blob: 21598710f1be6535d2422a969a86d3a4adde6a27 [file] [log] [blame] [edit]
use crate::encoding::{Instance, Item, LibraryInfo, MainOrAdapter};
use crate::ComponentEncoder;
use anyhow::{bail, Context, Result};
use indexmap::{map::Entry, IndexMap, IndexSet};
use std::mem;
use wasm_encoder::ExportKind;
use wasmparser::names::{ComponentName, ComponentNameKind};
use wasmparser::{
types::TypesRef, Encoding, ExternalKind, FuncType, Parser, Payload, TypeRef, ValType,
ValidPayload, Validator,
};
use wit_parser::{
abi::{AbiVariant, WasmSignature, WasmType},
Function, InterfaceId, PackageName, Resolve, TypeDefKind, TypeId, WorldId, WorldItem, WorldKey,
};
fn wasm_sig_to_func_type(signature: WasmSignature) -> FuncType {
fn from_wasm_type(ty: &WasmType) -> ValType {
match ty {
WasmType::I32 => ValType::I32,
WasmType::I64 => ValType::I64,
WasmType::F32 => ValType::F32,
WasmType::F64 => ValType::F64,
WasmType::Pointer => ValType::I32,
WasmType::PointerOrI64 => ValType::I64,
WasmType::Length => ValType::I32,
}
}
FuncType::new(
signature.params.iter().map(from_wasm_type),
signature.results.iter().map(from_wasm_type),
)
}
/// Metadata about a validated module and what was found internally.
///
/// This structure houses information about `imports` and `exports` to the
/// module. Each of these specialized types contains "connection" information
/// between a module's imports/exports and the WIT or component-level constructs
/// they correspond to.
#[derive(Default)]
pub struct ValidatedModule {
/// Information about a module's imports.
pub imports: ImportMap,
/// Information about a module's exports.
pub exports: ExportMap,
}
impl ValidatedModule {
fn new(
encoder: &ComponentEncoder,
bytes: &[u8],
exports: &IndexSet<WorldKey>,
info: Option<&LibraryInfo>,
) -> Result<ValidatedModule> {
let mut validator = Validator::new();
let mut ret = ValidatedModule::default();
for payload in Parser::new(0).parse_all(bytes) {
let payload = payload?;
if let ValidPayload::End(_) = validator.payload(&payload)? {
break;
}
let types = validator.types(0).unwrap();
match payload {
Payload::Version { encoding, .. } if encoding != Encoding::Module => {
bail!("data is not a WebAssembly module");
}
Payload::ImportSection(s) => {
for import in s {
let import = import?;
ret.imports.add(import, encoder, info, types)?;
}
}
Payload::ExportSection(s) => {
for export in s {
let export = export?;
ret.exports.add(export, encoder, &exports, types)?;
}
}
_ => continue,
}
}
ret.exports.validate(encoder, exports)?;
Ok(ret)
}
}
/// Metadata information about a module's imports.
///
/// This structure maintains the connection between component model "things" and
/// core wasm "things" by ensuring that all imports to the core wasm module are
/// classified by the `Import` enumeration.
#[derive(Default)]
pub struct ImportMap {
/// The first level of the map here is the module namespace of the import
/// and the second level of the map is the field namespace. The item is then
/// how the import is satisfied.
names: IndexMap<String, ImportInstance>,
}
pub enum ImportInstance {
/// This import is satisfied by an entire instance of another
/// adapter/module.
Whole(MainOrAdapter),
/// This import is satisfied by filling out each name possibly differently.
Names(IndexMap<String, Import>),
}
/// The different kinds of items that a module or an adapter can import.
///
/// This is intended to be an exhaustive definition of what can be imported into
/// core modules within a component that wit-component supports.
#[derive(Debug, Clone)]
pub enum Import {
/// A top-level world function, with the name provided here, is imported
/// into the module.
WorldFunc(WorldKey, String),
/// An interface's function is imported into the module.
///
/// The `WorldKey` here is the name of the interface in the world in
/// question. The `InterfaceId` is the interface that was imported from and
/// `String` is the WIT name of the function.
InterfaceFunc(WorldKey, InterfaceId, String),
/// An imported resource's destructor is imported.
///
/// The key provided indicates whether it's for the top-level types of the
/// world (`None`) or an interface (`Some` with the name of the interface).
/// The `TypeId` is what resource is being dropped.
ImportedResourceDrop(WorldKey, Option<InterfaceId>, TypeId),
/// A `canon resource.drop` intrinsic for an exported item is being
/// imported.
///
/// This lists the key of the interface that's exporting the resource plus
/// the id within that interface.
ExportedResourceDrop(WorldKey, TypeId),
/// A `canon resource.new` intrinsic for an exported item is being
/// imported.
///
/// This lists the key of the interface that's exporting the resource plus
/// the id within that interface.
