.len as usize { | |
return; | |
} | |
if needs_drop::<A::Item>() { | |
let len = self.len as usize; | |
self.data.as_slice_mut()[new_len..len] | |
.iter_mut() | |
.map(take) | |
.for_each(drop); | |
} | |
/* new_len is less than self.len */ | |
self.len = new_len as u16; | |
} | |
/// Wraps an array, using the given length as the starting length. | |
/// | |
/// If you want to use the whole length of the array, you can just use the | |
/// `From` impl. | |
/// | |
/// ## Failure | |
/// | |
/// If the given length is greater than the capacity of the array this will | |
/// error, and you'll get the array back in the `Err`. | |
#[inline] | |
pub fn try_from_array_len(data: A, len: usize) -> Result<Self, A> { | |
/* Note(Soveu): Should we allow A::CAPACITY > u16::MAX for now? */ | |
if len <= A::CAPACITY { | |
Ok(Self { data, len: len as u16 }) | |
} else { | |
Err(data) | |
} | |
} | |
} | |
impl<A> ArrayVec<A> { | |
/// Wraps up an array as a new empty `ArrayVec`. | |
/// | |
/// If you want to simply use the full array, use `from` instead. | |
/// | |
/// ## Examples | |
/// | |
/// This method in particular allows to create values for statics: | |
/// | |
/// ```rust | |
/// # use tinyvec::ArrayVec; | |
/// static DATA: ArrayVec<[u8; 5]> = ArrayVec::from_array_empty([0; 5]); | |
/// assert_eq!(DATA.len(), 0); | |
/// ``` | |
/// | |
/// But of course it is just an normal empty `ArrayVec`: | |
/// | |
/// ```rust | |
/// # use tinyvec::ArrayVec; | |
/// let mut data = ArrayVec::from_array_empty([1, 2, 3, 4]); | |
/// assert_eq!(&data[..], &[]); | |
/// data.push(42); | |
/// assert_eq!(&data[..], &[42]); | |
/// ``` | |
#[inline] | |
#[must_use] | |
pub const fn from_array_empty(data: A) -> Self { | |
Self { data, len: 0 } | |
} | |
} | |
#[cfg(feature = "grab_spare_slice")] | |
impl<A: Array> ArrayVec<A> { | |
/// Obtain the shared slice of the array _after_ the active memory. | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4]); | |
/// assert_eq!(av.grab_spare_slice().len(), 4); | |
/// av.push(10); | |
/// av.push(11); | |
/// av.push(12); | |
/// av.push(13); | |
/// assert_eq!(av.grab_spare_slice().len(), 0); | |
/// ``` | |
#[inline(always)] | |
pub fn grab_spare_slice(&self) -> &[A::Item] { | |
&self.data.as_slice()[self.len as usize..] | |
} | |
/// Obtain the mutable slice of the array _after_ the active memory. | |
/// | |
/// ## Example | |
/// ```rust | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 4]); | |
/// assert_eq!(av.grab_spare_slice_mut().len(), 4); | |
/// av.push(10); | |
/// av.push(11); | |
/// assert_eq!(av.grab_spare_slice_mut().len(), 2); | |
/// ``` | |
#[inline(always)] | |
pub fn grab_spare_slice_mut(&mut self) -> &mut [A::Item] { | |
&mut self.data.as_slice_mut()[self.len as usize..] | |
} | |
} | |
#[cfg(feature = "nightly_slice_partition_dedup")] | |
impl<A: Array> ArrayVec<A> { | |
/// De-duplicates the vec contents. | |
#[inline(always)] | |
pub fn dedup(&mut self) | |
where | |
A::Item: PartialEq, | |
{ | |
self.dedup_by(|a, b| a == b) | |
} | |
/// De-duplicates the vec according to the predicate given. | |
#[inline(always)] | |
pub fn dedup_by<F>(&mut self, same_bucket: F) | |
where | |
F: FnMut(&mut A::Item, &mut A::Item) -> bool, | |
{ | |
let len = { | |
let (dedup, _) = self.as_mut_slice().partition_dedup_by(same_bucket); | |
dedup.len() | |
}; | |
self.truncate(len); | |
} | |
/// De-duplicates the vec according to the key selector given. | |
#[inline(always)] | |
pub fn dedup_by_key<F, K>(&mut self, mut key: F) | |
where | |
F: FnMut(&mut A::Item) -> K, | |
