| // Copyright 2018 The Fuchsia Authors |
| // |
| // Licensed under the 2-Clause BSD License <LICENSE-BSD or |
| // https://opensource.org/license/bsd-2-clause>, Apache License, Version 2.0 |
| // <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT |
| // license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option. |
| // This file may not be copied, modified, or distributed except according to |
| // those terms. |
| |
| // After updating the following doc comment, make sure to run the following |
| // command to update `README.md` based on its contents: |
| // |
| // ./generate-readme.sh > README.md |
| |
| //! *<span style="font-size: 100%; color:grey;">Want to help improve zerocopy? |
| //! Fill out our [user survey][user-survey]!</span>* |
| //! |
| //! ***<span style="font-size: 140%">Fast, safe, <span |
| //! style="color:red;">compile error</span>. Pick two.</span>*** |
| //! |
| //! Zerocopy makes zero-cost memory manipulation effortless. We write `unsafe` |
| //! so you don't have to. |
| //! |
| //! # Overview |
| //! |
| //! Zerocopy provides four core marker traits, each of which can be derived |
| //! (e.g., `#[derive(FromZeroes)]`): |
| //! - [`FromZeroes`] indicates that a sequence of zero bytes represents a valid |
| //! instance of a type |
| //! - [`FromBytes`] indicates that a type may safely be converted from an |
| //! arbitrary byte sequence |
| //! - [`AsBytes`] indicates that a type may safely be converted *to* a byte |
| //! sequence |
| //! - [`Unaligned`] indicates that a type's alignment requirement is 1 |
| //! |
| //! Types which implement a subset of these traits can then be converted to/from |
| //! byte sequences with little to no runtime overhead. |
| //! |
| //! Zerocopy also provides byte-order aware integer types that support these |
| //! conversions; see the [`byteorder`] module. These types are especially useful |
| //! for network parsing. |
| //! |
| //! [user-survey]: https://docs.google.com/forms/d/e/1FAIpQLSdzBNTN9tzwsmtyZxRFNL02K36IWCdHWW2ZBckyQS2xiO3i8Q/viewform?usp=published_options |
| //! |
| //! # Cargo Features |
| //! |
| //! - **`alloc`** |
| //! By default, `zerocopy` is `no_std`. When the `alloc` feature is enabled, |
| //! the `alloc` crate is added as a dependency, and some allocation-related |
| //! functionality is added. |
| //! |
| //! - **`byteorder`** (enabled by default) |
| //! Adds the [`byteorder`] module and a dependency on the `byteorder` crate. |
| //! The `byteorder` module provides byte order-aware equivalents of the |
| //! multi-byte primitive numerical types. Unlike their primitive equivalents, |
| //! the types in this module have no alignment requirement and support byte |
| //! order conversions. This can be useful in handling file formats, network |
| //! packet layouts, etc which don't provide alignment guarantees and which may |
| //! use a byte order different from that of the execution platform. |
| //! |
| //! - **`derive`** |
| //! Provides derives for the core marker traits via the `zerocopy-derive` |
| //! crate. These derives are re-exported from `zerocopy`, so it is not |
| //! necessary to depend on `zerocopy-derive` directly. |
| //! |
| //! However, you may experience better compile times if you instead directly |
| //! depend on both `zerocopy` and `zerocopy-derive` in your `Cargo.toml`, |
| //! since doing so will allow Rust to compile these crates in parallel. To do |
| //! so, do *not* enable the `derive` feature, and list both dependencies in |
| //! your `Cargo.toml` with the same leading non-zero version number; e.g: |
| //! |
| //! ```toml |
| //! [dependencies] |
| //! zerocopy = "0.X" |
| //! zerocopy-derive = "0.X" |
| //! ``` |
| //! |
| //! - **`simd`** |
| //! When the `simd` feature is enabled, `FromZeroes`, `FromBytes`, and |
| //! `AsBytes` impls are emitted for all stable SIMD types which exist on the |
| //! target platform. Note that the layout of SIMD types is not yet stabilized, |
| //! so these impls may be removed in the future if layout changes make them |
| //! invalid. For more information, see the Unsafe Code Guidelines Reference |
| //! page on the [layout of packed SIMD vectors][simd-layout]. |
| //! |
| //! - **`simd-nightly`** |
| //! Enables the `simd` feature and adds support for SIMD types which are only |
| //! available on nightly. Since these types are unstable, support for any type |
| //! may be removed at any point in the future. |
| //! |
| //! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html |
| //! |
| //! # Security Ethos |
| //! |
| //! Zerocopy is expressly designed for use in security-critical contexts. We |
| //! strive to ensure that that zerocopy code is sound under Rust's current |
| //! memory model, and *any future memory model*. We ensure this by: |
| //! - **...not 'guessing' about Rust's semantics.** |
| //! We annotate `unsafe` code with a precise rationale for its soundness that |
| //! cites a relevant section of Rust's official documentation. When Rust's |
| //! documented semantics are unclear, we work with the Rust Operational |
| //! Semantics Team to clarify Rust's documentation. |
| //! - **...rigorously testing our implementation.** |
| //! We run tests using [Miri], ensuring that zerocopy is sound across a wide |
| //! array of supported target platforms of varying endianness and pointer |
| //! width, and across both current and experimental memory models of Rust. |
| //! - **...formally proving the correctness of our implementation.** |
| //! We apply formal verification tools like [Kani][kani] to prove zerocopy's |
| //! correctness. |
| //! |
| //! For more information, see our full [soundness policy]. |
| //! |
| //! [Miri]: https://github.com/rust-lang/miri |
| //! [Kani]: https://github.com/model-checking/kani |
| //! [soundness policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#soundness |
| //! |
| //! # Relationship to Project Safe Transmute |
| //! |
