| //! Traits for parsing the WebAssembly Text format |
| //! |
| //! This module contains the traits, abstractions, and utilities needed to |
| //! define custom parsers for WebAssembly text format items. This module exposes |
| //! a recursive descent parsing strategy and centers around the [`Parse`] trait |
| //! for defining new fragments of WebAssembly text syntax. |
| //! |
| //! The top-level [`parse`] function can be used to fully parse AST fragments: |
| //! |
| //! ``` |
| //! use wast::Wat; |
| //! use wast::parser::{self, ParseBuffer}; |
| //! |
| //! # fn foo() -> Result<(), wast::Error> { |
| //! let wat = "(module (func))"; |
| //! let buf = ParseBuffer::new(wat)?; |
| //! let module = parser::parse::<Wat>(&buf)?; |
| //! # Ok(()) |
| //! # } |
| //! ``` |
| //! |
| //! and you can also define your own new syntax with the [`Parse`] trait: |
| //! |
| //! ``` |
| //! use wast::kw; |
| //! use wast::core::{Import, Func}; |
| //! use wast::parser::{Parser, Parse, Result}; |
| //! |
| //! // Fields of a WebAssembly which only allow imports and functions, and all |
| //! // imports must come before all the functions |
| //! struct OnlyImportsAndFunctions<'a> { |
| //! imports: Vec<Import<'a>>, |
| //! functions: Vec<Func<'a>>, |
| //! } |
| //! |
| //! impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> { |
| //! fn parse(parser: Parser<'a>) -> Result<Self> { |
| //! // While the second token is `import` (the first is `(`, so we care |
| //! // about the second) we parse an `ast::ModuleImport` inside of |
| //! // parentheses. The `parens` function here ensures that what we |
| //! // parse inside of it is surrounded by `(` and `)`. |
| //! let mut imports = Vec::new(); |
| //! while parser.peek2::<kw::import>()? { |
| //! let import = parser.parens(|p| p.parse())?; |
| //! imports.push(import); |
| //! } |
| //! |
| //! // Afterwards we assume everything else is a function. Note that |
| //! // `parse` here is a generic function and type inference figures out |
| //! // that we're parsing functions here and imports above. |
| //! let mut functions = Vec::new(); |
| //! while !parser.is_empty() { |
| //! let func = parser.parens(|p| p.parse())?; |
| //! functions.push(func); |
| //! } |
| //! |
| //! Ok(OnlyImportsAndFunctions { imports, functions }) |
| //! } |
| //! } |
| //! ``` |
| //! |
| //! This module is heavily inspired by [`syn`](https://docs.rs/syn) so you can |
| //! likely also draw inspiration from the excellent examples in the `syn` crate. |
| |
| use crate::lexer::{Float, Integer, Lexer, Token, TokenKind}; |
| use crate::token::Span; |
| use crate::Error; |
| use bumpalo::Bump; |
| use std::borrow::Cow; |
| use std::cell::{Cell, RefCell}; |
| use std::collections::HashMap; |
| use std::fmt; |
| use std::usize; |
| |
| /// The maximum recursive depth of parens to parse. |
| /// |
| /// This is sort of a fundamental limitation of the way this crate is |
| /// designed. Everything is done through recursive descent parsing which |
| /// means, well, that we're recursively going down the stack as we parse |
| /// nested data structures. While we can handle this for wasm expressions |
| /// since that's a pretty local decision, handling this for nested |
| /// modules/components which be far trickier. For now we just say that when |
| /// the parser goes too deep we return an error saying there's too many |
| /// nested items. It would be great to not return an error here, though! |
| #[cfg(feature = "wasm-module")] |
| pub(crate) const MAX_PARENS_DEPTH: usize = 100; |
| |
| /// A top-level convenience parsing function that parses a `T` from `buf` and |
| /// requires that all tokens in `buf` are consume. |
| /// |
| /// This generic parsing function can be used to parse any `T` implementing the |
| /// [`Parse`] trait. It is not used from [`Parse`] trait implementations. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use wast::Wat; |
| /// use wast::parser::{self, ParseBuffer}; |
| /// |
| /// # fn foo() -> Result<(), wast::Error> { |
| /// let wat = "(module (func))"; |
| /// let buf = ParseBuffer::new(wat)?; |
| /// let module = parser::parse::<Wat>(&buf)?; |
| /// # Ok(()) |
| /// # } |
| /// ``` |
| /// |
| /// or parsing simply a fragment |
| /// |
| /// ``` |
| /// use wast::parser::{self, ParseBuffer}; |
| /// |
| /// # fn foo() -> Result<(), wast::Error> { |
| /// let wat = "12"; |
| /// let buf = ParseBuffer::new(wat)?; |
| /// let val = parser::parse::<u32>(&buf)?; |
| /// assert_eq!(val, 12); |
| /// # Ok(()) |
| /// # } |
| /// ``` |
| pub fn parse<'a, T: Parse<'a>>(buf: &'a ParseBuffer<'a>) -> Result<T> { |
| let parser = buf.parser(); |
| let result = parser.parse()?; |
| if parser.cursor().token()?.is_none() { |
| Ok(result) |
| } else { |
| Err(parser.error("extra tokens remaining after parse")) |
| } |
| } |
| |
| /// A trait for parsing a fragment of syntax in a recursive descent fashion. |
| /// |
| /// The [`Parse`] trait is main abstraction you'll be working with when defining |
| /// custom parser or custom syntax for your WebAssembly text format (or when |
| /// using the official format items). Almost all items in the |
| /// [`core`](crate::core) module implement the [`Parse`] trait, and you'll |
| /// commonly use this with: |
| /// |
| /// * The top-level [`parse`] function to parse an entire input. |
| /// * The intermediate [`Parser::parse`] function to parse an item out of an |
| /// input stream and then parse remaining items. |
| /// |
| /// Implementation of [`Parse`] take a [`Parser`] as input and will mutate the |
| /// parser as they parse syntax. Once a token is consume it cannot be |
| /// "un-consumed". Utilities such as [`Parser::peek`] and [`Parser::lookahead1`] |
| /// can be used to determine what to parse next. |
| /// |
| /// ## When to parse `(` and `)`? |
| /// |