ExportedResourceNew(WorldKey, TypeId),
/// A `canon resource.rep` intrinsic for an exported item is being
/// imported.
///
/// This lists the key of the interface that's exporting the resource plus
/// the id within that interface.
ExportedResourceRep(WorldKey, TypeId),
/// An export of an adapter is being imported with the specified type.
///
/// This is used for when the main module imports an adapter function. The
/// adapter name and function name match the module's own import, and the
/// type must match that listed here.
AdapterExport(FuncType),
/// An adapter is importing the memory of the main module.
///
/// (should be combined with `MainModuleExport` below one day)
MainModuleMemory,
/// An adapter is importing an arbitrary item from the main module.
MainModuleExport { name: String, kind: ExportKind },
/// An arbitrary item from either the main module or an adapter is being
/// imported.
///
/// (should probably subsume `MainModule*` and maybe `AdapterExport` above
/// one day.
Item(Item),
}
impl ImportMap {
/// Returns whether the top-level world function `func` is imported.
pub fn uses_toplevel_func(&self, func: &str) -> bool {
self.imports().any(|(_, _, item)| match item {
Import::WorldFunc(_, name) => func == name,
_ => false,
})
}
/// Returns whether the interface function specified is imported.
pub fn uses_interface_func(&self, interface: InterfaceId, func: &str) -> bool {
self.imports().any(|(_, _, import)| match import {
Import::InterfaceFunc(_, id, name) => *id == interface && name == func,
_ => false,
})
}
/// Returns whether the specified resource's drop method is needed to import.
pub fn uses_imported_resource_drop(&self, resource: TypeId) -> bool {
self.imports().any(|(_, _, import)| match import {
Import::ImportedResourceDrop(_, _, id) => resource == *id,
_ => false,
})
}
/// Returns the list of items that the adapter named `name` must export.
pub fn required_from_adapter(&self, name: &str) -> IndexMap<String, FuncType> {
let names = match self.names.get(name) {
Some(ImportInstance::Names(names)) => names,
_ => return IndexMap::new(),
};
names
.iter()
.map(|(name, import)| {
(
name.clone(),
match import {
Import::AdapterExport(ty) => ty.clone(),
_ => unreachable!(),
},
)
})
.collect()
}
/// Returns an iterator over all individual imports registered in this map.
///
/// Note that this doesn't iterate over the "whole instance" imports.
pub fn imports(&self) -> impl Iterator<Item = (&str, &str, &Import)> + '_ {
self.names
.iter()
.filter_map(|(module, m)| match m {
ImportInstance::Names(names) => Some((module, names)),
ImportInstance::Whole(_) => None,
})
.flat_map(|(module, m)| {
m.iter()
.map(move |(field, import)| (module.as_str(), field.as_str(), import))
})
}
/// Returns the map for how all imports must be satisfied.
pub fn modules(&self) -> &IndexMap<String, ImportInstance> {
&self.names
}
/// Helper function used during validation to build up this `ImportMap`.
fn add(
&mut self,
import: wasmparser::Import<'_>,
encoder: &ComponentEncoder,
library_info: Option<&LibraryInfo>,
types: TypesRef<'_>,
) -> Result<()> {
if self.classify_import_with_library(import, library_info)? {
return Ok(());
}
let item = self.classify(import, encoder, types).with_context(|| {
format!(
"failed to resolve import `{}::{}`",
import.module, import.name,
)
})?;
self.insert_import(import, item)
}
fn classify(
&self,
import: wasmparser::Import<'_>,
encoder: &ComponentEncoder,
types: TypesRef<'_>,
) -> Result<Import> {
// Special-case the main module's memory imported into adapters which
// currently with `wasm-ld` is not easily configurable.
if import.module == "env" && import.name == "memory" {
return Ok(Import::MainModuleMemory);
}
// Special-case imports from the main module into adapters.
if import.module == "__main_module__" {
return Ok(Import::MainModuleExport {
name: import.name.to_string(),
kind: match import.ty {
TypeRef::Func(_) => ExportKind::Func,
TypeRef::Table(_) => ExportKind::Table,
TypeRef::Memory(_) => ExportKind::Memory,
TypeRef::Global(_) => ExportKind::Global,
TypeRef::Tag(_) => ExportKind::Tag,
},
});
}
let ty_index = match import.ty {
TypeRef::Func(ty) => ty,
_ => bail!("module is only allowed to import functions"),
};
let ty = types[types.core_type_at_in_module(ty_index)].unwrap_func();
// Handle main module imports that match known adapters and set it up as
// an import of an adapter export.