| //! [Project Safe Transmute] is an official initiative of the Rust Project to |
| //! develop language-level support for safer transmutation. The Project consults |
| //! with crates like zerocopy to identify aspects of safer transmutation that |
| //! would benefit from compiler support, and has developed an [experimental, |
| //! compiler-supported analysis][mcp-transmutability] which determines whether, |
| //! for a given type, any value of that type may be soundly transmuted into |
| //! another type. Once this functionality is sufficiently mature, zerocopy |
| //! intends to replace its internal transmutability analysis (implemented by our |
| //! custom derives) with the compiler-supported one. This change will likely be |
| //! an implementation detail that is invisible to zerocopy's users. |
| //! |
| //! Project Safe Transmute will not replace the need for most of zerocopy's |
| //! higher-level abstractions. The experimental compiler analysis is a tool for |
| //! checking the soundness of `unsafe` code, not a tool to avoid writing |
| //! `unsafe` code altogether. For the foreseeable future, crates like zerocopy |
| //! will still be required in order to provide higher-level abstractions on top |
| //! of the building block provided by Project Safe Transmute. |
| //! |
| //! [Project Safe Transmute]: https://rust-lang.github.io/rfcs/2835-project-safe-transmute.html |
| //! [mcp-transmutability]: https://github.com/rust-lang/compiler-team/issues/411 |
| //! |
| //! # MSRV |
| //! |
| //! See our [MSRV policy]. |
| //! |
| //! [MSRV policy]: https://github.com/google/zerocopy/blob/main/POLICIES.md#msrv |
| //! |
| //! # Changelog |
| //! |
| //! Zerocopy uses [GitHub Releases]. |
| //! |
| //! [GitHub Releases]: https://github.com/google/zerocopy/releases |
| |
| // Sometimes we want to use lints which were added after our MSRV. |
| // `unknown_lints` is `warn` by default and we deny warnings in CI, so without |
| // this attribute, any unknown lint would cause a CI failure when testing with |
| // our MSRV. |
| #![allow(unknown_lints)] |
| #![deny(renamed_and_removed_lints)] |
| #![deny( |
| anonymous_parameters, |
| deprecated_in_future, |
| illegal_floating_point_literal_pattern, |
| late_bound_lifetime_arguments, |
| missing_copy_implementations, |
| missing_debug_implementations, |
| missing_docs, |
| path_statements, |
| patterns_in_fns_without_body, |
| rust_2018_idioms, |
| trivial_numeric_casts, |
| unreachable_pub, |
| unsafe_op_in_unsafe_fn, |
| unused_extern_crates, |
| unused_qualifications, |
| variant_size_differences |
| )] |
| #![cfg_attr( |
| __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, |
| deny(fuzzy_provenance_casts, lossy_provenance_casts) |
| )] |
| #![deny( |
| clippy::all, |
| clippy::alloc_instead_of_core, |
| clippy::arithmetic_side_effects, |
| clippy::as_underscore, |
| clippy::assertions_on_result_states, |
| clippy::as_conversions, |
| clippy::correctness, |
| clippy::dbg_macro, |
| clippy::decimal_literal_representation, |
| clippy::get_unwrap, |
| clippy::indexing_slicing, |
| clippy::missing_inline_in_public_items, |
| clippy::missing_safety_doc, |
| clippy::obfuscated_if_else, |
| clippy::perf, |
| clippy::print_stdout, |
| clippy::std_instead_of_core, |
| clippy::style, |
| clippy::suspicious, |
| clippy::todo, |
| clippy::undocumented_unsafe_blocks, |
| clippy::unimplemented, |
| clippy::unnested_or_patterns, |
| clippy::unwrap_used, |
| clippy::use_debug |
| )] |
| #![deny( |
| rustdoc::bare_urls, |
| rustdoc::broken_intra_doc_links, |
| rustdoc::invalid_codeblock_attributes, |
| rustdoc::invalid_html_tags, |
| rustdoc::invalid_rust_codeblocks, |
| rustdoc::missing_crate_level_docs, |
| rustdoc::private_intra_doc_links |
| )] |
| // In test code, it makes sense to weight more heavily towards concise, readable |
| // code over correct or debuggable code. |
| #![cfg_attr(any(test, kani), allow( |
| // In tests, you get line numbers and have access to source code, so panic |
| // messages are less important. You also often unwrap a lot, which would |
| // make expect'ing instead very verbose. |
| clippy::unwrap_used, |
| // In tests, there's no harm to "panic risks" - the worst that can happen is |
| // that your test will fail, and you'll fix it. By contrast, panic risks in |
| // production code introduce the possibly of code panicking unexpectedly "in |
| // the field". |
| clippy::arithmetic_side_effects, |
| clippy::indexing_slicing, |
| ))] |
| #![cfg_attr(not(test), no_std)] |
| #![cfg_attr(feature = "simd-nightly", feature(stdsimd))] |
| #![cfg_attr(doc_cfg, feature(doc_cfg))] |
| #![cfg_attr( |
| __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS, |
| feature(layout_for_ptr, strict_provenance) |
| )] |
| |
| // This is a hack to allow zerocopy-derive derives to work in this crate. They |
| // assume that zerocopy is linked as an extern crate, so they access items from |
| // it as `zerocopy::Xxx`. This makes that still work. |
| #[cfg(any(feature = "derive", test))] |
| extern crate self as zerocopy; |
| |
| #[macro_use] |
| mod macros; |
| |
| #[cfg(feature = "byteorder")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "byteorder")))] |
| pub mod byteorder; |
| #[doc(hidden)] |
| pub mod macro_util; |
| mod post_monomorphization_compile_fail_tests; |
| mod util; |
| // TODO(#252): If we make this pub, come up with a better name. |
| mod wrappers; |
| |
| #[cfg(feature = "byteorder")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "byteorder")))] |
| pub use crate::byteorder::*; |
| pub use crate::wrappers::*; |
| |
| #[cfg(any(feature = "derive", test))] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))] |
| pub use zerocopy_derive::Unaligned; |
| |
| // `pub use` separately here so that we can mark it `#[doc(hidden)]`. |
| // |
| // TODO(#29): Remove this or add a doc comment. |
| #[cfg(any(feature = "derive", test))] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))] |
| #[doc(hidden)] |
| pub use zerocopy_derive::KnownLayout; |