| /// Conventionally types are not responsible for parsing their own `(` and `)` |
| /// tokens which surround the type. For example WebAssembly imports look like: |
| /// |
| /// ```text |
| /// (import "foo" "bar" (func (type 0))) |
| /// ``` |
| /// |
| /// but the [`Import`](crate::core::Import) type parser looks like: |
| /// |
| /// ``` |
| /// # use wast::kw; |
| /// # use wast::parser::{Parser, Parse, Result}; |
| /// # struct Import<'a>(&'a str); |
| /// impl<'a> Parse<'a> for Import<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// parser.parse::<kw::import>()?; |
| /// // ... |
| /// # panic!() |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// It is assumed here that the `(` and `)` tokens which surround an `import` |
| /// statement in the WebAssembly text format are parsed by the parent item |
| /// parsing `Import`. |
| /// |
| /// Note that this is just a convention, so it's not necessarily required for |
| /// all types. It's recommended that your types stick to this convention where |
| /// possible to avoid nested calls to [`Parser::parens`] or accidentally trying |
| /// to parse too many parenthesis. |
| /// |
| /// # Examples |
| /// |
| /// Let's say you want to define your own WebAssembly text format which only |
| /// contains imports and functions. You also require all imports to be listed |
| /// before all functions. An example [`Parse`] implementation might look like: |
| /// |
| /// ``` |
| /// use wast::core::{Import, Func}; |
| /// use wast::kw; |
| /// use wast::parser::{Parser, Parse, Result}; |
| /// |
| /// // Fields of a WebAssembly which only allow imports and functions, and all |
| /// // imports must come before all the functions |
| /// struct OnlyImportsAndFunctions<'a> { |
| /// imports: Vec<Import<'a>>, |
| /// functions: Vec<Func<'a>>, |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for OnlyImportsAndFunctions<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // While the second token is `import` (the first is `(`, so we care |
| /// // about the second) we parse an `ast::ModuleImport` inside of |
| /// // parentheses. The `parens` function here ensures that what we |
| /// // parse inside of it is surrounded by `(` and `)`. |
| /// let mut imports = Vec::new(); |
| /// while parser.peek2::<kw::import>()? { |
| /// let import = parser.parens(|p| p.parse())?; |
| /// imports.push(import); |
| /// } |
| /// |
| /// // Afterwards we assume everything else is a function. Note that |
| /// // `parse` here is a generic function and type inference figures out |
| /// // that we're parsing functions here and imports above. |
| /// let mut functions = Vec::new(); |
| /// while !parser.is_empty() { |
| /// let func = parser.parens(|p| p.parse())?; |
| /// functions.push(func); |
| /// } |
| /// |
| /// Ok(OnlyImportsAndFunctions { imports, functions }) |
| /// } |
| /// } |
| /// ``` |
| pub trait Parse<'a>: Sized { |
| /// Attempts to parse `Self` from `parser`, returning an error if it could |
| /// not be parsed. |
| /// |
| /// This method will mutate the state of `parser` after attempting to parse |
| /// an instance of `Self`. If an error happens then it is likely fatal and |
| /// there is no guarantee of how many tokens have been consumed from |
| /// `parser`. |
| /// |
| /// As recommended in the documentation of [`Parse`], implementations of |
| /// this function should not start out by parsing `(` and `)` tokens, but |
| /// rather parents calling recursive parsers should parse the `(` and `)` |
| /// tokens for their child item that's being parsed. |
| /// |
| /// # Errors |
| /// |
| /// This function will return an error if `Self` could not be parsed. Note |
| /// that creating an [`Error`] is not exactly a cheap operation, so |
| /// [`Error`] is typically fatal and propagated all the way back to the top |
| /// parse call site. |
| fn parse(parser: Parser<'a>) -> Result<Self>; |
| } |
| |
| impl<'a, T> Parse<'a> for Box<T> |
| where |
| T: Parse<'a>, |
| { |
| fn parse(parser: Parser<'a>) -> Result<Self> { |
| Ok(Box::new(parser.parse()?)) |
| } |
| } |
| |
| /// A trait for types which be used to "peek" to see if they're the next token |
| /// in an input stream of [`Parser`]. |
| /// |
| /// Often when implementing [`Parse`] you'll need to query what the next token |
| /// in the stream is to figure out what to parse next. This [`Peek`] trait |
| /// defines the set of types that can be tested whether they're the next token |
| /// in the input stream. |
| /// |
| /// Implementations of [`Peek`] should only be present on types that consume |
| /// exactly one token (not zero, not more, exactly one). Types implementing |
| /// [`Peek`] should also typically implement [`Parse`] should also typically |
| /// implement [`Parse`]. |
| /// |
| /// See the documentation of [`Parser::peek`] for example usage. |
| pub trait Peek { |
| /// Tests to see whether this token is the first token within the [`Cursor`] |
| /// specified. |
| /// |
| /// Returns `true` if [`Parse`] for this type is highly likely to succeed |
| /// failing no other error conditions happening (like an integer literal |
| /// being too big). |
| fn peek(cursor: Cursor<'_>) -> Result<bool>; |
| |
| /// The same as `peek`, except it checks the token immediately following |
| /// the current token. |
| fn peek2(mut cursor: Cursor<'_>) -> Result<bool> { |
| match cursor.token()? { |
| Some(token) => cursor.advance_past(&token), |
| None => return Ok(false), |
| } |
| Self::peek(cursor) |
| } |
| |
| /// Returns a human-readable name of this token to display when generating |
| /// errors about this token missing. |
| fn display() -> &'static str; |
| } |
| |
| /// A convenience type definition for `Result` where the error is hardwired to |
| /// [`Error`]. |
| pub type Result<T, E = Error> = std::result::Result<T, E>; |
| |
| /// A low-level buffer of tokens which represents a completely lexed file. |
