blob: c2a59d76286c836996a382074a169aeacd803e2d [file] [log] [blame] [edit]
//! Converting between JavaScript `Promise`s to Rust `Future`s.
//!
//! This crate provides a bridge for working with JavaScript `Promise` types as
//! a Rust `Future`, and similarly contains utilities to turn a rust `Future`
//! into a JavaScript `Promise`. This can be useful when working with
//! asynchronous or otherwise blocking work in Rust (wasm), and provides the
//! ability to interoperate with JavaScript events and JavaScript I/O
//! primitives.
//!
//! There are three main interfaces in this crate currently:
//!
//! 1. [**`JsFuture`**](./struct.JsFuture.html)
//!
//! A type that is constructed with a `Promise` and can then be used as a
//! `Future<Output = Result<JsValue, JsValue>>`. This Rust future will resolve
//! or reject with the value coming out of the `Promise`.
//!
//! 2. [**`future_to_promise`**](./fn.future_to_promise.html)
//!
//! Converts a Rust `Future<Output = Result<JsValue, JsValue>>` into a
//! JavaScript `Promise`. The future's result will translate to either a
//! resolved or rejected `Promise` in JavaScript.
//!
//! 3. [**`spawn_local`**](./fn.spawn_local.html)
//!
//! Spawns a `Future<Output = ()>` on the current thread. This is the
//! best way to run a `Future` in Rust without sending it to JavaScript.
//!
//! These three items should provide enough of a bridge to interoperate the two
//! systems and make sure that Rust/JavaScript can work together with
//! asynchronous and I/O work.
#![cfg_attr(target_feature = "atomics", feature(stdsimd))]
#![deny(missing_docs)]
use js_sys::Promise;
use std::cell::RefCell;
use std::fmt;
use std::future::Future;
use std::pin::Pin;
use std::rc::Rc;
use std::task::{Context, Poll, Waker};
use wasm_bindgen::prelude::*;
mod queue;
#[cfg(feature = "futures-core-03-stream")]
pub mod stream;
mod task {
use cfg_if::cfg_if;
cfg_if! {
if #[cfg(target_feature = "atomics")] {
mod wait_async_polyfill;
mod multithread;
pub(crate) use multithread::*;
} else {
mod singlethread;
pub(crate) use singlethread::*;
}
}
}
/// Runs a Rust `Future` on the current thread.
///
/// The `future` must be `'static` because it will be scheduled
/// to run in the background and cannot contain any stack references.
///
/// The `future` will always be run on the next microtask tick even if it
/// immediately returns `Poll::Ready`.
///
/// # Panics
///
/// This function has the same panic behavior as `future_to_promise`.
#[inline]
pub fn spawn_local<F>(future: F)
where
F: Future<Output = ()> + 'static,
{
task::Task::spawn(Box::pin(future));
}
struct Inner {
result: Option<Result<JsValue, JsValue>>,
task: Option<Waker>,
callbacks: Option<(Closure<dyn FnMut(JsValue)>, Closure<dyn FnMut(JsValue)>)>,
}
/// A Rust `Future` backed by a JavaScript `Promise`.
///
/// This type is constructed with a JavaScript `Promise` object and translates
/// it to a Rust `Future`. This type implements the `Future` trait from the
/// `futures` crate and will either succeed or fail depending on what happens
/// with the JavaScript `Promise`.
///
/// Currently this type is constructed with `JsFuture::from`.
pub struct JsFuture {
inner: Rc<RefCell<Inner>>,
}
impl fmt::Debug for JsFuture {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "JsFuture {{ ... }}")
}
}
impl From<Promise> for JsFuture {
fn from(js: Promise) -> JsFuture {
// Use the `then` method to schedule two callbacks, one for the
// resolved value and one for the rejected value. We're currently
// assuming that JS engines will unconditionally invoke precisely one of
// these callbacks, no matter what.
//
// Ideally we'd have a way to cancel the callbacks getting invoked and
// free up state ourselves when this `JsFuture` is dropped. We don't
// have that, though, and one of the callbacks is likely always going to
// be invoked.
//
// As a result we need to make sure that no matter when the callbacks
// are invoked they are valid to be called at any time, which means they
// have to be self-contained. Through the `Closure::once` and some
// `Rc`-trickery we can arrange for both instances of `Closure`, and the
// `Rc`, to all be destroyed once the first one is called.
let state = Rc::new(RefCell::new(Inner {
result: None,
task: None,
callbacks: None,
}));
fn finish(state: &RefCell<Inner>, val: Result<JsValue, JsValue>) {
let task = {
let mut state = state.borrow_mut();
debug_assert!(state.callbacks.is_some());
debug_assert!(state.result.is_none());
// First up drop our closures as they'll never be invoked again and
// this is our chance to clean up their state.
drop(state.callbacks.take());
// Next, store the value into the internal state.
state.result = Some(val);
state.task.take()
};
// And then finally if any task was waiting on the value wake it up and
// let them know it's there.
if let Some(task) = task {
task.wake()
}
}
let resolve = {
let state = state.clone();
Closure::once(move |val| finish(&state, Ok(val)))
};
let reject = {
let state = state.clone();
Closure::once(move |val| finish(&state, Err(val)))
};
let _ = js.then2(&resolve, &reject);
state.borrow_mut().callbacks = Some((resolve, reject));
JsFuture { inner: state }
}
}
impl Future for JsFuture {
type Output = Result<JsValue, JsValue>;
fn poll(self: Pin<&mut Self>, cx: &mut Context) -> Poll<Self::Output> {
let mut inner = self.inner.borrow_mut();
// If our value has come in then we return it...
if let Some(val) = inner.result.take() {
return Poll::Ready(val);
}
// ... otherwise we arrange ourselves to get woken up once the value
// does come in
inner.task = Some(cx.waker().clone());
Poll::Pending
}
}
/// Converts a Rust `Future` into a JavaScript `Promise`.
///
/// This function will take any future in Rust and schedule it to be executed,
/// returning a JavaScript `Promise` which can then be passed to JavaScript.
///
/// The `future` must be `'static` because it will be scheduled to run in the
/// background and cannot contain any stack references.
///
/// The returned `Promise` will be resolved or rejected when the future completes,
/// depending on whether it finishes with `Ok` or `Err`.
///
/// # Panics
///
/// Note that in wasm panics are currently translated to aborts, but "abort" in
/// this case means that a JavaScript exception is thrown. The wasm module is
/// still usable (likely erroneously) after Rust panics.
///
/// If the `future` provided panics then the returned `Promise` **will not
/// resolve**. Instead it will be a leaked promise. This is an unfortunate
/// limitation of wasm currently that's hoped to be fixed one day!
pub fn future_to_promise<F>(future: F) -> Promise
where
F: Future<Output = Result<JsValue, JsValue>> + 'static,
{
let mut future = Some(future);
Promise::new(&mut |resolve, reject| {
let future = future.take().unwrap_throw();
spawn_local(async move {
match future.await {
Ok(val) => {
resolve.call1(&JsValue::undefined(), &val).unwrap_throw();
}
Err(val) => {
reject.call1(&JsValue::undefined(), &val).unwrap_throw();
}
}
});
})
}