| |
| use core::{ |
| cell::{self, RefMut}, |
| cmp::Ordering, |
| fmt::{self, Debug, Display, Formatter}, |
| hash::Hasher, |
| marker::PhantomData, |
| mem::{self, ManuallyDrop, MaybeUninit}, |
| num::{ |
| NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128, |
| NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping, |
| }, |
| ops::{Deref, DerefMut}, |
| ptr::{self, NonNull}, |
| slice, |
| }; |
| |
| #[cfg(feature = "alloc")] |
| extern crate alloc; |
| #[cfg(feature = "alloc")] |
| use alloc::{boxed::Box, vec::Vec}; |
| |
| #[cfg(any(feature = "alloc", kani))] |
| use core::alloc::Layout; |
| |
| // Used by `TryFromBytes::is_bit_valid`. |
| #[doc(hidden)] |
| pub use crate::util::ptr::Ptr; |
| |
| // For each polyfill, as soon as the corresponding feature is stable, the |
| // polyfill import will be unused because method/function resolution will prefer |
| // the inherent method/function over a trait method/function. Thus, we suppress |
| // the `unused_imports` warning. |
| // |
| // See the documentation on `util::polyfills` for more information. |
| #[allow(unused_imports)] |
| use crate::util::polyfills::NonNullExt as _; |
| |
| #[rustversion::nightly] |
| #[cfg(all(test, not(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)))] |
| const _: () = { |
| #[deprecated = "some tests may be skipped due to missing RUSTFLAGS=\"--cfg __INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS\""] |
| const _WARNING: () = (); |
| #[warn(deprecated)] |
| _WARNING |
| }; |
| |
| /// The target pointer width, counted in bits. |
| const POINTER_WIDTH_BITS: usize = mem::size_of::<usize>() * 8; |
| |
| /// The layout of a type which might be dynamically-sized. |
| /// |
| /// `DstLayout` describes the layout of sized types, slice types, and "slice |
| /// DSTs" - ie, those that are known by the type system to have a trailing slice |
| /// (as distinguished from `dyn Trait` types - such types *might* have a |
| /// trailing slice type, but the type system isn't aware of it). |
| /// |
| /// # Safety |
| /// |
| /// Unlike [`core::alloc::Layout`], `DstLayout` is only used to describe full |
| /// Rust types - ie, those that satisfy the layout requirements outlined by |
| /// [the reference]. Callers may assume that an instance of `DstLayout` |
| /// satisfies any conditions imposed on Rust types by the reference. |
| /// |
| /// If `layout: DstLayout` describes a type, `T`, then it is guaranteed that: |
| /// - `layout.align` is equal to `T`'s alignment |
| /// - If `layout.size_info` is `SizeInfo::Sized { size }`, then `T: Sized` and |
| /// `size_of::<T>() == size` |
| /// - If `layout.size_info` is `SizeInfo::SliceDst(slice_layout)`, then |
| /// - `T` is a slice DST |
| /// - The `size` of an instance of `T` with `elems` trailing slice elements is |
| /// equal to `slice_layout.offset + slice_layout.elem_size * elems` rounded up |
| /// to the nearest multiple of `layout.align`. Any bytes in the range |
| /// `[slice_layout.offset + slice_layout.elem_size * elems, size)` are padding |
| /// and must not be assumed to be initialized. |
| /// |
| /// [the reference]: https://doc.rust-lang.org/reference/type-layout.html |
| #[doc(hidden)] |
| #[allow(missing_debug_implementations, missing_copy_implementations)] |
| #[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| pub struct DstLayout { |
| align: NonZeroUsize, |
| size_info: SizeInfo, |
| } |
| |
| #[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| enum SizeInfo<E = usize> { |
| Sized { _size: usize }, |
| SliceDst(TrailingSliceLayout<E>), |
| } |
| |
| #[cfg_attr(any(kani, test), derive(Copy, Clone, Debug, PartialEq, Eq))] |
| struct TrailingSliceLayout<E = usize> { |
| // The offset of the first byte of the trailing slice field. Note that this |
| // is NOT the same as the minimum size of the type. For example, consider |
| // the following type: |
| // |
| // struct Foo { |
| // a: u16, |
| // b: u8, |
| // c: [u8], |
| // } |
| // |
| // In `Foo`, `c` is at byte offset 3. When `c.len() == 0`, `c` is followed |
| // by a padding byte. |
| _offset: usize, |
| // The size of the element type of the trailing slice field. |
| _elem_size: E, |
| } |
| |
| impl SizeInfo { |
| /// Attempts to create a `SizeInfo` from `Self` in which `elem_size` is a |
| /// `NonZeroUsize`. If `elem_size` is 0, returns `None`. |
| #[allow(unused)] |
| const fn try_to_nonzero_elem_size(&self) -> Option<SizeInfo<NonZeroUsize>> { |
| Some(match *self { |
| SizeInfo::Sized { _size } => SizeInfo::Sized { _size }, |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) => { |
| if let Some(_elem_size) = NonZeroUsize::new(_elem_size) { |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) |
| } else { |
| return None; |
| } |
| } |
| }) |
| } |
| } |
| |
| #[doc(hidden)] |
| #[derive(Copy, Clone)] |
| #[cfg_attr(test, derive(Debug))] |
| #[allow(missing_debug_implementations)] |
| pub enum _CastType { |
| _Prefix, |
| _Suffix, |
| } |
| |
| impl DstLayout { |
| /// The minimum possible alignment of a type. |
| const MIN_ALIGN: NonZeroUsize = match NonZeroUsize::new(1) { |
| Some(min_align) => min_align, |
| None => unreachable!(), |
| }; |
| |
| /// The maximum theoretic possible alignment of a type. |
| /// |
| /// For compatibility with future Rust versions, this is defined as the |
| /// maximum power-of-two that fits into a `usize`. See also |
| /// [`DstLayout::CURRENT_MAX_ALIGN`]. |
| const THEORETICAL_MAX_ALIGN: NonZeroUsize = |
| match NonZeroUsize::new(1 << (POINTER_WIDTH_BITS - 1)) { |
| Some(max_align) => max_align, |
| None => unreachable!(), |
| }; |
| |
| /// The current, documented max alignment of a type \[1\]. |
| /// |
| /// \[1\] Per <https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers>: |
| /// |
| /// The alignment value must be a power of two from 1 up to |
| /// 2<sup>29</sup>. |
| #[cfg(not(kani))] |
| const CURRENT_MAX_ALIGN: NonZeroUsize = match NonZeroUsize::new(1 << 28) { |