| /// |
| /// A `ParseBuffer` will immediately lex an entire file and then store all |
| /// tokens internally. A `ParseBuffer` only used to pass to the top-level |
| /// [`parse`] function. |
| pub struct ParseBuffer<'a> { |
| lexer: Lexer<'a>, |
| cur: Cell<Position>, |
| known_annotations: RefCell<HashMap<String, usize>>, |
| track_instr_spans: bool, |
| depth: Cell<usize>, |
| strings: Bump, |
| } |
| |
| /// The current position within a `Lexer` that we're at. This simultaneously |
| /// stores the byte position that the lexer was last positioned at as well as |
| /// the next significant token. |
| /// |
| /// Note that "significant" here does not mean that `token` is the next token |
| /// to be lexed at `offset`. Instead it's the next non-whitespace, |
| /// non-annotation, non-coment token. This simple cache-of-sorts avoids |
| /// re-parsing tokens the majority of the time, or at least that's the |
| /// intention. |
| /// |
| /// If `token` is set to `None` then it means that either it hasn't been |
| /// calculated at or the lexer is at EOF. Basically it means go talk to the |
| /// lexer. |
| #[derive(Copy, Clone)] |
| struct Position { |
| offset: usize, |
| token: Option<Token>, |
| } |
| |
| /// An in-progress parser for the tokens of a WebAssembly text file. |
| /// |
| /// A `Parser` is argument to the [`Parse`] trait and is now the input stream is |
| /// interacted with to parse new items. Cloning [`Parser`] or copying a parser |
| /// refers to the same stream of tokens to parse, you cannot clone a [`Parser`] |
| /// and clone two items. |
| /// |
| /// For more information about a [`Parser`] see its methods. |
| #[derive(Copy, Clone)] |
| pub struct Parser<'a> { |
| buf: &'a ParseBuffer<'a>, |
| } |
| |
| /// A helpful structure to perform a lookahead of one token to determine what to |
| /// parse. |
| /// |
| /// For more information see the [`Parser::lookahead1`] method. |
| pub struct Lookahead1<'a> { |
| parser: Parser<'a>, |
| attempts: Vec<&'static str>, |
| } |
| |
| /// An immutable cursor into a list of tokens. |
| /// |
| /// This cursor cannot be mutated but can be used to parse more tokens in a list |
| /// of tokens. Cursors are created from the [`Parser::step`] method. This is a |
| /// very low-level parsing structure and you likely won't use it much. |
| #[derive(Copy, Clone)] |
| pub struct Cursor<'a> { |
| parser: Parser<'a>, |
| pos: Position, |
| } |
| |
| impl ParseBuffer<'_> { |
| /// Creates a new [`ParseBuffer`] by lexing the given `input` completely. |
| /// |
| /// # Errors |
| /// |
| /// Returns an error if `input` fails to lex. |
| pub fn new(input: &str) -> Result<ParseBuffer<'_>> { |
| ParseBuffer::new_with_lexer(Lexer::new(input)) |
| } |
| |
| /// Creates a new [`ParseBuffer`] by lexing the given `input` completely. |
| /// |
| /// # Errors |
| /// |
| /// Returns an error if `input` fails to lex. |
| pub fn new_with_lexer(lexer: Lexer<'_>) -> Result<ParseBuffer<'_>> { |
| Ok(ParseBuffer { |
| lexer, |
| depth: Cell::new(0), |
| cur: Cell::new(Position { |
| offset: 0, |
| token: None, |
| }), |
| known_annotations: Default::default(), |
| strings: Default::default(), |
| track_instr_spans: false, |
| }) |
| } |
| |
| /// Indicates whether the [`Expression::instr_spans`] field will be filled |
| /// in. |
| /// |
| /// This is useful when enabling DWARF debugging information via |
| /// [`EncodeOptions::dwarf`], for example. |
| /// |
| /// [`Expression::instr_spans`]: crate::core::Expression::instr_spans |
| /// [`EncodeOptions::dwarf`]: crate::core::EncodeOptions::dwarf |
| pub fn track_instr_spans(&mut self, track: bool) -> &mut Self { |
| self.track_instr_spans = track; |
| self |
| } |
| |
| fn parser(&self) -> Parser<'_> { |
| Parser { buf: self } |
| } |
| |
| /// Stores an owned allocation in this `Parser` to attach the lifetime of |
| /// the vector to `self`. |
| /// |
| /// This will return a reference to `s`, but one that's safely rooted in the |
| /// `Parser`. |
| fn push_str(&self, s: Vec<u8>) -> &[u8] { |
| self.strings.alloc_slice_copy(&s) |
| } |
| |
| /// Lexes the next "significant" token from the `pos` specified. |
| /// |
| /// This will skip irrelevant tokens such as whitespace, comments, and |
| /// unknown annotations. |
| fn advance_token(&self, mut pos: usize) -> Result<Option<Token>> { |
| let token = loop { |
| let token = match self.lexer.parse(&mut pos)? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| // Always skip whitespace and comments. |
| TokenKind::Whitespace | TokenKind::LineComment | TokenKind::BlockComment => { |
| continue |
| } |
| |
| // If an lparen is seen then this may be skipped if it's an |
| // annotation of the form `(@foo ...)`. In this situation |
| // everything up to and including the closing rparen is skipped. |
| // |
| // Note that the annotation is only skipped if it's an unknown |
| // annotation as known annotations are specifically registered |
| // as "someone's gonna parse this". |
| TokenKind::LParen => { |
| if let Some(annotation) = self.lexer.annotation(pos)? { |
| let text = annotation.annotation(self.lexer.input())?; |
| match self.known_annotations.borrow().get(&text[..]) { |
| Some(0) | None => { |
| self.skip_annotation(&mut pos)?; |
| continue; |
| } |
| Some(_) => {} |
| } |
| } |
| break token; |
| } |
| _ => break token, |
| } |
| }; |
| Ok(Some(token)) |
| } |
| |
| fn skip_annotation(&self, pos: &mut usize) -> Result<()> { |
| let mut depth = 1; |
| let span = Span { offset: *pos }; |
| loop { |
| let token = match self.lexer.parse(pos)? { |
| Some(token) => token, |
| None => { |
| break Err(Error::new(span, "unclosed annotation".to_string())); |
| } |
| }; |
| match token.kind { |
| TokenKind::LParen => depth += 1, |
| TokenKind::RParen => { |
| depth -= 1; |
| if depth == 0 { |
| break Ok(()); |
| } |
| } |
| _ => {} |