if encoder.adapters.contains_key(import.module) {
return Ok(Import::AdapterExport(ty.clone()));
}
let (module, names) = match import.module.strip_prefix("cm32p2") {
Some(suffix) => (suffix, STANDARD),
None if encoder.reject_legacy_names => (import.module, STANDARD),
None => (import.module, LEGACY),
};
self.classify_component_model_import(module, import.name, encoder, ty, names)
}
/// Attempts to classify the import `{module}::{name}` with the rules
/// specified in WebAssembly/component-model#378
fn classify_component_model_import(
&self,
module: &str,
name: &str,
encoder: &ComponentEncoder,
ty: &FuncType,
names: &dyn NameMangling,
) -> Result<Import> {
let resolve = &encoder.metadata.resolve;
let world_id = encoder.metadata.world;
let world = &resolve.worlds[world_id];
if module == names.import_root() {
let key = WorldKey::Name(name.to_string());
if let Some(WorldItem::Function(func)) = world.imports.get(&key) {
validate_func(resolve, ty, func, AbiVariant::GuestImport)?;
return Ok(Import::WorldFunc(key, func.name.clone()));
}
let get_resource = resource_test_for_world(resolve, world_id);
if let Some(resource) = names.resource_drop_name(name) {
if let Some(id) = get_resource(resource) {
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ImportedResourceDrop(key, None, id));
}
}
match world.imports.get(&key) {
Some(_) => bail!("expected world top-level import `{name}` to be a function"),
None => bail!("no top-level imported function `{name}` specified"),
}
}
let interface = match module.strip_prefix(names.import_non_root_prefix()) {
Some(name) => name,
None => bail!("unknown or invalid component model import syntax"),
};
if let Some(interface) = interface.strip_prefix(names.import_exported_intrinsic_prefix()) {
let (key, id) = names.module_to_interface(interface, resolve, &world.exports)?;
let get_resource = resource_test_for_interface(resolve, id);
if let Some(name) = names.resource_drop_name(name) {
if let Some(id) = get_resource(name) {
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ExportedResourceDrop(key, id));
}
}
if let Some(name) = names.resource_new_name(name) {
if let Some(id) = get_resource(name) {
let expected = FuncType::new([ValType::I32], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ExportedResourceNew(key, id));
}
}
if let Some(name) = names.resource_rep_name(name) {
if let Some(id) = get_resource(name) {
let expected = FuncType::new([ValType::I32], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ExportedResourceRep(key, id));
}
}
bail!("unknown function `{name}`")
}
let (key, id) = names.module_to_interface(interface, resolve, &world.imports)?;
let interface = &resolve.interfaces[id];
let get_resource = resource_test_for_interface(resolve, id);
if let Some(f) = interface.functions.get(name) {
validate_func(resolve, ty, f, AbiVariant::GuestImport).with_context(|| {
let name = resolve.name_world_key(&key);
format!("failed to validate import interface `{name}`")
})?;
return Ok(Import::InterfaceFunc(key, id, f.name.clone()));
} else if let Some(resource) = names.resource_drop_name(name) {
if let Some(resource) = get_resource(resource) {
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Import::ImportedResourceDrop(key, Some(id), resource));
}
}
bail!(
"import interface `{module}` is missing function \
`{name}` that is required by the module",
)
}
fn classify_import_with_library(
&mut self,
import: wasmparser::Import<'_>,
library_info: Option<&LibraryInfo>,
) -> Result<bool> {
let info = match library_info {
Some(info) => info,
None => return Ok(false),
};
let Some((_, instance)) = info
.arguments
.iter()
.find(|(name, _items)| *name == import.module)
else {
return Ok(false);
};
match instance {
Instance::MainOrAdapter(module) => match self.names.get(import.module) {
Some(ImportInstance::Whole(which)) => {
if which != module {
bail!("different whole modules imported under the same name");
}
}
Some(ImportInstance::Names(_)) => {
bail!("cannot mix individual imports and whole module imports")
}
None => {
let instance = ImportInstance::Whole(module.clone());
self.names.insert(import.module.to_string(), instance);
}
},
Instance::Items(items) => {
let Some(item) = items.iter().find(|i| i.alias == import.name) else {
return Ok(false);
};
self.insert_import(import, Import::Item(item.clone()))?;
}
}
Ok(true)
}
fn insert_import(&mut self, import: wasmparser::Import<'_>, item: Import) -> Result<()> {
let entry = self
.names
.entry(import.module.to_string())
.or_insert(ImportInstance::Names(IndexMap::default()));
let names = match entry {
ImportInstance::Names(names) => names,
_ => bail!("cannot mix individual imports with module imports"),
};
let entry = match names.entry(import.name.to_string()) {
Entry::Occupied(_) => {
bail!(
"module has duplicate import for `{}::{}`",
import.module,
import.name
);
}
Entry::Vacant(v) => v,
};
log::trace!(
"classifying import `{}::{} as {item:?}",
import.module,
import.name
);
entry.insert(item);
Ok(())
}
}
/// Dual of `ImportMap` except describes the exports of a module instead of the
/// imports.