| Some(max_align) => max_align, |
| None => unreachable!(), |
| }; |
| |
| /// Constructs a `DstLayout` for a zero-sized type with `repr_align` |
| /// alignment (or 1). If `repr_align` is provided, then it must be a power |
| /// of two. |
| /// |
| /// # Panics |
| /// |
| /// This function panics if the supplied `repr_align` is not a power of two. |
| /// |
| /// # Safety |
| /// |
| /// Unsafe code may assume that the contract of this function is satisfied. |
| #[doc(hidden)] |
| #[inline] |
| pub const fn new_zst(repr_align: Option<NonZeroUsize>) -> DstLayout { |
| let align = match repr_align { |
| Some(align) => align, |
| None => Self::MIN_ALIGN, |
| }; |
| |
| assert!(align.is_power_of_two()); |
| |
| DstLayout { align, size_info: SizeInfo::Sized { _size: 0 } } |
| } |
| |
| /// Constructs a `DstLayout` which describes `T`. |
| /// |
| /// # Safety |
| /// |
| /// Unsafe code may assume that `DstLayout` is the correct layout for `T`. |
| #[doc(hidden)] |
| #[inline] |
| pub const fn for_type<T>() -> DstLayout { |
| // SAFETY: `align` is correct by construction. `T: Sized`, and so it is |
| // sound to initialize `size_info` to `SizeInfo::Sized { size }`; the |
| // `size` field is also correct by construction. |
| DstLayout { |
| align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| Some(align) => align, |
| None => unreachable!(), |
| }, |
| size_info: SizeInfo::Sized { _size: mem::size_of::<T>() }, |
| } |
| } |
| |
| /// Constructs a `DstLayout` which describes `[T]`. |
| /// |
| /// # Safety |
| /// |
| /// Unsafe code may assume that `DstLayout` is the correct layout for `[T]`. |
| const fn for_slice<T>() -> DstLayout { |
| // SAFETY: The alignment of a slice is equal to the alignment of its |
| // element type, and so `align` is initialized correctly. |
| // |
| // Since this is just a slice type, there is no offset between the |
| // beginning of the type and the beginning of the slice, so it is |
| // correct to set `offset: 0`. The `elem_size` is correct by |
| // construction. Since `[T]` is a (degenerate case of a) slice DST, it |
| // is correct to initialize `size_info` to `SizeInfo::SliceDst`. |
| DstLayout { |
| align: match NonZeroUsize::new(mem::align_of::<T>()) { |
| Some(align) => align, |
| None => unreachable!(), |
| }, |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: 0, |
| _elem_size: mem::size_of::<T>(), |
| }), |
| } |
| } |
| |
| /// Like `Layout::extend`, this creates a layout that describes a record |
| /// whose layout consists of `self` followed by `next` that includes the |
| /// necessary inter-field padding, but not any trailing padding. |
| /// |
| /// In order to match the layout of a `#[repr(C)]` struct, this method |
| /// should be invoked for each field in declaration order. To add trailing |
| /// padding, call `DstLayout::pad_to_align` after extending the layout for |
| /// all fields. If `self` corresponds to a type marked with |
| /// `repr(packed(N))`, then `repr_packed` should be set to `Some(N)`, |
| /// otherwise `None`. |
| /// |
| /// This method cannot be used to match the layout of a record with the |
| /// default representation, as that representation is mostly unspecified. |
| /// |
| /// # Safety |
| /// |
| /// If a (potentially hypothetical) valid `repr(C)` Rust type begins with |
| /// fields whose layout are `self`, and those fields are immediately |
| /// followed by a field whose layout is `field`, then unsafe code may rely |
| /// on `self.extend(field, repr_packed)` producing a layout that correctly |
| /// encompasses those two components. |
| /// |
| /// We make no guarantees to the behavior of this method if these fragments |
| /// cannot appear in a valid Rust type (e.g., the concatenation of the |
| /// layouts would lead to a size larger than `isize::MAX`). |
| #[doc(hidden)] |
| #[inline] |
| pub const fn extend(self, field: DstLayout, repr_packed: Option<NonZeroUsize>) -> Self { |
| use util::{core_layout::padding_needed_for, max, min}; |
| |
| // If `repr_packed` is `None`, there are no alignment constraints, and |
| // the value can be defaulted to `THEORETICAL_MAX_ALIGN`. |
| let max_align = match repr_packed { |
| Some(max_align) => max_align, |
| None => Self::THEORETICAL_MAX_ALIGN, |
| }; |
| |
| assert!(max_align.is_power_of_two()); |
| |
| // We use Kani to prove that this method is robust to future increases |
| // in Rust's maximum allowed alignment. However, if such a change ever |
| // actually occurs, we'd like to be notified via assertion failures. |
| #[cfg(not(kani))] |
| { |
| debug_assert!(self.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| debug_assert!(field.align.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| if let Some(repr_packed) = repr_packed { |
| debug_assert!(repr_packed.get() <= DstLayout::CURRENT_MAX_ALIGN.get()); |
| } |
| } |
| |
| // The field's alignment is clamped by `repr_packed` (i.e., the |
| // `repr(packed(N))` attribute, if any) [1]. |
| // |
| // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| // |
| // The alignments of each field, for the purpose of positioning |
| // fields, is the smaller of the specified alignment and the alignment |
| // of the field's type. |
| let field_align = min(field.align, max_align); |
| |
| // The struct's alignment is the maximum of its previous alignment and |
| // `field_align`. |
| let align = max(self.align, field_align); |
| |
| let size_info = match self.size_info { |
| // If the layout is already a DST, we panic; DSTs cannot be extended |
| // with additional fields. |
| SizeInfo::SliceDst(..) => panic!("Cannot extend a DST with additional fields."), |
| |
| SizeInfo::Sized { _size: preceding_size } => { |
| // Compute the minimum amount of inter-field padding needed to |
| // satisfy the field's alignment, and offset of the trailing |
| // field. [1] |
| // |
| // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| // |
| // Inter-field padding is guaranteed to be the minimum |