| } |
| } |
| } |
| } |
| |
| impl<'a> Parser<'a> { |
| /// Returns whether there are no more `Token` tokens to parse from this |
| /// [`Parser`]. |
| /// |
| /// This indicates that either we've reached the end of the input, or we're |
| /// a sub-[`Parser`] inside of a parenthesized expression and we've hit the |
| /// `)` token. |
| /// |
| /// Note that if `false` is returned there *may* be more comments. Comments |
| /// and whitespace are not considered for whether this parser is empty. |
| pub fn is_empty(self) -> bool { |
| match self.cursor().token() { |
| Ok(Some(token)) => matches!(token.kind, TokenKind::RParen), |
| Ok(None) => true, |
| Err(_) => false, |
| } |
| } |
| |
| #[cfg(feature = "wasm-module")] |
| pub(crate) fn has_meaningful_tokens(self) -> bool { |
| self.buf.lexer.iter(0).any(|t| match t { |
| Ok(token) => !matches!( |
| token.kind, |
| TokenKind::Whitespace | TokenKind::LineComment | TokenKind::BlockComment |
| ), |
| Err(_) => true, |
| }) |
| } |
| |
| /// Parses a `T` from this [`Parser`]. |
| /// |
| /// This method has a trivial definition (it simply calls |
| /// [`T::parse`](Parse::parse)) but is here for syntactic purposes. This is |
| /// what you'll call 99% of the time in a [`Parse`] implementation in order |
| /// to parse sub-items. |
| /// |
| /// Typically you always want to use `?` with the result of this method, you |
| /// should not handle errors and decide what else to parse. To handle |
| /// branches in parsing, use [`Parser::peek`]. |
| /// |
| /// # Examples |
| /// |
| /// A good example of using `parse` is to see how the [`TableType`] type is |
| /// parsed in this crate. A [`TableType`] is defined in the official |
| /// specification as [`tabletype`][spec] and is defined as: |
| /// |
| /// [spec]: https://webassembly.github.io/spec/core/text/types.html#table-types |
| /// |
| /// ```text |
| /// tabletype ::= lim:limits et:reftype |
| /// ``` |
| /// |
| /// so to parse a [`TableType`] we recursively need to parse a [`Limits`] |
| /// and a [`RefType`] |
| /// |
| /// ``` |
| /// # use wast::core::*; |
| /// # use wast::parser::*; |
| /// struct TableType<'a> { |
| /// limits: Limits, |
| /// elem: RefType<'a>, |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for TableType<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // parse the `lim` then `et` in sequence |
| /// Ok(TableType { |
| /// limits: parser.parse()?, |
| /// elem: parser.parse()?, |
| /// }) |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// [`Limits`]: crate::core::Limits |
| /// [`TableType`]: crate::core::TableType |
| /// [`RefType`]: crate::core::RefType |
| pub fn parse<T: Parse<'a>>(self) -> Result<T> { |
| T::parse(self) |
| } |
| |
| /// Performs a cheap test to see whether the current token in this stream is |
| /// `T`. |
| /// |
| /// This method can be used to efficiently determine what next to parse. The |
| /// [`Peek`] trait is defined for types which can be used to test if they're |
| /// the next item in the input stream. |
| /// |
| /// Nothing is actually parsed in this method, nor does this mutate the |
| /// state of this [`Parser`]. Instead, this simply performs a check. |
| /// |
| /// This method is frequently combined with the [`Parser::lookahead1`] |
| /// method to automatically produce nice error messages if some tokens |
| /// aren't found. |
| /// |
| /// # Examples |
| /// |
| /// For an example of using the `peek` method let's take a look at parsing |
| /// the [`Limits`] type. This is [defined in the official spec][spec] as: |
| /// |
| /// ```text |
| /// limits ::= n:u32 |
| /// | n:u32 m:u32 |
| /// ``` |
| /// |
| /// which means that it's either one `u32` token or two, so we need to know |
| /// whether to consume two tokens or one: |
| /// |
| /// ``` |
| /// # use wast::parser::*; |
| /// struct Limits { |
| /// min: u32, |
| /// max: Option<u32>, |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for Limits { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // Always parse the first number... |
| /// let min = parser.parse()?; |
| /// |
| /// // ... and then test if there's a second number before parsing |
| /// let max = if parser.peek::<u32>()? { |
| /// Some(parser.parse()?) |
| /// } else { |
| /// None |
| /// }; |
| /// |
| /// Ok(Limits { min, max }) |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// [spec]: https://webassembly.github.io/spec/core/text/types.html#limits |
| /// [`Limits`]: crate::core::Limits |
| pub fn peek<T: Peek>(self) -> Result<bool> { |
| T::peek(self.cursor()) |
| } |
| |
| /// Same as the [`Parser::peek`] method, except checks the next token, not |
| /// the current token. |
| pub fn peek2<T: Peek>(self) -> Result<bool> { |
| T::peek2(self.cursor()) |
| } |
| |
| /// Same as the [`Parser::peek2`] method, except checks the next next token, |
| /// not the next token. |
| pub fn peek3<T: Peek>(self) -> Result<bool> { |
| let mut cursor = self.cursor(); |
| match cursor.token()? { |
| Some(token) => cursor.advance_past(&token), |
| None => return Ok(false), |
| } |
| match cursor.token()? { |
| Some(token) => cursor.advance_past(&token), |
| None => return Ok(false), |
| } |
| T::peek(cursor) |
| } |
| |
| /// A helper structure to perform a sequence of `peek` operations and if |
| /// they all fail produce a nice error message. |
| /// |
| /// This method purely exists for conveniently producing error messages and |
| /// provides no functionality that [`Parser::peek`] doesn't already give. |
| /// The [`Lookahead1`] structure has one main method [`Lookahead1::peek`], |
| /// which is the same method as [`Parser::peek`]. The difference is that the |
| /// [`Lookahead1::error`] method needs no arguments. |
| /// |
| /// # Examples |
| /// |
| /// Let's look at the parsing of [`Index`]. This type is either a `u32` or |
