blob: ba6442e1d815e1e1535584b2d3526678844bac75 [file] [log] [blame] [edit]
#!/usr/bin/env python3
#
# Copyright 2011-2015 The Rust Project Developers. See the COPYRIGHT
# file at the top-level directory of this distribution and at
# http://rust-lang.org/COPYRIGHT.
#
# Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
# http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
# <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
# option. This file may not be copied, modified, or distributed
# except according to those terms.
# This script uses the following Unicode security tables:
# - IdentifierStatus.txt
# - IdentifierType.txt
# - PropertyValueAliases.txt
# - confusables.txt
# - ReadMe.txt
# This script also uses the following Unicode UCD data:
# - Scripts.txt
#
# Since this should not require frequent updates, we just store this
# out-of-line and check the tables.rs file into git.
import fileinput, re, os, sys, operator
preamble = '''// Copyright 2012-2015 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
// NOTE: The following code was generated by "scripts/unicode.py", do not edit directly
#![allow(missing_docs, non_upper_case_globals, non_snake_case)]
'''
UNICODE_VERSION = (16, 0, 0)
UNICODE_VERSION_NUMBER = "%s.%s.%s" %UNICODE_VERSION
# Download a Unicode security table file
def fetch(f):
if not os.path.exists(os.path.basename(f)):
os.system("curl -O https://www.unicode.org/Public/security/%s/%s"
% (UNICODE_VERSION_NUMBER, f))
if not os.path.exists(os.path.basename(f)):
sys.stderr.write("cannot load %s\n" % f)
exit(1)
# Download a UCD table file
def fetch_unidata(f):
if not os.path.exists(os.path.basename(f)):
os.system("curl -O https://www.unicode.org/Public/%s/ucd/%s"
% (UNICODE_VERSION_NUMBER, f))
if not os.path.exists(os.path.basename(f)):
sys.stderr.write("cannot load %s" % f)
exit(1)
# Loads code point data from IdentifierStatus.txt and
# IdentifierType.txt
# Implementation from unicode-segmentation
def load_properties(f, interestingprops = None):
fetch(f)
props = {}
re1 = re.compile(r"^ *([0-9A-F]+) *; *(\w+)")
re2 = re.compile(r"^ *([0-9A-F]+)\.\.([0-9A-F]+) *; *(\w+)")
for line in fileinput.input(os.path.basename(f), openhook=fileinput.hook_encoded("utf-8")):
prop = None
d_lo = 0
d_hi = 0
m = re1.match(line)
if m:
d_lo = m.group(1)
d_hi = m.group(1)
prop = m.group(2).strip()
else:
m = re2.match(line)
if m:
d_lo = m.group(1)
d_hi = m.group(2)
prop = m.group(3).strip()
else:
continue
if interestingprops and prop not in interestingprops:
continue
d_lo = int(d_lo, 16)
d_hi = int(d_hi, 16)
if prop not in props:
props[prop] = []
props[prop].append((d_lo, d_hi))
return props
# Loads script data from Scripts.txt
def load_script_properties(f, interestingprops):
fetch_unidata(f)
props = {}
# Note: these regexes are different from those in unicode-segmentation,
# becase we need to handle spaces here
re1 = re.compile(r"^ *([0-9A-F]+) *; *([^#]+) *#")
re2 = re.compile(r"^ *([0-9A-F]+)\.\.([0-9A-F]+) *; *([^#]+) *#")
for line in fileinput.input(os.path.basename(f)):
prop = None
d_lo = 0
d_hi = 0
m = re1.match(line)
if m:
d_lo = m.group(1)
d_hi = m.group(1)
prop = m.group(2).strip()
else:
m = re2.match(line)
if m:
d_lo = m.group(1)
d_hi = m.group(2)
prop = m.group(3).strip()
else:
continue
if interestingprops and prop not in interestingprops:
continue
d_lo = int(d_lo, 16)
d_hi = int(d_hi, 16)
if prop not in props:
props[prop] = []
props[prop].append((d_lo, d_hi))
return props
# Loads confusables data from confusables.txt
def load_confusables(f):
fetch(f)
confusables = []
re1 = re.compile(r"^((?:[0-9A-F]+ )+);\t((?:[0-9A-F]+ )+);\t\w*")
for line in fileinput.input(os.path.basename(f), openhook=fileinput.hook_encoded("utf-8")):
d_input = 0
d_outputs = []
m = re1.match(line)
if not m:
continue
d_inputs = m.group(1).split()
if len(d_inputs) != 1:
raise Exception('More than one code point in first column')
d_input = int(d_inputs[0].strip(), 16)
for d_output in m.group(2).split():
d_outputitem = int(d_output, 16)
d_outputs.append(d_outputitem)
confusables.append((d_input, d_outputs))
return confusables
# Loads Unicode script name correspondence from PropertyValueAliases.txt
def aliases():