#[derive(Default)]
pub struct ExportMap {
names: IndexMap<String, Export>,
raw_exports: IndexMap<String, FuncType>,
}
/// All possible (known) exports from a core wasm module that are recognized and
/// handled during the componentization process.
#[derive(Debug)]
pub enum Export {
/// An export of a top-level function of a world, where the world function
/// is named here.
WorldFunc(String),
/// A post-return for a top-level function of a world.
WorldFuncPostReturn(WorldKey),
/// An export of a function in an interface.
InterfaceFunc(InterfaceId, String),
/// A post-return for the above function.
InterfaceFuncPostReturn(WorldKey, String),
/// A destructor for an exported resource.
ResourceDtor(TypeId),
/// Memory, typically for an adapter.
Memory,
/// `cabi_realloc`
GeneralPurposeRealloc,
/// `cabi_export_realloc`
GeneralPurposeExportRealloc,
/// `cabi_import_realloc`
GeneralPurposeImportRealloc,
/// `_initialize`
Initialize,
/// `cabi_realloc_adapter`
ReallocForAdapter,
}
impl ExportMap {
fn add(
&mut self,
export: wasmparser::Export<'_>,
encoder: &ComponentEncoder,
exports: &IndexSet<WorldKey>,
types: TypesRef<'_>,
) -> Result<()> {
if let Some(item) = self.classify(export, encoder, exports, types)? {
log::debug!("classifying export `{}` as {item:?}", export.name);
let prev = self.names.insert(export.name.to_string(), item);
assert!(prev.is_none());
}
Ok(())
}
fn classify(
&mut self,
export: wasmparser::Export<'_>,
encoder: &ComponentEncoder,
exports: &IndexSet<WorldKey>,
types: TypesRef<'_>,
) -> Result<Option<Export>> {
match export.kind {
ExternalKind::Func => {
let ty = types[types.core_function_at(export.index)].unwrap_func();
self.raw_exports.insert(export.name.to_string(), ty.clone());
}
_ => {}
}
// Handle a few special-cased names first.
if export.name == "canonical_abi_realloc" {
return Ok(Some(Export::GeneralPurposeRealloc));
} else if export.name == "cabi_import_realloc" {
return Ok(Some(Export::GeneralPurposeImportRealloc));
} else if export.name == "cabi_export_realloc" {
return Ok(Some(Export::GeneralPurposeExportRealloc));
} else if export.name == "cabi_realloc_adapter" {
return Ok(Some(Export::ReallocForAdapter));
}
let (name, names) = match export.name.strip_prefix("cm32p2") {
Some(name) => (name, STANDARD),
None if encoder.reject_legacy_names => return Ok(None),
None => (export.name, LEGACY),
};
if let Some(export) = self
.classify_component_export(names, name, &export, encoder, exports, types)
.with_context(|| format!("failed to classify export `{}`", export.name))?
{
return Ok(Some(export));
}
log::debug!("unknown export `{}`", export.name);
Ok(None)
}
fn classify_component_export(
&mut self,
names: &dyn NameMangling,
name: &str,
export: &wasmparser::Export<'_>,
encoder: &ComponentEncoder,
exports: &IndexSet<WorldKey>,
types: TypesRef<'_>,
) -> Result<Option<Export>> {
let resolve = &encoder.metadata.resolve;
let world = encoder.metadata.world;
match export.kind {
ExternalKind::Func => {}
ExternalKind::Memory => {
if name == names.export_memory() {
return Ok(Some(Export::Memory));
}
return Ok(None);
}
_ => return Ok(None),
}
let ty = types[types.core_function_at(export.index)].unwrap_func();
// Handle a few special-cased names first.
if name == names.export_realloc() {
let expected = FuncType::new([ValType::I32; 4], [ValType::I32]);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Export::GeneralPurposeRealloc));
} else if name == names.export_initialize() {
let expected = FuncType::new([], []);
validate_func_sig(name, &expected, ty)?;
return Ok(Some(Export::Initialize));
}
// Try to match this to a known WIT export that `exports` allows.
if let Some((key, id, f)) = names.match_wit_export(name, resolve, world, exports) {
validate_func(resolve, ty, f, AbiVariant::GuestExport).with_context(|| {
let key = resolve.name_world_key(key);
format!("failed to validate export for `{key}`")
})?;
match id {
Some(id) => {
return Ok(Some(Export::InterfaceFunc(id, f.name.clone())));
}
None => {
return Ok(Some(Export::WorldFunc(f.name.clone())));
}
}
}
// See if this is a post-return for any known WIT export.
if let Some(remaining) = names.strip_post_return(name) {
if let Some((key, id, f)) = names.match_wit_export(remaining, resolve, world, exports) {
validate_post_return(resolve, ty, f).with_context(|| {
let key = resolve.name_world_key(key);
format!("failed to validate export for `{key}`")
})?;
match id {
Some(_id) => {
return Ok(Some(Export::InterfaceFuncPostReturn(
key.clone(),
f.name.clone(),
)));
}
None => {
return Ok(Some(Export::WorldFuncPostReturn(key.clone())));
}
}
}
}
// And, finally, see if it matches a known destructor.