K: PartialEq, | |
{ | |
self.dedup_by(|a, b| key(a) == key(b)) | |
} | |
} | |
/// Splicing iterator for `ArrayVec` | |
/// See [`ArrayVec::splice`](ArrayVec::<A>::splice) | |
pub struct ArrayVecSplice<'p, A: Array, I: Iterator<Item = A::Item>> { | |
parent: &'p mut ArrayVec<A>, | |
removal_start: usize, | |
removal_end: usize, | |
replacement: I, | |
} | |
impl<'p, A: Array, I: Iterator<Item = A::Item>> Iterator | |
for ArrayVecSplice<'p, A, I> | |
{ | |
type Item = A::Item; | |
#[inline] | |
fn next(&mut self) -> Option<A::Item> { | |
if self.removal_start < self.removal_end { | |
match self.replacement.next() { | |
Some(replacement) => { | |
let removed = core::mem::replace( | |
&mut self.parent[self.removal_start], | |
replacement, | |
); | |
self.removal_start += 1; | |
Some(removed) | |
} | |
None => { | |
let removed = self.parent.remove(self.removal_start); | |
self.removal_end -= 1; | |
Some(removed) | |
} | |
} | |
} else { | |
None | |
} | |
} | |
#[inline] | |
fn size_hint(&self) -> (usize, Option<usize>) { | |
let len = self.len(); | |
(len, Some(len)) | |
} | |
} | |
impl<'p, A, I> ExactSizeIterator for ArrayVecSplice<'p, A, I> | |
where | |
A: Array, | |
I: Iterator<Item = A::Item>, | |
{ | |
#[inline] | |
fn len(&self) -> usize { | |
self.removal_end - self.removal_start | |
} | |
} | |
impl<'p, A, I> FusedIterator for ArrayVecSplice<'p, A, I> | |
where | |
A: Array, | |
I: Iterator<Item = A::Item>, | |
{ | |
} | |
impl<'p, A, I> DoubleEndedIterator for ArrayVecSplice<'p, A, I> | |
where | |
A: Array, | |
I: Iterator<Item = A::Item> + DoubleEndedIterator, | |
{ | |
#[inline] | |
fn next_back(&mut self) -> Option<A::Item> { | |
if self.removal_start < self.removal_end { | |
match self.replacement.next_back() { | |
Some(replacement) => { | |
let removed = core::mem::replace( | |
&mut self.parent[self.removal_end - 1], | |
replacement, | |
); | |
self.removal_end -= 1; | |
Some(removed) | |
} | |
None => { | |
let removed = self.parent.remove(self.removal_end - 1); | |
self.removal_end -= 1; | |
Some(removed) | |
} | |
} | |
} else { | |
None | |
} | |
} | |
} | |
impl<'p, A: Array, I: Iterator<Item = A::Item>> Drop | |
for ArrayVecSplice<'p, A, I> | |
{ | |
fn drop(&mut self) { | |
for _ in self.by_ref() {} | |
// FIXME: reserve lower bound of size_hint | |
for replacement in self.replacement.by_ref() { | |
self.parent.insert(self.removal_end, replacement); | |
self.removal_end += 1; | |
} | |
} | |
} | |
impl<A: Array> AsMut<[A::Item]> for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
fn as_mut(&mut self) -> &mut [A::Item] { | |
&mut *self | |
} | |
} | |
impl<A: Array> AsRef<[A::Item]> for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
fn as_ref(&self) -> &[A::Item] { | |
&*self | |
} | |
} | |
impl<A: Array> Borrow<[A::Item]> for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
fn borrow(&self) -> &[A::Item] { | |
&*self | |
} | |
} | |
impl<A: Array> BorrowMut<[A::Item]> for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
fn borrow_mut(&mut self) -> &mut [A::Item] { | |
&mut *self | |
} | |
} | |
impl<A: Array> Extend<A::Item> for ArrayVec<A> { | |
#[inline] | |
fn extend<T: IntoIterator<Item = A::Item>>(&mut self, iter: T) { | |
for t in iter { | |
self.push(t) | |
} | |
} | |
} | |
impl<A: Array> From<A> for ArrayVec<A> { | |
#[inline(always)] | |
#[must_use] | |
/// The output has a length equal to the full array. | |
/// | |
/// If you want to select a length, use | |
/// [`from_array_len`](ArrayVec::from_array_len) | |
fn from(data: A) -> Self { | |