# This function is taken from the `unicode-script` crate. If significant
# changes are introduced, update accordingly.
# Note that this file is in UCD directly, not security directory.
# we use `fetch_unidata` function to download it.
fetch_unidata("PropertyValueAliases.txt")
longforms = {}
shortforms = {}
re1 = re.compile(r"^ *sc *; *(\w+) *; *(\w+)")
for line in fileinput.input(os.path.basename("PropertyValueAliases.txt")):
m = re1.match(line)
if m:
l = m.group(2).strip()
s = m.group(1).strip()
assert(s not in longforms)
assert(l not in shortforms)
longforms[s] = l
shortforms[l] = s
else:
continue
return (longforms, shortforms)
# Loads Unicode script name list and correspondence mapping
def load_scripts(f):
# This function is taken from the `unicode-script` crate. If significant
# changes are introduced, update accordingly.
(longforms, shortforms) = aliases()
scripts = load_script_properties(f, [])
script_table = []
script_list = []
for script in scripts:
if script not in ["Common", "Unknown", "Inherited"]:
script_list.append(shortforms[script])
script_table.extend([(x, y, shortforms[script]) for (x, y) in scripts[script]])
script_list.sort()
script_table.sort(key=lambda w: w[0])
return (longforms, script_table)
def is_script_ignored_in_mixedscript(source):
return source == 'Zinh' or source == 'Zyyy' or source == 'Zzzz'
# When a codepoint's prototype consists of multiple codepoints.
# The situation is more complex. Here we make up a few rules
# to cover all the cases in confusables.txt .
# The principle is that when replacing the original codepoint with its prototype.
# Neither a "non-ignored script" appears nor it disappears.
#
# We make up several rules to cover the cases occurred within confusables.txt
# Return True, True when we want to consider it confusable,
# and return True, False when we want to consider it non-confusable.
# and return False, _ when new not-yet-processed cases are added in future Unicode versions.
def process_mixedscript_single_to_multi(item_i, script_i, proto_lst, scripts):
script_lst = script_list(proto_lst, scripts)
script_lst.sort()
# here's a few rules to process current version of Unicode data (13.0 at this time)
script_lst_len = len(script_lst)
assert(script_lst_len > 0)
# Rule: A - A -> Processed, DontAdd
if script_lst_len == 1 and script_lst[0] == script_i:
return True, False
# Rule: A(not in (Zinh, Zyyy, Zzzz)) - B(not in (Zinh, Zyyy, Zzzz)) -> Processed, Add
if (script_lst_len == 1 and not is_script_ignored_in_mixedscript(script_lst[0])
and not is_script_ignored_in_mixedscript(script_i)
and script_lst[0] != script_i):
return True, True
# Rule: (Zinh | Zyyy | Zzzz) - A(not in (Zinh, Zyyy, Zzzz)) -> Processed, Add
if (script_lst_len == 1 and is_script_ignored_in_mixedscript(script_lst[0])
and not is_script_ignored_in_mixedscript(script_i)):
return True, True
# Rule: A ... - A -> Processed, DontAdd
if script_lst_len > 1 and script_i in script_lst:
return True, False
# Rule: (Zinh | Zyyy | Zzzz) A(not in (Zinh, Zyyy, Zzzz)) - B(not in (Zinh, Zyyy, Zzzz)) -> Processed, Add
if (script_lst_len == 2 and is_script_ignored_in_mixedscript(script_lst[0])
and not is_script_ignored_in_mixedscript(script_lst[1])
and not is_script_ignored_in_mixedscript(script_i)
and script_lst[1] != script_i):
return True, True
if (script_lst_len == 2 and is_script_ignored_in_mixedscript(script_lst[1])
and not is_script_ignored_in_mixedscript(script_lst[0])
and not is_script_ignored_in_mixedscript(script_i)
and script_lst[0] != script_i):
return True, True
# Rule: (Zinh | Zyyy | Zzzz) (Zinh | Zyyy | Zzzz) - A(not in (Zinh, Zyyy, Zzzz)) -> Processed, Add
if (script_lst_len == 2 and is_script_ignored_in_mixedscript(script_lst[0])
and is_script_ignored_in_mixedscript(script_lst[1])
and not is_script_ignored_in_mixedscript(script_i)):
return True, True
# NotProcessed, DontAdd
return False, False
def is_codepoint_identifier_allowed(c, identifier_allowed):
for data in identifier_allowed:
if c >= data[0] and c <= data[1]:
return True
return False
# This function load and generates a table of all the confusable characters.
# It returns a pair consists of a `mixedscript_confusable` table and a
# `mixedscript_confusable_unresolved` table.
# The `mixedscript_confusable` is a dict, its keys are Unicode script names, and each
# entry has a value of a inner dict. The inner dict's keys are confusable code points
# converted to string with the `escape_char` function, and its values are pairs.
# pair[0] keeps a copy of the confusable code point itself but as integer.
# pair[1] keeps a list of all the code points that are mixed script confusable with it.
# which is only used for debugging purposes.
# note that the string 'multi' will occur in the list when pair[0] is considered
# confusable with its multiple code point prototype.
# Usually the `mixedscript_confusable_unresolved` table is empty, but it's possible
# that future Unicode version update may cause that table become nonempty, in which
# case more rules needs to be added to the `process_mixedscript_single_to_multi` function
# above to cover those new cases.
def load_potential_mixedscript_confusables(f, identifier_allowed, scripts):
# First, load all confusables data from confusables.txt
confusables = load_confusables(f)
# The confusables.txt is reductive, means that it is intended to be used in
# on the fly substitutions. The code points that didn't occur in the file can be
# seen as substitutes to itself. So if the confusables.txt says A -> C, B -> C,
# and implicitly C -> C, it means A <-> B, A <-> C, B <-> C are confusable.
# Here we're dividing all confusable lhs and rhs(prototype) operands of the substitution into equivalence classes.
# Principally we'll be using the rhs operands as the representive element of its equivalence classes.
# However some rhs operands are single code point, while some others are not.
# Here we collect them separately into `codepoint_map` and `multicodepoint_map`.
codepoint_map = {}
multicodepoint_map = {}
for item in confusables:
d_source = item[0]
# According to the RFC, we'll skip those code points that are restricted from identifier usage.
if not is_codepoint_identifier_allowed(d_source, identifier_allowed):
continue
d_proto_list = item[1]
if len(d_proto_list) == 1:
d_proto = escape_char(d_proto_list[0])
# we use the escaped representation of rhs as key to the dict when creating new equivalence class.
if d_proto not in codepoint_map:
codepoint_map[d_proto] = []
# when we create new equivalence class, we'll check whether the representative element should be collected.
# i.e. if it is not restricted from identifier usage, we collect it into the equivalence class.
if is_codepoint_identifier_allowed(d_proto_list[0], identifier_allowed):
codepoint_map[d_proto].append(d_proto_list[0])
# we collect the original code point to be substituted into this list.
codepoint_map[d_proto].append(d_source)
else:
d_protos = escape_char_list(d_proto_list)
# difference in multi code point case: the rhs part is not directly usable, however we store it in
# dict for further special examination between each lhs and this multi code point rhs.
# and there's an extra level of tuple here.
if d_protos not in multicodepoint_map:
multicodepoint_map[d_protos] = (d_proto_list, [])
multicodepoint_map[d_protos][1].append(d_source)
mixedscript_confusable = {}
def confusable_entry_item(confusable, script, item_text, item):
if script not in confusable:
confusable[script] = {}
script_entry = confusable[script]
if item_text not in script_entry:
script_entry[item_text] = (item, [])
return script_entry[item_text][1]
# First let's examine the each code point having single code point prototype case.
for _, source in codepoint_map.items():
source_len = len(source)
# Examine each pair in the equivalence class
for i in range(0, source_len - 1):
for j in range(i + 1, source_len):
item_i, item_j = source[i], source[j]
script_i, script_j = codepoint_script(item_i, scripts), codepoint_script(item_j, scripts)
# If they're in the same script, just skip this pair.
if script_i == script_j:
continue
# If `item_i` (the first) is not in a non-ignored script, and `item_j` (the second) is in a differnt one (maybe ignored),
# this means that this usage of the `item_i` can be suspicious, when it occurs in a document that is written in `script_j`.