| /// an [`Id`] and is used in name resolution primarily. The [official |
| /// grammar for an index][spec] is: |
| /// |
| /// ```text |
| /// idx ::= x:u32 |
| /// | v:id |
| /// ``` |
| /// |
| /// Which is to say that an index is either a `u32` or an [`Id`]. When |
| /// parsing an [`Index`] we can do: |
| /// |
| /// ``` |
| /// # use wast::token::*; |
| /// # use wast::parser::*; |
| /// enum Index<'a> { |
| /// Num(u32), |
| /// Id(Id<'a>), |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for Index<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// let mut l = parser.lookahead1(); |
| /// if l.peek::<Id>()? { |
| /// Ok(Index::Id(parser.parse()?)) |
| /// } else if l.peek::<u32>()? { |
| /// Ok(Index::Num(parser.parse()?)) |
| /// } else { |
| /// // produces error message of `expected identifier or u32` |
| /// Err(l.error()) |
| /// } |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// [spec]: https://webassembly.github.io/spec/core/text/modules.html#indices |
| /// [`Index`]: crate::token::Index |
| /// [`Id`]: crate::token::Id |
| pub fn lookahead1(self) -> Lookahead1<'a> { |
| Lookahead1 { |
| attempts: Vec::new(), |
| parser: self, |
| } |
| } |
| |
| /// Parse an item surrounded by parentheses. |
| /// |
| /// WebAssembly's text format is all based on s-expressions, so naturally |
| /// you're going to want to parse a lot of parenthesized things! As noted in |
| /// the documentation of [`Parse`] you typically don't parse your own |
| /// surrounding `(` and `)` tokens, but the parser above you parsed them for |
| /// you. This is method method the parser above you uses. |
| /// |
| /// This method will parse a `(` token, and then call `f` on a sub-parser |
| /// which when finished asserts that a `)` token is the next token. This |
| /// requires that `f` consumes all tokens leading up to the paired `)`. |
| /// |
| /// Usage will often simply be `parser.parens(|p| p.parse())?` to |
| /// automatically parse a type within parentheses, but you can, as always, |
| /// go crazy and do whatever you'd like too. |
| /// |
| /// # Examples |
| /// |
| /// A good example of this is to see how a `Module` is parsed. This isn't |
| /// the exact definition, but it's close enough! |
| /// |
| /// ``` |
| /// # use wast::kw; |
| /// # use wast::core::*; |
| /// # use wast::parser::*; |
| /// struct Module<'a> { |
| /// fields: Vec<ModuleField<'a>>, |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for Module<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // Modules start out with a `module` keyword |
| /// parser.parse::<kw::module>()?; |
| /// |
| /// // And then everything else is `(field ...)`, so while we've got |
| /// // items left we continuously parse parenthesized items. |
| /// let mut fields = Vec::new(); |
| /// while !parser.is_empty() { |
| /// fields.push(parser.parens(|p| p.parse())?); |
| /// } |
| /// Ok(Module { fields }) |
| /// } |
| /// } |
| /// ``` |
| pub fn parens<T>(self, f: impl FnOnce(Parser<'a>) -> Result<T>) -> Result<T> { |
| self.buf.depth.set(self.buf.depth.get() + 1); |
| let before = self.buf.cur.get(); |
| let res = self.step(|cursor| { |
| let mut cursor = match cursor.lparen()? { |
| Some(rest) => rest, |
| None => return Err(cursor.error("expected `(`")), |
| }; |
| cursor.parser.buf.cur.set(cursor.pos); |
| let result = f(cursor.parser)?; |
| |
| // Reset our cursor's state to whatever the current state of the |
| // parser is. |
| cursor.pos = cursor.parser.buf.cur.get(); |
| |
| match cursor.rparen()? { |
| Some(rest) => Ok((result, rest)), |
| None => Err(cursor.error("expected `)`")), |
| } |
| }); |
| self.buf.depth.set(self.buf.depth.get() - 1); |
| if res.is_err() { |
| self.buf.cur.set(before); |
| } |
| res |
| } |
| |
| /// Return the depth of nested parens we've parsed so far. |
| /// |
| /// This is a low-level method that is only useful for implementing |
| /// recursion limits in custom parsers. |
| pub fn parens_depth(&self) -> usize { |
| self.buf.depth.get() |
| } |
| |
| /// Checks that the parser parens depth hasn't exceeded the maximum depth. |
| #[cfg(feature = "wasm-module")] |
| pub(crate) fn depth_check(&self) -> Result<()> { |
| if self.parens_depth() > MAX_PARENS_DEPTH { |
| Err(self.error("item nesting too deep")) |
| } else { |
| Ok(()) |
| } |
| } |
| |
| fn cursor(self) -> Cursor<'a> { |
| Cursor { |
| parser: self, |
| pos: self.buf.cur.get(), |
| } |
| } |
| |
| /// A low-level parsing method you probably won't use. |
| /// |
| /// This is used to implement parsing of the most primitive types in the |
| /// [`core`](crate::core) module. You probably don't want to use this, but |
| /// probably want to use something like [`Parser::parse`] or |
| /// [`Parser::parens`]. |
| pub fn step<F, T>(self, f: F) -> Result<T> |
| where |
| F: FnOnce(Cursor<'a>) -> Result<(T, Cursor<'a>)>, |
| { |
| let (result, cursor) = f(self.cursor())?; |
| self.buf.cur.set(cursor.pos); |
| Ok(result) |
| } |
| |
| /// Creates an error whose line/column information is pointing at the |
| /// current token. |
| /// |
| /// This is used to produce human-readable error messages which point to the |
| /// right location in the input stream, and the `msg` here is arbitrary text |
| /// used to associate with the error and indicate why it was generated. |
| pub fn error(self, msg: impl fmt::Display) -> Error { |
| self.error_at(self.cursor().cur_span(), msg) |
| } |
| |
| /// Creates an error whose line/column information is pointing at the |
| /// given span. |
| pub fn error_at(self, span: Span, msg: impl fmt::Display) -> Error { |
| Error::parse(span, self.buf.lexer.input(), msg.to_string()) |
| } |
| |
| /// Returns the span of the current token |
| pub fn cur_span(&self) -> Span { |
| self.cursor().cur_span() |
| } |
| |
| /// Returns the span of the previous token |
| pub fn prev_span(&self) -> Span { |
| self.cursor() |
| .prev_span() |