let len: u16 = data | |
.as_slice() | |
.len() | |
.try_into() | |
.expect("ArrayVec::from> lenght must be in range 0..=u16::MAX"); | |
Self { len, data } | |
} | |
} | |
/// The error type returned when a conversion from a slice to an [`ArrayVec`] | |
/// fails. | |
#[derive(Debug, Copy, Clone)] | |
pub struct TryFromSliceError(()); | |
impl<T, A> TryFrom<&'_ [T]> for ArrayVec<A> | |
where | |
T: Clone + Default, | |
A: Array<Item = T>, | |
{ | |
type Error = TryFromSliceError; | |
#[inline] | |
#[must_use] | |
/// The output has a length equal to that of the slice, with the same capacity | |
/// as `A`. | |
fn try_from(slice: &[T]) -> Result<Self, Self::Error> { | |
if slice.len() > A::CAPACITY { | |
Err(TryFromSliceError(())) | |
} else { | |
let mut arr = ArrayVec::new(); | |
// We do not use ArrayVec::extend_from_slice, because it looks like LLVM | |
// fails to deduplicate all the length-checking logic between the | |
// above if and the contents of that method, thus producing much | |
// slower code. Unlike many of the other optimizations in this | |
// crate, this one is worth keeping an eye on. I see no reason, for | |
// any element type, that these should produce different code. But | |
// they do. (rustc 1.51.0) | |
arr.set_len(slice.len()); | |
arr.as_mut_slice().clone_from_slice(slice); | |
Ok(arr) | |
} | |
} | |
} | |
impl<A: Array> FromIterator<A::Item> for ArrayVec<A> { | |
#[inline] | |
#[must_use] | |
fn from_iter<T: IntoIterator<Item = A::Item>>(iter: T) -> Self { | |
let mut av = Self::default(); | |
for i in iter { | |
av.push(i) | |
} | |
av | |
} | |
} | |
/// Iterator for consuming an `ArrayVec` and returning owned elements. | |
pub struct ArrayVecIterator<A: Array> { | |
base: u16, | |
tail: u16, | |
data: A, | |
} | |
impl<A: Array> ArrayVecIterator<A> { | |
/// Returns the remaining items of this iterator as a slice. | |
#[inline] | |
#[must_use] | |
pub fn as_slice(&self) -> &[A::Item] { | |
&self.data.as_slice()[self.base as usize..self.tail as usize] | |
} | |
} | |
impl<A: Array> FusedIterator for ArrayVecIterator<A> {} | |
impl<A: Array> Iterator for ArrayVecIterator<A> { | |
type Item = A::Item; | |
#[inline] | |
fn next(&mut self) -> Option<Self::Item> { | |
let slice = | |
&mut self.data.as_slice_mut()[self.base as usize..self.tail as usize]; | |
let itemref = slice.first_mut()?; | |
self.base += 1; | |
return Some(take(itemref)); | |
} | |
#[inline(always)] | |
#[must_use] | |
fn size_hint(&self) -> (usize, Option<usize>) { | |
let s = self.tail - self.base; | |
let s = s as usize; | |
(s, Some(s)) | |
} | |
#[inline(always)] | |
fn count(self) -> usize { | |
self.size_hint().0 | |
} | |
#[inline] | |
fn last(mut self) -> Option<Self::Item> { | |
self.next_back() | |
} | |
#[inline] | |
fn nth(&mut self, n: usize) -> Option<A::Item> { | |
let slice = &mut self.data.as_slice_mut(); | |
let slice = &mut slice[self.base as usize..self.tail as usize]; | |
if let Some(x) = slice.get_mut(n) { | |
/* n is in range [0 .. self.tail - self.base) so in u16 range */ | |
self.base += n as u16 + 1; | |
return Some(take(x)); | |
} | |
self.base = self.tail; | |
return None; | |
} | |
} | |
impl<A: Array> DoubleEndedIterator for ArrayVecIterator<A> { | |
#[inline] | |
fn next_back(&mut self) -> Option<Self::Item> { | |
let slice = | |
&mut self.data.as_slice_mut()[self.base as usize..self.tail as usize]; | |
let item = slice.last_mut()?; | |
self.tail -= 1; | |
return Some(take(item)); | |
} | |
#[cfg(feature = "rustc_1_40")] | |
#[inline] | |
fn nth_back(&mut self, n: usize) -> Option<Self::Item> { | |