if let Some(dtor) = names.match_wit_resource_dtor(name, resolve, world, exports) {
let expected = FuncType::new([ValType::I32], []);
validate_func_sig(export.name, &expected, ty)?;
return Ok(Some(Export::ResourceDtor(dtor)));
}
Ok(None)
}
/// Returns the name of the post-return export, if any, for the `interface`
/// and `func` combo.
pub fn post_return(&self, key: &WorldKey, func: &Function) -> Option<&str> {
self.find(|m| match m {
Export::WorldFuncPostReturn(k) => k == key,
Export::InterfaceFuncPostReturn(k, f) => k == key && func.name == *f,
_ => false,
})
}
/// Returns the realloc that the exported function `interface` and `func`
/// are using.
pub fn export_realloc_for(&self, key: &WorldKey, func: &Function) -> Option<&str> {
// TODO: This realloc detection should probably be improved with
// some sort of scheme to have per-function reallocs like
// `cabi_realloc_{name}` or something like that.
let _ = (key, func);
if let Some(name) = self.find(|m| matches!(m, Export::GeneralPurposeExportRealloc)) {
return Some(name);
}
self.general_purpose_realloc()
}
/// Returns the realloc that the imported function `interface` and `func`
/// are using.
pub fn import_realloc_for(&self, interface: Option<InterfaceId>, func: &str) -> Option<&str> {
// TODO: This realloc detection should probably be improved with
// some sort of scheme to have per-function reallocs like
// `cabi_realloc_{name}` or something like that.
let _ = (interface, func);
if let Some(name) = self.find(|m| matches!(m, Export::GeneralPurposeImportRealloc)) {
return Some(name);
}
self.general_purpose_realloc()
}
/// Returns the realloc that the main module is exporting into the adapter.
pub fn realloc_to_import_into_adapter(&self) -> Option<&str> {
if let Some(name) = self.find(|m| matches!(m, Export::ReallocForAdapter)) {
return Some(name);
}
self.general_purpose_realloc()
}
fn general_purpose_realloc(&self) -> Option<&str> {
self.find(|m| matches!(m, Export::GeneralPurposeRealloc))
}
/// Returns the memory, if exported, for this module.
pub fn memory(&self) -> Option<&str> {
self.find(|m| matches!(m, Export::Memory))
}
/// Returns the `_initialize` intrinsic, if exported, for this module.
pub fn initialize(&self) -> Option<&str> {
self.find(|m| matches!(m, Export::Initialize))
}
/// Returns destructor for the exported resource `ty`, if it was listed.
pub fn resource_dtor(&self, ty: TypeId) -> Option<&str> {
self.find(|m| match m {
Export::ResourceDtor(t) => *t == ty,
_ => false,
})
}
/// NB: this is a linear search and if that's ever a problem this should
/// build up an inverse map during construction to accelerate it.
fn find(&self, f: impl Fn(&Export) -> bool) -> Option<&str> {
let (name, _) = self.names.iter().filter(|(_, m)| f(m)).next()?;
Some(name)
}
/// Iterates over all exports of this module.
pub fn iter(&self) -> impl Iterator<Item = (&str, &Export)> + '_ {
self.names.iter().map(|(n, e)| (n.as_str(), e))
}
fn validate(&self, encoder: &ComponentEncoder, exports: &IndexSet<WorldKey>) -> Result<()> {
let resolve = &encoder.metadata.resolve;
let world = encoder.metadata.world;
// Multi-memory isn't supported because otherwise we don't know what
// memory to put things in.
if self
.names
.values()
.filter(|m| matches!(m, Export::Memory))
.count()
> 1
{
bail!("cannot componentize module that exports multiple memories")
}
// All of `exports` must be exported and found within this module.
for export in exports {
let require_interface_func = |interface: InterfaceId, name: &str| -> Result<()> {
let result = self.find(|e| match e {
Export::InterfaceFunc(id, s) => interface == *id && name == s,
_ => false,
});
if result.is_some() {
Ok(())
} else {
let export = resolve.name_world_key(export);
bail!("failed to find export of interface `{export}` function `{name}`")
}
};
let require_world_func = |name: &str| -> Result<()> {
let result = self.find(|e| match e {
Export::WorldFunc(s) => name == s,
_ => false,
});
if result.is_some() {
Ok(())
} else {
bail!("failed to find export of function `{name}`")
}
};
match &resolve.worlds[world].exports[export] {
WorldItem::Interface { id, .. } => {
for (name, _) in resolve.interfaces[*id].functions.iter() {
require_interface_func(*id, name)?;
}
}
WorldItem::Function(f) => {
require_world_func(&f.name)?;
}
WorldItem::Type(_) => unreachable!(),
}
}
Ok(())
}
}
/// Trait dispatch and definition for parsing and interpreting "mangled names"
/// which show up in imports and exports of the component model.