# We'll consider it a mixed_script_confusable code point.
if not is_script_ignored_in_mixedscript(script_i):
# store it within the map, saving as much information as possible, for further investigation on the final results.
confusable_entry_item(mixedscript_confusable, script_i, escape_char(item_i), item_i).append(item_j)
# Do the same in reverse from `item_j` to `item_i`
if not is_script_ignored_in_mixedscript(script_j):
confusable_entry_item(mixedscript_confusable, script_j, escape_char(item_j), item_j).append(item_i)
# Then let's examine the each code point having multiple code point prototype case.
# We'll check between the code points that shares the same prototype
for _, proto_lst_and_source in multicodepoint_map.items():
source = proto_lst_and_source[1]
source_len = len(source)
# This is basically the same as the single code point case.
for i in range(0, source_len - 1):
for j in range(i + 1, source_len):
item_i, item_j = source[i], source[j]
script_i, script_j = codepoint_script(item_i, scripts), codepoint_script(item_j, scripts)
if script_i == script_j:
continue
if not is_script_ignored_in_mixedscript(script_i):
confusable_entry_item(mixedscript_confusable, script_i, escape_char(item_i), item_i).append(item_j)
if not is_script_ignored_in_mixedscript(script_j):
confusable_entry_item(mixedscript_confusable, script_j, escape_char(item_j), item_j).append(item_i)
mixedscript_confusable_unresolved = {}
# We'll also check between each code points and its multiple codepoint prototype
for _, proto_lst_and_source in multicodepoint_map.items():
proto_lst = proto_lst_and_source[0]
proto_lst_can_be_part_of_identifier = True
# If the prototype contains one or more restricted code point, then we skip it.
for c in proto_lst:
if not is_codepoint_identifier_allowed(c, identifier_allowed):
proto_lst_can_be_part_of_identifier = False
break
if not proto_lst_can_be_part_of_identifier:
continue
source = proto_lst_and_source[1]
source_len = len(source)
for i in range(0, source_len):
item_i = source[i]
# So here we're just checking whether the single code point should be considered confusable.
script_i = codepoint_script(item_i, scripts)
# If it's in ignored script, we don't need to do anything here.
if is_script_ignored_in_mixedscript(script_i):
continue
# Here're some rules on examining whether the single code point should be considered confusable.
# The principle is that, when subsitution happens, no new non-ignored script are introduced, and its
# own script is not lost.
processed, should_add = process_mixedscript_single_to_multi(item_i, script_i, proto_lst, scripts)
if should_add:
assert(processed)
# Mark the single code point as confusable.
confusable_entry_item(mixedscript_confusable, script_i, escape_char(item_i), item_i).append('multi')
if processed:
# Finished dealing with this code point.
continue
# If it's not processed we must be dealing with a newer version Unicode data, which introduced some significant
# changes. We don't throw an exception here, instead we collect it into a table for debugging purpose, and throw
# an exception after we returned and printed the table out.
proto_lst_text = escape_char_list(proto_lst)
if not proto_lst_text in mixedscript_confusable_unresolved:
mixedscript_confusable_unresolved[proto_lst_text] = (proto_lst, [])
mixedscript_confusable_unresolved[proto_lst_text][1].append(item_i)
return (mixedscript_confusable, mixedscript_confusable_unresolved)
def codepoint_script(c, scripts):
for x, y, script in scripts:
if c >= x and c <= y:
return script
raise Exception("Not in scripts: " + escape_char(c))