| // required in order to satisfy each field's (possibly |
| // altered) alignment. |
| let padding = padding_needed_for(preceding_size, field_align); |
| |
| // This will not panic (and is proven to not panic, with Kani) |
| // if the layout components can correspond to a leading layout |
| // fragment of a valid Rust type, but may panic otherwise (e.g., |
| // combining or aligning the components would create a size |
| // exceeding `isize::MAX`). |
| let offset = match preceding_size.checked_add(padding) { |
| Some(offset) => offset, |
| None => panic!("Adding padding to `self`'s size overflows `usize`."), |
| }; |
| |
| match field.size_info { |
| SizeInfo::Sized { _size: field_size } => { |
| // If the trailing field is sized, the resulting layout |
| // will be sized. Its size will be the sum of the |
| // preceeding layout, the size of the new field, and the |
| // size of inter-field padding between the two. |
| // |
| // This will not panic (and is proven with Kani to not |
| // panic) if the layout components can correspond to a |
| // leading layout fragment of a valid Rust type, but may |
| // panic otherwise (e.g., combining or aligning the |
| // components would create a size exceeding |
| // `usize::MAX`). |
| let size = match offset.checked_add(field_size) { |
| Some(size) => size, |
| None => panic!("`field` cannot be appended without the total size overflowing `usize`"), |
| }; |
| SizeInfo::Sized { _size: size } |
| } |
| SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: trailing_offset, |
| _elem_size, |
| }) => { |
| // If the trailing field is dynamically sized, so too |
| // will the resulting layout. The offset of the trailing |
| // slice component is the sum of the offset of the |
| // trailing field and the trailing slice offset within |
| // that field. |
| // |
| // This will not panic (and is proven with Kani to not |
| // panic) if the layout components can correspond to a |
| // leading layout fragment of a valid Rust type, but may |
| // panic otherwise (e.g., combining or aligning the |
| // components would create a size exceeding |
| // `usize::MAX`). |
| let offset = match offset.checked_add(trailing_offset) { |
| Some(offset) => offset, |
| None => panic!("`field` cannot be appended without the total size overflowing `usize`"), |
| }; |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset: offset, _elem_size }) |
| } |
| } |
| } |
| }; |
| |
| DstLayout { align, size_info } |
| } |
| |
| /// Like `Layout::pad_to_align`, this routine rounds the size of this layout |
| /// up to the nearest multiple of this type's alignment or `repr_packed` |
| /// (whichever is less). This method leaves DST layouts unchanged, since the |
| /// trailing padding of DSTs is computed at runtime. |
| /// |
| /// In order to match the layout of a `#[repr(C)]` struct, this method |
| /// should be invoked after the invocations of [`DstLayout::extend`]. If |
| /// `self` corresponds to a type marked with `repr(packed(N))`, then |
| /// `repr_packed` should be set to `Some(N)`, otherwise `None`. |
| /// |
| /// This method cannot be used to match the layout of a record with the |
| /// default representation, as that representation is mostly unspecified. |
| /// |
| /// # Safety |
| /// |
| /// If a (potentially hypothetical) valid `repr(C)` type begins with fields |
| /// whose layout are `self` followed only by zero or more bytes of trailing |
| /// padding (not included in `self`), then unsafe code may rely on |
| /// `self.pad_to_align(repr_packed)` producing a layout that correctly |
| /// encapsulates the layout of that type. |
| /// |
| /// We make no guarantees to the behavior of this method if `self` cannot |
| /// appear in a valid Rust type (e.g., because the addition of trailing |
| /// padding would lead to a size larger than `isize::MAX`). |
| #[doc(hidden)] |
| #[inline] |
| pub const fn pad_to_align(self) -> Self { |
| use util::core_layout::padding_needed_for; |
| |
| let size_info = match self.size_info { |
| // For sized layouts, we add the minimum amount of trailing padding |
| // needed to satisfy alignment. |
| SizeInfo::Sized { _size: unpadded_size } => { |
| let padding = padding_needed_for(unpadded_size, self.align); |
| let size = match unpadded_size.checked_add(padding) { |
| Some(size) => size, |
| None => panic!("Adding padding caused size to overflow `usize`."), |
| }; |
| SizeInfo::Sized { _size: size } |
| } |
| // For DST layouts, trailing padding depends on the length of the |
| // trailing DST and is computed at runtime. This does not alter the |
| // offset or element size of the layout, so we leave `size_info` |
| // unchanged. |
| size_info @ SizeInfo::SliceDst(_) => size_info, |
| }; |
| |
| DstLayout { align: self.align, size_info } |
| } |
| |
| /// Validates that a cast is sound from a layout perspective. |
| /// |
| /// Validates that the size and alignment requirements of a type with the |
| /// layout described in `self` would not be violated by performing a |
| /// `cast_type` cast from a pointer with address `addr` which refers to a |
| /// memory region of size `bytes_len`. |
| /// |
| /// If the cast is valid, `validate_cast_and_convert_metadata` returns |
| /// `(elems, split_at)`. If `self` describes a dynamically-sized type, then |
| /// `elems` is the maximum number of trailing slice elements for which a |
| /// cast would be valid (for sized types, `elem` is meaningless and should |
| /// be ignored). `split_at` is the index at which to split the memory region |
| /// in order for the prefix (suffix) to contain the result of the cast, and |
| /// in order for the remaining suffix (prefix) to contain the leftover |
| /// bytes. |
| /// |
| /// There are three conditions under which a cast can fail: |
| /// - The smallest possible value for the type is larger than the provided |
| /// memory region |
| /// - A prefix cast is requested, and `addr` does not satisfy `self`'s |
| /// alignment requirement |