///
/// This trait is used to implement classification of imports and exports in the
/// component model. The methods on `ImportMap` and `ExportMap` will use this to
/// determine what an import is and how it's lifted/lowered in the world being
/// bound.
///
/// This trait has a bit of history behind it as well. Before
/// WebAssembly/component-model#378 there was no standard naming scheme for core
/// wasm imports or exports when componenitizing. This meant that
/// `wit-component` implemented a particular scheme which mostly worked but was
/// mostly along the lines of "this at least works" rather than "someone sat
/// down and designed this". Since then, however, an standard naming scheme has
/// now been specified which was indeed designed.
///
/// This trait serves as the bridge between these two. The historical naming
/// scheme is still supported for now through the `Legacy` implementation below
/// and will be for some time. The transition plan at this time is to support
/// the new scheme, eventually get it supported in bindings generators, and once
/// that's all propagated remove support for the legacy scheme.
trait NameMangling {
fn import_root(&self) -> &str;
fn import_non_root_prefix(&self) -> &str;
fn import_exported_intrinsic_prefix(&self) -> &str;
fn export_memory(&self) -> &str;
fn export_initialize(&self) -> &str;
fn export_realloc(&self) -> &str;
fn resource_drop_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn resource_new_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn resource_rep_name<'a>(&self, s: &'a str) -> Option<&'a str>;
fn module_to_interface(
&self,
module: &str,
resolve: &Resolve,
items: &IndexMap<WorldKey, WorldItem>,
) -> Result<(WorldKey, InterfaceId)>;
fn strip_post_return<'a>(&self, s: &'a str) -> Option<&'a str>;
fn match_wit_export<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, Option<InterfaceId>, &'a Function)>;
fn match_wit_resource_dtor<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<TypeId>;
}
/// Definition of the "standard" naming scheme which currently starts with
/// "cm32p2". Note that wasm64 is not supported at this time.
struct Standard;
const STANDARD: &'static dyn NameMangling = &Standard;
impl NameMangling for Standard {
fn import_root(&self) -> &str {
""
}
fn import_non_root_prefix(&self) -> &str {
"|"
}
fn import_exported_intrinsic_prefix(&self) -> &str {
"_ex_"
}
fn export_memory(&self) -> &str {
"_memory"
}
fn export_initialize(&self) -> &str {
"_initialize"
}
fn export_realloc(&self) -> &str {
"_realloc"
}
fn resource_drop_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_drop")
}
fn resource_new_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_new")
}
fn resource_rep_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_rep")
}
fn module_to_interface(
&self,
interface: &str,
resolve: &Resolve,
items: &IndexMap<WorldKey, WorldItem>,
) -> Result<(WorldKey, InterfaceId)> {
for (key, item) in items.iter() {
let id = match key {
// Bare keys are matched exactly against `interface`
WorldKey::Name(name) => match item {
WorldItem::Interface { id, .. } if name == interface => *id,
_ => continue,
},
// ID-identified keys are matched with their "canonical name"
WorldKey::Interface(id) => {
if resolve.canonicalized_id_of(*id).as_deref() != Some(interface) {
continue;
}
*id
}
};
return Ok((key.clone(), id));
}
bail!("failed to find world item corresponding to interface `{interface}`")
}
fn strip_post_return<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_suffix("_post")
}
fn match_wit_export<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, Option<InterfaceId>, &'a Function)> {
if let Some(world_export_name) = export_name.strip_prefix("||") {
let key = exports.get(&WorldKey::Name(world_export_name.to_string()))?;
match &resolve.worlds[world].exports[key] {
WorldItem::Function(f) => return Some((key, None, f)),
_ => return None,
}
}
let (key, id, func_name) =
self.match_wit_interface(export_name, resolve, world, exports)?;
let func = resolve.interfaces[id].functions.get(func_name)?;
Some((key, Some(id), func))
}
fn match_wit_resource_dtor<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<TypeId> {
let (_key, id, name) =
self.match_wit_interface(export_name.strip_suffix("_dtor")?, resolve, world, exports)?;
let ty = *resolve.interfaces[id].types.get(name)?;
match resolve.types[ty].kind {
TypeDefKind::Resource => Some(ty),
_ => None,
}
}
}
impl Standard {
fn match_wit_interface<'a, 'b>(
&self,
export_name: &'b str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, InterfaceId, &'b str)> {
let world = &resolve.worlds[world];
let export_name = export_name.strip_prefix("|")?;
for export in exports {
let id = match &world.exports[export] {
WorldItem::Interface { id, .. } => *id,
WorldItem::Function(_) => continue,
WorldItem::Type(_) => unreachable!(),
};
let remaining = match export {
WorldKey::Name(name) => export_name.strip_prefix(name),
WorldKey::Interface(_) => {
let prefix = resolve.canonicalized_id_of(id).unwrap();
export_name.strip_prefix(&prefix)
}
};
let item_name = match remaining.and_then(|s| s.strip_prefix("|")) {
Some(name) => name,
None => continue,
};
return Some((export, id, item_name));
}
None
}
}
/// Definition of wit-component's "legacy" naming scheme which predates
/// WebAssembly/component-model#378.