# Emit some useful information for debugging when further update happens.
def debug_emit_mixedscript_confusable(f, mixedscript_confusable, text, scripts):
f.write("/* " + text + "\n")
for script, lst in mixedscript_confusable.items():
f.write("/// Script - " + script + "\n")
source_lst = [v[0] for (_, v) in lst.items()]
source_lst.sort()
for source in source_lst:
source_text = escape_char(source)
source_item_and_target_lst = lst[source_text]
target_lst = source_item_and_target_lst[1]
f.write(source_text + " => " + escape_char_list(target_lst) + " // " + escape_script_list(target_lst, scripts)+ "\n")
f.write("*/\n")
def script_list(char_lst, scripts):
script_lst = []
for c in char_lst:
if c == 'multi':
script = 'Z~multi'
else:
script = codepoint_script(c, scripts)
if script not in script_lst:
script_lst.append(script)
return script_lst
def escape_script_list(char_lst, scripts):
script_lst = script_list(char_lst, scripts)
script_lst.sort()
return str(script_lst)
def debug_emit_mixedscript_confusable_unresolved(f, map, text, scripts):
if len(map) == 0:
return
print("// " + text + "\n")
for prototype_text, pair in map.items():
prototype = pair[0]
source = pair[1]
print(prototype_text + " => " + escape_char_list(source) + " // " + escape_script_list(prototype, scripts) + " => " + escape_script_list(source, scripts) + "\n")
raise Exception("update the python script to add new rules for new data")
def format_table_content(f, content, indent):
line = " "*indent
first = True
for chunk in content.split(","):
if len(line) + len(chunk) < 98:
if first:
line += chunk
else:
line += ", " + chunk
first = False
else:
f.write(line + ",\n")
line = " "*indent + chunk
f.write(line)
def escape_char(c):
if c == 'multi':
return "\"<multiple code points>\""
return "'\\u{%x}'" % c
def escape_char_list(l):
line = "["
first = True
for c in l:
if first:
line += escape_char(c)
else:
line += ", " + escape_char(c)
first = False
line += "]"
return line
def emit_table(f, name, t_data, t_type = "&'static [(char, char)]", is_pub=True,
pfun=lambda x: "(%s,%s)" % (escape_char(x[0]), escape_char(x[1])), is_const=True):
pub_string = "const"
if not is_const:
pub_string = "let"
if is_pub:
pub_string = "pub " + pub_string
f.write(" %s %s: %s = &[\n" % (pub_string, name, t_type))
data = ""
first = True
for dat in t_data:
if not first:
data += ","
first = False
data += pfun(dat)
format_table_content(f, data, 8)
f.write("\n ];\n\n")
def emit_identifier_module(f):
f.write("pub mod identifier {")
f.write("""
#[derive(Copy, Clone, Hash, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[allow(non_camel_case_types)]
/// https://www.unicode.org/reports/tr39/#Identifier_Status_and_Type
pub enum IdentifierType {
// Restricted
Not_Character,
Deprecated,
Default_Ignorable,
Not_NFKC,
Not_XID,
Exclusion,
Obsolete,
Technical,
Uncommon_Use,
Limited_Use,
// Allowed
Inclusion,
Recommended
}
#[inline]
pub fn identifier_status_allowed(c: char) -> bool {
// FIXME: do we want to special case ASCII here?
match c as usize {
_ => super::util::bsearch_range_table(c, IDENTIFIER_STATUS)
}
}
#[inline]
pub fn identifier_type(c: char) -> Option<IdentifierType> {
// FIXME: do we want to special case ASCII here?
match c as usize {
_ => super::util::bsearch_range_value_table(c, IDENTIFIER_TYPE)
}
}
""")
f.write(" // Identifier status table:\n")
identifier_status_table = load_properties("IdentifierStatus.txt")
emit_table(f, "IDENTIFIER_STATUS", identifier_status_table['Allowed'], "&'static [(char, char)]", is_pub=False,
pfun=lambda x: "(%s,%s)" % (escape_char(x[0]), escape_char(x[1])))
identifier_type = load_properties("IdentifierType.txt")
type_table = []
for ty in identifier_type:
type_table.extend([(x, y, ty) for (x, y) in identifier_type[ty]])
type_table.sort(key=lambda w: w[0])
emit_table(f, "IDENTIFIER_TYPE", type_table, "&'static [(char, char, IdentifierType)]", is_pub=False,
pfun=lambda x: "(%s,%s, IdentifierType::%s)" % (escape_char(x[0]), escape_char(x[1]), x[2]))
f.write("}\n\n")
def emit_confusable_detection_module(f):
f.write("pub mod confusable_detection {")
f.write("""
#[inline]
pub fn char_confusable_prototype(c: char) -> Option<&'static [char]> {
// FIXME: do we want to special case ASCII here?