let base = self.base as usize; | |
let tail = self.tail as usize; | |
let slice = &mut self.data.as_slice_mut()[base..tail]; | |
let n = n.saturating_add(1); | |
if let Some(n) = slice.len().checked_sub(n) { | |
let item = &mut slice[n]; | |
/* n is in [0..self.tail - self.base] range, so in u16 range */ | |
self.tail = self.base + n as u16; | |
return Some(take(item)); | |
} | |
self.tail = self.base; | |
return None; | |
} | |
} | |
impl<A: Array> Debug for ArrayVecIterator<A> | |
where | |
A::Item: Debug, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter<'_>) -> core::fmt::Result { | |
f.debug_tuple("ArrayVecIterator").field(&self.as_slice()).finish() | |
} | |
} | |
impl<A: Array> IntoIterator for ArrayVec<A> { | |
type Item = A::Item; | |
type IntoIter = ArrayVecIterator<A>; | |
#[inline(always)] | |
#[must_use] | |
fn into_iter(self) -> Self::IntoIter { | |
ArrayVecIterator { base: 0, tail: self.len, data: self.data } | |
} | |
} | |
impl<'a, A: Array> IntoIterator for &'a mut ArrayVec<A> { | |
type Item = &'a mut A::Item; | |
type IntoIter = core::slice::IterMut<'a, A::Item>; | |
#[inline(always)] | |
#[must_use] | |
fn into_iter(self) -> Self::IntoIter { | |
self.iter_mut() | |
} | |
} | |
impl<'a, A: Array> IntoIterator for &'a ArrayVec<A> { | |
type Item = &'a A::Item; | |
type IntoIter = core::slice::Iter<'a, A::Item>; | |
#[inline(always)] | |
#[must_use] | |
fn into_iter(self) -> Self::IntoIter { | |
self.iter() | |
} | |
} | |
impl<A: Array> PartialEq for ArrayVec<A> | |
where | |
A::Item: PartialEq, | |
{ | |
#[inline] | |
#[must_use] | |
fn eq(&self, other: &Self) -> bool { | |
self.as_slice().eq(other.as_slice()) | |
} | |
} | |
impl<A: Array> Eq for ArrayVec<A> where A::Item: Eq {} | |
impl<A: Array> PartialOrd for ArrayVec<A> | |
where | |
A::Item: PartialOrd, | |
{ | |
#[inline] | |
#[must_use] | |
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> { | |
self.as_slice().partial_cmp(other.as_slice()) | |
} | |
} | |
impl<A: Array> Ord for ArrayVec<A> | |
where | |
A::Item: Ord, | |
{ | |
#[inline] | |
#[must_use] | |
fn cmp(&self, other: &Self) -> core::cmp::Ordering { | |
self.as_slice().cmp(other.as_slice()) | |
} | |
} | |
impl<A: Array> PartialEq<&A> for ArrayVec<A> | |
where | |
A::Item: PartialEq, | |
{ | |
#[inline] | |
#[must_use] | |
fn eq(&self, other: &&A) -> bool { | |
self.as_slice().eq(other.as_slice()) | |
} | |
} | |
impl<A: Array> PartialEq<&[A::Item]> for ArrayVec<A> | |
where | |
A::Item: PartialEq, | |
{ | |
#[inline] | |
#[must_use] | |
fn eq(&self, other: &&[A::Item]) -> bool { | |
self.as_slice().eq(*other) | |
} | |
} | |
impl<A: Array> Hash for ArrayVec<A> | |
where | |
A::Item: Hash, | |
{ | |
#[inline] | |
fn hash<H: Hasher>(&self, state: &mut H) { | |
self.as_slice().hash(state) | |
} | |
} | |
#[cfg(feature = "experimental_write_impl")] | |
impl<A: Array<Item = u8>> core::fmt::Write for ArrayVec<A> { | |
fn write_str(&mut self, s: &str) -> core::fmt::Result { | |
let my_len = self.len(); | |
let str_len = s.as_bytes().len(); | |
if my_len + str_len <= A::CAPACITY { | |
let remainder = &mut self.data.as_slice_mut()[my_len..]; | |
let target = &mut remainder[..str_len]; | |
target.copy_from_slice(s.as_bytes()); | |
Ok(()) | |
} else { | |
Err(core::fmt::Error) | |
} | |
} | |
} | |
// // // // // // // // | |
// Formatting impls | |
// // // // // // // // | |
impl<A: Array> Binary for ArrayVec<A> | |
where | |
A::Item: Binary, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
Binary::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> Debug for ArrayVec<A> | |