struct Legacy;
const LEGACY: &'static dyn NameMangling = &Legacy;
impl NameMangling for Legacy {
fn import_root(&self) -> &str {
"$root"
}
fn import_non_root_prefix(&self) -> &str {
""
}
fn import_exported_intrinsic_prefix(&self) -> &str {
"[export]"
}
fn export_memory(&self) -> &str {
"memory"
}
fn export_initialize(&self) -> &str {
"_initialize"
}
fn export_realloc(&self) -> &str {
"cabi_realloc"
}
fn resource_drop_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[resource-drop]")
}
fn resource_new_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[resource-new]")
}
fn resource_rep_name<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("[resource-rep]")
}
fn module_to_interface(
&self,
module: &str,
resolve: &Resolve,
items: &IndexMap<WorldKey, WorldItem>,
) -> Result<(WorldKey, InterfaceId)> {
// First see if this is a bare name
let bare_name = WorldKey::Name(module.to_string());
if let Some(WorldItem::Interface { id, .. }) = items.get(&bare_name) {
return Ok((bare_name, *id));
}
// ... and if this isn't a bare name then it's time to do some parsing
// related to interfaces, versions, and such. First up the `module` name
// is parsed as a normal component name from `wasmparser` to see if it's
// of the "interface kind". If it's not then that means the above match
// should have been a hit but it wasn't, so an error is returned.
let kebab_name = ComponentName::new(module, 0);
let name = match kebab_name.as_ref().map(|k| k.kind()) {
Ok(ComponentNameKind::Interface(name)) => name,
_ => bail!("module requires an import interface named `{module}`"),
};
// Prioritize an exact match based on versions, so try that first.
let pkgname = PackageName {
namespace: name.namespace().to_string(),
name: name.package().to_string(),
version: name.version(),
};
if let Some(pkg) = resolve.package_names.get(&pkgname) {
if let Some(id) = resolve.packages[*pkg]
.interfaces
.get(name.interface().as_str())
{
let key = WorldKey::Interface(*id);
if items.contains_key(&key) {
return Ok((key, *id));
}
}
}
// If an exact match wasn't found then instead search for the first
// match based on versions. This means that a core wasm import for
// "1.2.3" might end up matching an interface at "1.2.4", for example.
// (or "1.2.2", depending on what's available).
for (key, _) in items {
let id = match key {
WorldKey::Interface(id) => *id,
WorldKey::Name(_) => continue,
};
// Make sure the interface names match
let interface = &resolve.interfaces[id];
if interface.name.as_ref().unwrap() != name.interface().as_str() {
continue;
}
// Make sure the package name (without version) matches
let pkg = &resolve.packages[interface.package.unwrap()];
if pkg.name.namespace != pkgname.namespace || pkg.name.name != pkgname.name {
continue;
}
let module_version = match name.version() {
Some(version) => version,
None => continue,
};
let pkg_version = match &pkg.name.version {
Some(version) => version,
None => continue,
};
// Test if the two semver versions are compatible
let module_compat = PackageName::version_compat_track(&module_version);
let pkg_compat = PackageName::version_compat_track(pkg_version);
if module_compat == pkg_compat {
return Ok((key.clone(), id));
}
}
bail!("module requires an import interface named `{module}`")
}
fn strip_post_return<'a>(&self, s: &'a str) -> Option<&'a str> {
s.strip_prefix("cabi_post_")
}
fn match_wit_export<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<(&'a WorldKey, Option<InterfaceId>, &'a Function)> {
let world = &resolve.worlds[world];
for name in exports {
match &world.exports[name] {
WorldItem::Function(f) => {
if f.legacy_core_export_name(None) == export_name {
return Some((name, None, f));
}
}
WorldItem::Interface { id, .. } => {
let string = resolve.name_world_key(name);
for (_, func) in resolve.interfaces[*id].functions.iter() {
if func.legacy_core_export_name(Some(&string)) == export_name {
return Some((name, Some(*id), func));
}
}
}
WorldItem::Type(_) => unreachable!(),
}
}
None
}
fn match_wit_resource_dtor<'a>(
&self,
export_name: &str,
resolve: &'a Resolve,
world: WorldId,
exports: &'a IndexSet<WorldKey>,
) -> Option<TypeId> {
let world = &resolve.worlds[world];
for name in exports {
let id = match &world.exports[name] {
WorldItem::Interface { id, .. } => *id,
WorldItem::Function(_) => continue,
WorldItem::Type(_) => unreachable!(),
};
let name = resolve.name_world_key(name);
let resource = match export_name
.strip_prefix(&name)
.and_then(|s| s.strip_prefix("#[dtor]"))
.and_then(|r| resolve.interfaces[id].types.get(r))
{
Some(id) => *id,
None => continue,
};
match resolve.types[resource].kind {
TypeDefKind::Resource => {}
_ => continue,
}
return Some(resource);
}
None
}
}
/// This function validates the following:
///
/// * The `bytes` represent a valid core WebAssembly module.