match c as usize {
_ => super::util::bsearch_value_table(c, CONFUSABLES)
}
}
""")
f.write(" // Confusable table:\n")
confusable_table = load_confusables("confusables.txt")
confusable_table.sort(key=lambda w: w[0])
last_key = None
for (k, _) in confusable_table:
if k == last_key:
raise Exception("duplicate keys in confusables table: %s" % k)
last_key = k
emit_table(f, "CONFUSABLES", confusable_table, "&'static [(char, &'static [char])]", is_pub=False,
pfun=lambda x: "(%s, &%s)" % (escape_char(x[0]), escape_char_list(x[1])))
f.write("}\n\n")
def escape_script_constant(name, longforms):
return "Script::" + longforms[name].strip()
def emit_potiential_mixed_script_confusable(f):
f.write("pub mod potential_mixed_script_confusable {")
f.write("""
#[inline]
pub fn potential_mixed_script_confusable(c: char) -> bool {
match c as usize {
_ => super::util::bsearch_table(c, CONFUSABLES)
}
}
""")
identifier_status_table = load_properties("IdentifierStatus.txt")
_, scripts = load_scripts("Scripts.txt")
identifier_allowed = identifier_status_table['Allowed']
(mixedscript_confusable, mixedscript_confusable_unresolved) = load_potential_mixedscript_confusables("confusables.txt", identifier_allowed, scripts)
debug = False
if debug == True:
debug_emit_mixedscript_confusable(f, mixedscript_confusable, "mixedscript_confusable", scripts)
debug_emit_mixedscript_confusable_unresolved(f, mixedscript_confusable_unresolved, "mixedscript_confusable_unresolved", scripts)
confusable_table = []
for script, lst in mixedscript_confusable.items():
for _, pair in lst.items():
source = pair[0]
confusable_table.append((source, script))
confusable_table.sort(key=lambda w: w[0])
emit_table(f, "CONFUSABLES", confusable_table, "&'static [char]", is_pub=False,
pfun=lambda x: "%s" % escape_char(x[0]))
f.write("}\n\n")
def emit_util_mod(f):
f.write("""
pub mod util {
use core::result::Result::{Ok, Err};
#[inline]
pub fn bsearch_table(c: char, r: &'static [char]) -> bool {
r.binary_search(&c).is_ok()
}
#[inline]
pub fn bsearch_value_table<T: Copy>(c: char, r: &'static [(char, T)]) -> Option<T> {
match r.binary_search_by_key(&c, |&(k, _)| k) {
Ok(idx) => {
let (_, v) = r[idx];
Some(v)
}
Err(_) => None
}
}
#[inline]
pub fn bsearch_range_table(c: char, r: &'static [(char,char)]) -> bool {
use core::cmp::Ordering::{Equal, Less, Greater};
r.binary_search_by(|&(lo,hi)| {
if lo <= c && c <= hi { Equal }
else if hi < c { Less }
else { Greater }
}).is_ok()
}
pub fn bsearch_range_value_table<T: Copy>(c: char, r: &'static [(char, char, T)]) -> Option<T> {
use core::cmp::Ordering::{Equal, Less, Greater};
match r.binary_search_by(|&(lo, hi, _)| {
if lo <= c && c <= hi { Equal }
else if hi < c { Less }
else { Greater }
}) {
Ok(idx) => {
let (_, _, cat) = r[idx];
Some(cat)
}
Err(_) => None
}
}
}
""")
if __name__ == "__main__":
r = "tables.rs"
if os.path.exists(r):
os.remove(r)
with open(r, "w") as rf:
# write the file's preamble
rf.write(preamble)
rf.write("""
/// The version of [Unicode](http://www.unicode.org/)
/// that this version of unicode-security is based on.
pub const UNICODE_VERSION: (u64, u64, u64) = (%s, %s, %s);
""" % UNICODE_VERSION)
emit_util_mod(rf)
### identifier module
emit_identifier_module(rf)
### confusable_detection module
emit_confusable_detection_module(rf)
### mixed_script_confusable_detection module
emit_potiential_mixed_script_confusable(rf)