| .unwrap_or_else(|| Span::from_offset(0)) |
| } |
| |
| /// Registers a new known annotation with this parser to allow parsing |
| /// annotations with this name. |
| /// |
| /// [WebAssembly annotations][annotation] are a proposal for the text format |
| /// which allows decorating the text format with custom structured |
| /// information. By default all annotations are ignored when parsing, but |
| /// the whole purpose of them is to sometimes parse them! |
| /// |
| /// To support parsing text annotations this method is used to allow |
| /// annotations and their tokens to *not* be skipped. Once an annotation is |
| /// registered with this method, then while the return value has not been |
| /// dropped (e.g. the scope of where this function is called) annotations |
| /// with the name `annotation` will be parse of the token stream and not |
| /// implicitly skipped. |
| /// |
| /// # Skipping annotations |
| /// |
| /// The behavior of skipping unknown/unregistered annotations can be |
| /// somewhat subtle and surprising, so if you're interested in parsing |
| /// annotations it's important to point out the importance of this method |
| /// and where to call it. |
| /// |
| /// Generally when parsing tokens you'll be bottoming out in various |
| /// `Cursor` methods. These are all documented as advancing the stream as |
| /// much as possible to the next token, skipping "irrelevant stuff" like |
| /// comments, whitespace, etc. The `Cursor` methods will also skip unknown |
| /// annotations. This means that if you parse *any* token, it will skip over |
| /// any number of annotations that are unknown at all times. |
| /// |
| /// To parse an annotation you must, before parsing any token of the |
| /// annotation, register the annotation via this method. This includes the |
| /// beginning `(` token, which is otherwise skipped if the annotation isn't |
| /// marked as registered. Typically parser parse the *contents* of an |
| /// s-expression, so this means that the outer parser of an s-expression |
| /// must register the custom annotation name, rather than the inner parser. |
| /// |
| /// # Return |
| /// |
| /// This function returns an RAII guard which, when dropped, will unregister |
| /// the `annotation` given. Parsing `annotation` is only supported while the |
| /// returned value is still alive, and once dropped the parser will go back |
| /// to skipping annotations with the name `annotation`. |
| /// |
| /// # Example |
| /// |
| /// Let's see an example of how the `@name` annotation is parsed for modules |
| /// to get an idea of how this works: |
| /// |
| /// ``` |
| /// # use wast::kw; |
| /// # use wast::token::NameAnnotation; |
| /// # use wast::parser::*; |
| /// struct Module<'a> { |
| /// name: Option<NameAnnotation<'a>>, |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for Module<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // Modules start out with a `module` keyword |
| /// parser.parse::<kw::module>()?; |
| /// |
| /// // Next may be `(@name "foo")`. Typically this annotation would |
| /// // skipped, but we don't want it skipped, so we register it. |
| /// // Note that the parse implementation of |
| /// // `Option<NameAnnotation>` is the one that consumes the |
| /// // parentheses here. |
| /// let _r = parser.register_annotation("name"); |
| /// let name = parser.parse()?; |
| /// |
| /// // ... and normally you'd otherwise parse module fields here ... |
| /// |
| /// Ok(Module { name }) |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// Another example is how we parse the `@custom` annotation. Note that this |
| /// is parsed as part of `ModuleField`, so note how the annotation is |
| /// registered *before* we parse the parentheses of the annotation. |
| /// |
| /// ``` |
| /// # use wast::{kw, annotation}; |
| /// # use wast::core::Custom; |
| /// # use wast::parser::*; |
| /// struct Module<'a> { |
| /// fields: Vec<ModuleField<'a>>, |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for Module<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // Modules start out with a `module` keyword |
| /// parser.parse::<kw::module>()?; |
| /// |
| /// // register the `@custom` annotation *first* before we start |
| /// // parsing fields, because each field is contained in |
| /// // parentheses and to parse the parentheses of an annotation we |
| /// // have to known to not skip it. |
| /// let _r = parser.register_annotation("custom"); |
| /// |
| /// let mut fields = Vec::new(); |
| /// while !parser.is_empty() { |
| /// fields.push(parser.parens(|p| p.parse())?); |
| /// } |
| /// Ok(Module { fields }) |
| /// } |
| /// } |
| /// |
| /// enum ModuleField<'a> { |
| /// Custom(Custom<'a>), |
| /// // ... |
| /// } |
| /// |
| /// impl<'a> Parse<'a> for ModuleField<'a> { |
| /// fn parse(parser: Parser<'a>) -> Result<Self> { |
| /// // Note that because we have previously registered the `@custom` |
| /// // annotation with the parser we known that `peek` methods like |
| /// // this, working on the annotation token, are enabled to ever |
| /// // return `true`. |
| /// if parser.peek::<annotation::custom>()? { |
| /// return Ok(ModuleField::Custom(parser.parse()?)); |
| /// } |
| /// |
| /// // .. typically we'd parse other module fields here... |
| /// |
| /// Err(parser.error("unknown module field")) |
| /// } |
| /// } |
| /// ``` |
| /// |
| /// [annotation]: https://github.com/WebAssembly/annotations |
| pub fn register_annotation<'b>(self, annotation: &'b str) -> impl Drop + 'b |
| where |
| 'a: 'b, |
| { |
| let mut annotations = self.buf.known_annotations.borrow_mut(); |
| if !annotations.contains_key(annotation) { |
| annotations.insert(annotation.to_string(), 0); |
| } |
| *annotations.get_mut(annotation).unwrap() += 1; |
| |
| return RemoveOnDrop(self, annotation); |
| |
| struct RemoveOnDrop<'a>(Parser<'a>, &'a str); |