where | |
A::Item: Debug, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
Debug::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> Display for ArrayVec<A> | |
where | |
A::Item: Display, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
Display::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> LowerExp for ArrayVec<A> | |
where | |
A::Item: LowerExp, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
LowerExp::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> LowerHex for ArrayVec<A> | |
where | |
A::Item: LowerHex, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
LowerHex::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> Octal for ArrayVec<A> | |
where | |
A::Item: Octal, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
Octal::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> Pointer for ArrayVec<A> | |
where | |
A::Item: Pointer, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
Pointer::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> UpperExp for ArrayVec<A> | |
where | |
A::Item: UpperExp, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
UpperExp::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
impl<A: Array> UpperHex for ArrayVec<A> | |
where | |
A::Item: UpperHex, | |
{ | |
#[allow(clippy::missing_inline_in_public_items)] | |
fn fmt(&self, f: &mut Formatter) -> core::fmt::Result { | |
write!(f, "[")?; | |
if f.alternate() { | |
write!(f, "\n ")?; | |
} | |
for (i, elem) in self.iter().enumerate() { | |
if i > 0 { | |
write!(f, ",{}", if f.alternate() { "\n " } else { " " })?; | |
} | |
UpperHex::fmt(elem, f)?; | |
} | |
if f.alternate() { | |
write!(f, ",\n")?; | |
} | |
write!(f, "]") | |
} | |
} | |
#[cfg(feature = "alloc")] | |
use alloc::vec::Vec; | |
#[cfg(feature = "alloc")] | |
impl<A: Array> ArrayVec<A> { | |
/// Drains all elements to a Vec, but reserves additional space | |
/// ``` | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 7] => 1, 2, 3); | |
/// let v = av.drain_to_vec_and_reserve(10); | |
/// assert_eq!(v, &[1, 2, 3]); | |
/// assert_eq!(v.capacity(), 13); | |
/// ``` | |
pub fn drain_to_vec_and_reserve(&mut self, n: usize) -> Vec<A::Item> { | |
let cap = n + self.len(); | |
let mut v = Vec::with_capacity(cap); | |
let iter = self.iter_mut().map(take); | |
v.extend(iter); | |
self.set_len(0); | |
return v; | |
} | |
/// Drains all elements to a Vec | |
/// ``` | |
/// # use tinyvec::*; | |
/// let mut av = array_vec!([i32; 7] => 1, 2, 3); | |
/// let v = av.drain_to_vec(); | |
/// assert_eq!(v, &[1, 2, 3]); | |
/// assert_eq!(v.capacity(), 3); | |
/// ``` | |
pub fn drain_to_vec(&mut self) -> Vec<A::Item> { | |
self.drain_to_vec_and_reserve(0) | |
} | |
} | |
#[cfg(feature = "serde")] | |
struct ArrayVecVisitor<A: Array>(PhantomData<A>); | |
#[cfg(feature = "serde")] | |
impl<'de, A: Array> Visitor<'de> for ArrayVecVisitor<A> | |
where | |
A::Item: Deserialize<'de>, | |
{ | |
type Value = ArrayVec<A>; | |
fn expecting( | |
&self, formatter: &mut core::fmt::Formatter, | |
) -> core::fmt::Result { | |
formatter.write_str("a sequence") | |
} | |
fn visit_seq<S>(self, mut seq: S) -> Result<Self::Value, S::Error> | |
where | |
S: SeqAccess<'de>, | |
{ | |
let mut new_arrayvec: ArrayVec<A> = Default::default(); | |
let mut idx = 0usize; | |
while let Some(value) = seq.next_element()? { | |
if new_arrayvec.len() >= new_arrayvec.capacity() { | |
return Err(DeserializeError::invalid_length(idx, &self)); | |
} | |
new_arrayvec.push(value); | |
idx = idx + 1; | |
} | |
Ok(new_arrayvec) | |
} | |
} |