| /// - A suffix cast is requested, and `addr + bytes_len` does not satisfy |
| /// `self`'s alignment requirement (as a consequence, since all instances |
| /// of the type are a multiple of its alignment, no size for the type will |
| /// result in a starting address which is properly aligned) |
| /// |
| /// # Safety |
| /// |
| /// The caller may assume that this implementation is correct, and may rely |
| /// on that assumption for the soundness of their code. In particular, the |
| /// caller may assume that, if `validate_cast_and_convert_metadata` returns |
| /// `Some((elems, split_at))`, then: |
| /// - A pointer to the type (for dynamically sized types, this includes |
| /// `elems` as its pointer metadata) describes an object of size `size <= |
| /// bytes_len` |
| /// - If this is a prefix cast: |
| /// - `addr` satisfies `self`'s alignment |
| /// - `size == split_at` |
| /// - If this is a suffix cast: |
| /// - `split_at == bytes_len - size` |
| /// - `addr + split_at` satisfies `self`'s alignment |
| /// |
| /// Note that this method does *not* ensure that a pointer constructed from |
| /// its return values will be a valid pointer. In particular, this method |
| /// does not reason about `isize` overflow, which is a requirement of many |
| /// Rust pointer APIs, and may at some point be determined to be a validity |
| /// invariant of pointer types themselves. This should never be a problem so |
| /// long as the arguments to this method are derived from a known-valid |
| /// pointer (e.g., one derived from a safe Rust reference), but it is |
| /// nonetheless the caller's responsibility to justify that pointer |
| /// arithmetic will not overflow based on a safety argument *other than* the |
| /// mere fact that this method returned successfully. |
| /// |
| /// # Panics |
| /// |
| /// `validate_cast_and_convert_metadata` will panic if `self` describes a |
| /// DST whose trailing slice element is zero-sized. |
| /// |
| /// If `addr + bytes_len` overflows `usize`, |
| /// `validate_cast_and_convert_metadata` may panic, or it may return |
| /// incorrect results. No guarantees are made about when |
| /// `validate_cast_and_convert_metadata` will panic. The caller should not |
| /// rely on `validate_cast_and_convert_metadata` panicking in any particular |
| /// condition, even if `debug_assertions` are enabled. |
| #[allow(unused)] |
| const fn validate_cast_and_convert_metadata( |
| &self, |
| addr: usize, |
| bytes_len: usize, |
| cast_type: _CastType, |
| ) -> Option<(usize, usize)> { |
| // `debug_assert!`, but with `#[allow(clippy::arithmetic_side_effects)]`. |
| macro_rules! __debug_assert { |
| ($e:expr $(, $msg:expr)?) => { |
| debug_assert!({ |
| #[allow(clippy::arithmetic_side_effects)] |
| let e = $e; |
| e |
| } $(, $msg)?); |
| }; |
| } |
| |
| // Note that, in practice, `self` is always a compile-time constant. We |
| // do this check earlier than needed to ensure that we always panic as a |
| // result of bugs in the program (such as calling this function on an |
| // invalid type) instead of allowing this panic to be hidden if the cast |
| // would have failed anyway for runtime reasons (such as a too-small |
| // memory region). |
| // |
| // TODO(#67): Once our MSRV is 1.65, use let-else: |
| // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| let size_info = match self.size_info.try_to_nonzero_elem_size() { |
| Some(size_info) => size_info, |
| None => panic!("attempted to cast to slice type with zero-sized element"), |
| }; |
| |
| // Precondition |
| __debug_assert!(addr.checked_add(bytes_len).is_some(), "`addr` + `bytes_len` > usize::MAX"); |
| |
| // Alignment checks go in their own block to avoid introducing variables |
| // into the top-level scope. |
| { |
| // We check alignment for `addr` (for prefix casts) or `addr + |
| // bytes_len` (for suffix casts). For a prefix cast, the correctness |
| // of this check is trivial - `addr` is the address the object will |
| // live at. |
| // |
| // For a suffix cast, we know that all valid sizes for the type are |
| // a multiple of the alignment (and by safety precondition, we know |
| // `DstLayout` may only describe valid Rust types). Thus, a |
| // validly-sized instance which lives at a validly-aligned address |
| // must also end at a validly-aligned address. Thus, if the end |
| // address for a suffix cast (`addr + bytes_len`) is not aligned, |
| // then no valid start address will be aligned either. |
| let offset = match cast_type { |
| _CastType::_Prefix => 0, |
| _CastType::_Suffix => bytes_len, |
| }; |
| |
| // Addition is guaranteed not to overflow because `offset <= |
| // bytes_len`, and `addr + bytes_len <= usize::MAX` is a |
| // precondition of this method. Modulus is guaranteed not to divide |
| // by 0 because `align` is non-zero. |
| #[allow(clippy::arithmetic_side_effects)] |
| if (addr + offset) % self.align.get() != 0 { |
| return None; |
| } |
| } |
| |
| let (elems, self_bytes) = match size_info { |
| SizeInfo::Sized { _size: size } => { |
| if size > bytes_len { |
| return None; |
| } |
| (0, size) |
| } |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset: offset, _elem_size: elem_size }) => { |
| // Calculate the maximum number of bytes that could be consumed |
| // - any number of bytes larger than this will either not be a |
| // multiple of the alignment, or will be larger than |
| // `bytes_len`. |
| let max_total_bytes = |
| util::round_down_to_next_multiple_of_alignment(bytes_len, self.align); |
| // Calculate the maximum number of bytes that could be consumed |
| // by the trailing slice. |
| // |
| // TODO(#67): Once our MSRV is 1.65, use let-else: |
| // https://blog.rust-lang.org/2022/11/03/Rust-1.65.0.html#let-else-statements |
| let max_slice_and_padding_bytes = match max_total_bytes.checked_sub(offset) { |
| Some(max) => max, |
| // `bytes_len` too small even for 0 trailing slice elements. |
| None => return None, |
| }; |
| |
| // Calculate the number of elements that fit in |