| |
| impl Drop for RemoveOnDrop<'_> { |
| fn drop(&mut self) { |
| let mut annotations = self.0.buf.known_annotations.borrow_mut(); |
| let slot = annotations.get_mut(self.1).unwrap(); |
| *slot -= 1; |
| } |
| } |
| } |
| |
| #[cfg(feature = "wasm-module")] |
| pub(crate) fn track_instr_spans(&self) -> bool { |
| self.buf.track_instr_spans |
| } |
| |
| #[cfg(feature = "wasm-module")] |
| pub(crate) fn with_standard_annotations_registered<R>( |
| self, |
| f: impl FnOnce(Self) -> Result<R>, |
| ) -> Result<R> { |
| let _r = self.register_annotation("custom"); |
| let _r = self.register_annotation("producers"); |
| let _r = self.register_annotation("name"); |
| let _r = self.register_annotation("dylink.0"); |
| let _r = self.register_annotation("metadata.code.branch_hint"); |
| f(self) |
| } |
| } |
| |
| impl<'a> Cursor<'a> { |
| /// Returns the span of the next `Token` token. |
| /// |
| /// Does not take into account whitespace or comments. |
| pub fn cur_span(&self) -> Span { |
| let offset = match self.token() { |
| Ok(Some(t)) => t.offset, |
| Ok(None) => self.parser.buf.lexer.input().len(), |
| Err(_) => self.pos.offset, |
| }; |
| Span { offset } |
| } |
| |
| /// Returns the span of the previous `Token` token. |
| /// |
| /// Does not take into account whitespace or comments. |
| pub(crate) fn prev_span(&self) -> Option<Span> { |
| // TODO |
| Some(Span { |
| offset: self.pos.offset, |
| }) |
| // let (token, _) = self.parser.buf.tokens.get(self.cur.checked_sub(1)?)?; |
| // Some(Span { |
| // offset: token.offset, |
| // }) |
| } |
| |
| /// Same as [`Parser::error`], but works with the current token in this |
| /// [`Cursor`] instead. |
| pub fn error(&self, msg: impl fmt::Display) -> Error { |
| self.parser.error_at(self.cur_span(), msg) |
| } |
| |
| /// Tests whether the next token is an lparen |
| pub fn peek_lparen(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::LParen, |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is an rparen |
| pub fn peek_rparen(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::RParen, |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is an id |
| pub fn peek_id(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::Id, |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is reserved |
| pub fn peek_reserved(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::Reserved, |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is a keyword |
| pub fn peek_keyword(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::Keyword, |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is an integer |
| pub fn peek_integer(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::Integer(_), |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is a float |
| pub fn peek_float(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::Float(_), |
| .. |
| }) |
| )) |
| } |
| |
| /// Tests whether the next token is a string |
| pub fn peek_string(self) -> Result<bool> { |
| Ok(matches!( |
| self.token()?, |
| Some(Token { |
| kind: TokenKind::String, |
| .. |
| }) |
| )) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a `(`. |
| /// |
| /// If the current token is `(`, returns a new [`Cursor`] pointing at the |
| /// rest of the tokens in the stream. Otherwise returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn lparen(mut self) -> Result<Option<Self>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::LParen => {} |
| _ => return Ok(None), |
| } |
| self.advance_past(&token); |
| Ok(Some(self)) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a `)`. |
| /// |
| /// If the current token is `)`, returns a new [`Cursor`] pointing at the |
| /// rest of the tokens in the stream. Otherwise returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn rparen(mut self) -> Result<Option<Self>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::RParen => {} |
| _ => return Ok(None), |
| } |
| self.advance_past(&token); |
| Ok(Some(self)) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::Id`](crate::lexer::Token) |
| /// |
| /// If the current token is `Id`, returns the identifier minus the leading |
| /// `$` character as well as a new [`Cursor`] pointing at the rest of the |
| /// tokens in the stream. Otherwise returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn id(mut self) -> Result<Option<(&'a str, Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::Id => {} |
| _ => return Ok(None), |
| } |
| self.advance_past(&token); |
| let id = match token.id(self.parser.buf.lexer.input())? { |
| Cow::Borrowed(id) => id, |
| // Our `self.parser.buf` only retains `Vec<u8>` so briefly convert |
| // this owned string to `Vec<u8>` and then convert it back to `&str` |
| // out the other end. |
| Cow::Owned(s) => std::str::from_utf8(self.parser.buf.push_str(s.into_bytes())).unwrap(), |
| }; |
| Ok(Some((id, self))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::Keyword`](crate::lexer::Token) |
| /// |
| /// If the current token is `Keyword`, returns the keyword as well as a new |
| /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
| /// returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn keyword(mut self) -> Result<Option<(&'a str, Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::Keyword => {} |
| _ => return Ok(None), |
| } |
| self.advance_past(&token); |
| Ok(Some((token.keyword(self.parser.buf.lexer.input()), self))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::Annotation`](crate::lexer::Token) |
| /// |
| /// If the current token is `Annotation`, returns the annotation token as well |
| /// as a new [`Cursor`] pointing at the rest of the tokens in the stream. |
| /// Otherwise returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn annotation(mut self) -> Result<Option<(&'a str, Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::Annotation => {} |
| _ => return Ok(None), |