/// * The module's imports are all satisfied by the given `imports` interfaces
/// or the `adapters` set.
/// * The given default and exported interfaces are satisfied by the module's
/// exports.
///
/// The `ValidatedModule` return value contains the metadata which describes the
/// input module on success. This is then further used to generate a component
/// for this module.
pub fn validate_module(encoder: &ComponentEncoder, bytes: &[u8]) -> Result<ValidatedModule> {
ValidatedModule::new(encoder, bytes, &encoder.main_module_exports, None)
}
/// This function will validate the `bytes` provided as a wasm adapter module.
/// Notably this will validate the wasm module itself in addition to ensuring
/// that it has the "shape" of an adapter module. Current constraints are:
///
/// * The adapter module can import only one memory
/// * The adapter module can only import from the name of `interface` specified,
/// and all function imports must match the `required` types which correspond
/// to the lowered types of the functions in `interface`.
///
/// The wasm module passed into this function is the output of the GC pass of an
/// adapter module's original source. This means that the adapter module is
/// already minimized and this is a double-check that the minimization pass
/// didn't accidentally break the wasm module.
///
/// If `is_library` is true, we waive some of the constraints described above,
/// allowing the module to import tables and globals, as well as import
/// functions at the world level, not just at the interface level.
pub fn validate_adapter_module(
encoder: &ComponentEncoder,
bytes: &[u8],
required_by_import: &IndexMap<String, FuncType>,
exports: &IndexSet<WorldKey>,
library_info: Option<&LibraryInfo>,
) -> Result<ValidatedModule> {
let ret = ValidatedModule::new(encoder, bytes, exports, library_info)?;
for (name, required_ty) in required_by_import {
let actual = match ret.exports.raw_exports.get(name) {
Some(ty) => ty,
None => bail!("adapter module did not export `{name}`"),
};
validate_func_sig(name, required_ty, &actual)?;
}
Ok(ret)
}
fn resource_test_for_interface<'a>(
resolve: &'a Resolve,
id: InterfaceId,
) -> impl Fn(&str) -> Option<TypeId> + 'a {
let interface = &resolve.interfaces[id];
move |name: &str| {
let ty = match interface.types.get(name) {
Some(ty) => *ty,
None => return None,
};
if matches!(resolve.types[ty].kind, TypeDefKind::Resource) {
Some(ty)
} else {
None
}
}
}
fn resource_test_for_world<'a>(
resolve: &'a Resolve,
id: WorldId,
) -> impl Fn(&str) -> Option<TypeId> + 'a {
let world = &resolve.worlds[id];
move |name: &str| match world.imports.get(&WorldKey::Name(name.to_string()))? {
WorldItem::Type(r) => {
if matches!(resolve.types[*r].kind, TypeDefKind::Resource) {
Some(*r)
} else {
None
}
}
_ => None,
}
}
fn validate_func(
resolve: &Resolve,
ty: &wasmparser::FuncType,
func: &Function,
abi: AbiVariant,
) -> Result<()> {
validate_func_sig(
&func.name,
&wasm_sig_to_func_type(resolve.wasm_signature(abi, func)),
ty,
)
}
fn validate_post_return(
resolve: &Resolve,
ty: &wasmparser::FuncType,
func: &Function,
) -> Result<()> {
// The expected signature of a post-return function is to take all the
// parameters that are returned by the guest function and then return no
// results. Model this by calculating the signature of `func` and then
// moving its results into the parameters list while emptying out the
// results.
let mut sig = resolve.wasm_signature(AbiVariant::GuestExport, func);
sig.params = mem::take(&mut sig.results);
validate_func_sig(
&format!("{} post-return", func.name),
&wasm_sig_to_func_type(sig),
ty,
)
}
fn validate_func_sig(name: &str, expected: &FuncType, ty: &wasmparser::FuncType) -> Result<()> {
if ty != expected {
bail!(
"type mismatch for function `{}`: expected `{:?} -> {:?}` but found `{:?} -> {:?}`",
name,
expected.params(),
expected.results(),
ty.params(),
ty.results()
);
}
Ok(())
}