| // `max_slice_and_padding_bytes`; any remaining bytes will be |
| // considered padding. |
| // |
| // Guaranteed not to divide by zero: `elem_size` is non-zero. |
| #[allow(clippy::arithmetic_side_effects)] |
| let elems = max_slice_and_padding_bytes / elem_size.get(); |
| // Guaranteed not to overflow on multiplication: `usize::MAX >= |
| // max_slice_and_padding_bytes >= (max_slice_and_padding_bytes / |
| // elem_size) * elem_size`. |
| // |
| // Guaranteed not to overflow on addition: |
| // - max_slice_and_padding_bytes == max_total_bytes - offset |
| // - elems * elem_size <= max_slice_and_padding_bytes == max_total_bytes - offset |
| // - elems * elem_size + offset <= max_total_bytes <= usize::MAX |
| #[allow(clippy::arithmetic_side_effects)] |
| let without_padding = offset + elems * elem_size.get(); |
| // `self_bytes` is equal to the offset bytes plus the bytes |
| // consumed by the trailing slice plus any padding bytes |
| // required to satisfy the alignment. Note that we have computed |
| // the maximum number of trailing slice elements that could fit |
| // in `self_bytes`, so any padding is guaranteed to be less than |
| // the size of an extra element. |
| // |
| // Guaranteed not to overflow: |
| // - By previous comment: without_padding == elems * elem_size + |
| // offset <= max_total_bytes |
| // - By construction, `max_total_bytes` is a multiple of |
| // `self.align`. |
| // - At most, adding padding needed to round `without_padding` |
| // up to the next multiple of the alignment will bring |
| // `self_bytes` up to `max_total_bytes`. |
| #[allow(clippy::arithmetic_side_effects)] |
| let self_bytes = without_padding |
| + util::core_layout::padding_needed_for(without_padding, self.align); |
| (elems, self_bytes) |
| } |
| }; |
| |
| __debug_assert!(self_bytes <= bytes_len); |
| |
| let split_at = match cast_type { |
| _CastType::_Prefix => self_bytes, |
| // Guaranteed not to underflow: |
| // - In the `Sized` branch, only returns `size` if `size <= |
| // bytes_len`. |
| // - In the `SliceDst` branch, calculates `self_bytes <= |
| // max_toatl_bytes`, which is upper-bounded by `bytes_len`. |
| #[allow(clippy::arithmetic_side_effects)] |
| _CastType::_Suffix => bytes_len - self_bytes, |
| }; |
| |
| Some((elems, split_at)) |
| } |
| } |
| |
| /// A trait which carries information about a type's layout that is used by the |
| /// internals of this crate. |
| /// |
| /// This trait is not meant for consumption by code outside of this crate. While |
| /// the normal semver stability guarantees apply with respect to which types |
| /// implement this trait and which trait implementations are implied by this |
| /// trait, no semver stability guarantees are made regarding its internals; they |
| /// may change at any time, and code which makes use of them may break. |
| /// |
| /// # Safety |
| /// |
| /// This trait does not convey any safety guarantees to code outside this crate. |
| #[doc(hidden)] // TODO: Remove this once KnownLayout is used by other APIs |
| pub unsafe trait KnownLayout { |
| // The `Self: Sized` bound makes it so that `KnownLayout` can still be |
| // object safe. It's not currently object safe thanks to `const LAYOUT`, and |
| // it likely won't be in the future, but there's no reason not to be |
| // forwards-compatible with object safety. |
| #[doc(hidden)] |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized; |
| |
| #[doc(hidden)] |
| const LAYOUT: DstLayout; |
| |
| /// SAFETY: The returned pointer has the same address and provenance as |
| /// `bytes`. If `Self` is a DST, the returned pointer's referent has `elems` |
| /// elements in its trailing slice. If `Self` is sized, `elems` is ignored. |
| #[doc(hidden)] |
| fn raw_from_ptr_len(bytes: NonNull<u8>, elems: usize) -> NonNull<Self>; |
| } |
| |
| // SAFETY: Delegates safety to `DstLayout::for_slice`. |
| unsafe impl<T: KnownLayout> KnownLayout for [T] { |
| #[allow(clippy::missing_inline_in_public_items)] |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized, |
| { |
| } |
| const LAYOUT: DstLayout = DstLayout::for_slice::<T>(); |
| |
| // SAFETY: `.cast` preserves address and provenance. The returned pointer |
| // refers to an object with `elems` elements by construction. |
| #[inline(always)] |
| fn raw_from_ptr_len(data: NonNull<u8>, elems: usize) -> NonNull<Self> { |
| // TODO(#67): Remove this allow. See NonNullExt for more details. |
| #[allow(unstable_name_collisions)] |
| NonNull::slice_from_raw_parts(data.cast::<T>(), elems) |
| } |
| } |
| |
| #[rustfmt::skip] |
| impl_known_layout!( |
| (), |
| u8, i8, u16, i16, u32, i32, u64, i64, u128, i128, usize, isize, f32, f64, |
| bool, char, |
| NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, NonZeroI32, |
| NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, NonZeroUsize, NonZeroIsize |
| ); |
| #[rustfmt::skip] |
| impl_known_layout!( |
| T => Option<T>, |
| T: ?Sized => PhantomData<T>, |
| T => Wrapping<T>, |
| T => MaybeUninit<T>, |
| T: ?Sized => *const T, |
| T: ?Sized => *mut T, |
| ); |
| impl_known_layout!(const N: usize, T => [T; N]); |
| |
| safety_comment! { |
| /// SAFETY: |
| /// `str` and `ManuallyDrop<[T]>` [1] have the same representations as |
| /// `[u8]` and `[T]` repsectively. `str` has different bit validity than |
| /// `[u8]`, but that doesn't affect the soundness of this impl. |
| /// |
| /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html: |
| /// |
| /// `ManuallyDrop<T>` is guaranteed to have the same layout and bit |
| /// validity as `T` |
| /// |
| /// TODO(#429): |
| /// - Add quotes from docs. |
| /// - Once [1] (added in |
| /// https://github.com/rust-lang/rust/pull/115522) is available on stable, |
| /// quote the stable docs instead of the nightly docs. |
| unsafe_impl_known_layout!(#[repr([u8])] str); |
| unsafe_impl_known_layout!(T: ?Sized + KnownLayout => #[repr(T)] ManuallyDrop<T>); |
| } |
| |
| /// Analyzes whether a type is [`FromZeroes`]. |