| } |
| self.advance_past(&token); |
| let annotation = match token.annotation(self.parser.buf.lexer.input())? { |
| Cow::Borrowed(id) => id, |
| // Our `self.parser.buf` only retains `Vec<u8>` so briefly convert |
| // this owned string to `Vec<u8>` and then convert it back to `&str` |
| // out the other end. |
| Cow::Owned(s) => std::str::from_utf8(self.parser.buf.push_str(s.into_bytes())).unwrap(), |
| }; |
| Ok(Some((annotation, self))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::Reserved`](crate::lexer::Token) |
| /// |
| /// If the current token is `Reserved`, returns the reserved token as well |
| /// as a new [`Cursor`] pointing at the rest of the tokens in the stream. |
| /// Otherwise returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn reserved(mut self) -> Result<Option<(&'a str, Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::Reserved => {} |
| _ => return Ok(None), |
| } |
| self.advance_past(&token); |
| Ok(Some((token.reserved(self.parser.buf.lexer.input()), self))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::Integer`](crate::lexer::Token) |
| /// |
| /// If the current token is `Integer`, returns the integer as well as a new |
| /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
| /// returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn integer(mut self) -> Result<Option<(Integer<'a>, Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| let i = match token.kind { |
| TokenKind::Integer(i) => i, |
| _ => return Ok(None), |
| }; |
| self.advance_past(&token); |
| Ok(Some(( |
| token.integer(self.parser.buf.lexer.input(), i), |
| self, |
| ))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::Float`](crate::lexer::Token) |
| /// |
| /// If the current token is `Float`, returns the float as well as a new |
| /// [`Cursor`] pointing at the rest of the tokens in the stream. Otherwise |
| /// returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn float(mut self) -> Result<Option<(Float<'a>, Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| let f = match token.kind { |
| TokenKind::Float(f) => f, |
| _ => return Ok(None), |
| }; |
| self.advance_past(&token); |
| Ok(Some((token.float(self.parser.buf.lexer.input(), f), self))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::String`](crate::lexer::Token) |
| /// |
| /// If the current token is `String`, returns the byte value of the string |
| /// as well as a new [`Cursor`] pointing at the rest of the tokens in the |
| /// stream. Otherwise returns `None`. |
| /// |
| /// This function will automatically skip over any comments, whitespace, or |
| /// unknown annotations. |
| pub fn string(mut self) -> Result<Option<(&'a [u8], Self)>> { |
| let token = match self.token()? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::String => {} |
| _ => return Ok(None), |
| } |
| let string = match token.string(self.parser.buf.lexer.input()) { |
| Cow::Borrowed(s) => s, |
| Cow::Owned(s) => self.parser.buf.push_str(s), |
| }; |
| self.advance_past(&token); |
| Ok(Some((string, self))) |
| } |
| |
| /// Attempts to advance this cursor if the current token is a |
| /// [`Token::LineComment`](crate::lexer::Token) or a |
| /// [`Token::BlockComment`](crate::lexer::Token) |
| /// |
| /// This function will only skip whitespace, no other tokens. |
| pub fn comment(mut self) -> Result<Option<(&'a str, Self)>> { |
| let start = self.pos.offset; |
| self.pos.token = None; |
| let comment = loop { |
| let token = match self.parser.buf.lexer.parse(&mut self.pos.offset)? { |
| Some(token) => token, |
| None => return Ok(None), |
| }; |
| match token.kind { |
| TokenKind::LineComment | TokenKind::BlockComment => { |
| break token.src(self.parser.buf.lexer.input()); |
| } |
| TokenKind::Whitespace => {} |
| _ => { |
| self.pos.offset = start; |
| return Ok(None); |
| } |
| } |
| }; |
| Ok(Some((comment, self))) |
| } |
| |
| fn token(&self) -> Result<Option<Token>> { |
| match self.pos.token { |
| Some(token) => Ok(Some(token)), |
| None => self.parser.buf.advance_token(self.pos.offset), |
| } |
| } |
| |
| fn advance_past(&mut self, token: &Token) { |
| self.pos.offset = token.offset + (token.len as usize); |
| self.pos.token = self |
| .parser |
| .buf |
| .advance_token(self.pos.offset) |
| .unwrap_or(None); |
| } |
| } |
| |
| impl Lookahead1<'_> { |
| /// Attempts to see if `T` is the next token in the [`Parser`] this |
| /// [`Lookahead1`] references. |
| /// |
| /// For more information see [`Parser::lookahead1`] and [`Parser::peek`] |
| pub fn peek<T: Peek>(&mut self) -> Result<bool> { |
| Ok(if self.parser.peek::<T>()? { |
| true |
| } else { |
| self.attempts.push(T::display()); |
| false |
| }) |
| } |
| |
| /// Generates an error message saying that one of the tokens passed to |
| /// [`Lookahead1::peek`] method was expected. |
| /// |
| /// Before calling this method you should call [`Lookahead1::peek`] for all |
| /// possible tokens you'd like to parse. |
| pub fn error(self) -> Error { |
| match self.attempts.len() { |
| 0 => { |
| if self.parser.is_empty() { |
| self.parser.error("unexpected end of input") |
| } else { |
| self.parser.error("unexpected token") |
| } |
| } |
| 1 => { |
| let message = format!("unexpected token, expected {}", self.attempts[0]); |
| self.parser.error(&message) |
| } |
| 2 => { |
| let message = format!( |
| "unexpected token, expected {} or {}", |
| self.attempts[0], self.attempts[1] |
| ); |
| self.parser.error(&message) |
| } |
| _ => { |
| let join = self.attempts.join(", "); |
| let message = format!("unexpected token, expected one of: {}", join); |
| self.parser.error(&message) |
| } |
| } |
| } |
| } |
| |
| impl<'a, T: Peek + Parse<'a>> Parse<'a> for Option<T> { |
| fn parse(parser: Parser<'a>) -> Result<Option<T>> { |
| if parser.peek::<T>()? { |
| Ok(Some(parser.parse()?)) |
| } else { |
| Ok(None) |
| } |
| } |
| } |