| /// |
| /// This derive analyzes, at compile time, whether the annotated type satisfies |
| /// the [safety conditions] of `FromZeroes` and implements `FromZeroes` if it is |
| /// sound to do so. This derive can be applied to structs, enums, and unions; |
| /// e.g.: |
| /// |
| /// ``` |
| /// # use zerocopy_derive::FromZeroes; |
| /// #[derive(FromZeroes)] |
| /// struct MyStruct { |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes)] |
| /// #[repr(u8)] |
| /// enum MyEnum { |
| /// # Variant0, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes)] |
| /// union MyUnion { |
| /// # variant: u8, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// ``` |
| /// |
| /// [safety conditions]: trait@FromZeroes#safety |
| /// |
| /// # Analysis |
| /// |
| /// *This section describes, roughly, the analysis performed by this derive to |
| /// determine whether it is sound to implement `FromZeroes` for a given type. |
| /// Unless you are modifying the implementation of this derive, or attempting to |
| /// manually implement `FromZeroes` for a type yourself, you don't need to read |
| /// this section.* |
| /// |
| /// If a type has the following properties, then this derive can implement |
| /// `FromZeroes` for that type: |
| /// |
| /// - If the type is a struct, all of its fields must be `FromZeroes`. |
| /// - If the type is an enum, it must be C-like (meaning that all variants have |
| /// no fields) and it must have a variant with a discriminant of `0`. See [the |
| /// reference] for a description of how discriminant values are chosen. |
| /// - The type must not contain any [`UnsafeCell`]s (this is required in order |
| /// for it to be sound to construct a `&[u8]` and a `&T` to the same region of |
| /// memory). The type may contain references or pointers to `UnsafeCell`s so |
| /// long as those values can themselves be initialized from zeroes |
| /// (`FromZeroes` is not currently implemented for, e.g., |
| /// `Option<&UnsafeCell<_>>`, but it could be one day). |
| /// |
| /// This analysis is subject to change. Unsafe code may *only* rely on the |
| /// documented [safety conditions] of `FromZeroes`, and must *not* rely on the |
| /// implementation details of this derive. |
| /// |
| /// [the reference]: https://doc.rust-lang.org/reference/items/enumerations.html#custom-discriminant-values-for-fieldless-enumerations |
| /// [`UnsafeCell`]: core::cell::UnsafeCell |
| /// |
| /// ## Why isn't an explicit representation required for structs? |
| /// |
| /// Neither this derive, nor the [safety conditions] of `FromZeroes`, requires |
| /// that structs are marked with `#[repr(C)]`. |
| /// |
| /// Per the [Rust reference](reference), |
| /// |
| /// > The representation of a type can change the padding between fields, but |
| /// does not change the layout of the fields themselves. |
| /// |
| /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
| /// |
| /// Since the layout of structs only consists of padding bytes and field bytes, |
| /// a struct is soundly `FromZeroes` if: |
| /// 1. its padding is soundly `FromZeroes`, and |
| /// 2. its fields are soundly `FromZeroes`. |
| /// |
| /// The answer to the first question is always yes: padding bytes do not have |
| /// any validity constraints. A [discussion] of this question in the Unsafe Code |
| /// Guidelines Working Group concluded that it would be virtually unimaginable |
| /// for future versions of rustc to add validity constraints to padding bytes. |
| /// |
| /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
| /// |
| /// Whether a struct is soundly `FromZeroes` therefore solely depends on whether |
| /// its fields are `FromZeroes`. |
| // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
| // attribute. |
| #[cfg(any(feature = "derive", test))] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))] |
| pub use zerocopy_derive::FromZeroes; |
| |
| /// Types whose validity can be checked at runtime, allowing them to be |
| /// conditionally converted from byte slices. |
| /// |
| /// WARNING: Do not implement this trait yourself! Instead, use |
| /// `#[derive(TryFromBytes)]`. |
| /// |
| /// `TryFromBytes` types can safely be deserialized from an untrusted sequence |
| /// of bytes by performing a runtime check that the byte sequence contains a |
| /// valid instance of `Self`. |
| /// |
| /// `TryFromBytes` is ignorant of byte order. For byte order-aware types, see |
| /// the [`byteorder`] module. |
| /// |
| /// # What is a "valid instance"? |
| /// |
| /// In Rust, each type has *bit validity*, which refers to the set of bit |
| /// patterns which may appear in an instance of that type. It is impossible for |
| /// safe Rust code to produce values which violate bit validity (ie, values |
| /// outside of the "valid" set of bit patterns). If `unsafe` code produces an |
| /// invalid value, this is considered [undefined behavior]. |
| /// |
| /// Rust's bit validity rules are currently being decided, which means that some |
| /// types have three classes of bit patterns: those which are definitely valid, |
| /// and whose validity is documented in the language; those which may or may not |
| /// be considered valid at some point in the future; and those which are |
| /// definitely invalid. |
| /// |
| /// Zerocopy takes a conservative approach, and only considers a bit pattern to |
| /// be valid if its validity is a documenteed guarantee provided by the |
| /// language. |
| /// |
| /// For most use cases, Rust's current guarantees align with programmers' |
| /// intuitions about what ought to be valid. As a result, zerocopy's |
| /// conservatism should not affect most users. One notable exception is unions, |
| /// whose bit validity is very up in the air; zerocopy does not permit |
| /// implementing `TryFromBytes` for any union type. |
| /// |
| /// If you are negatively affected by lack of support for a particular type, |
| /// we encourage you to let us know by [filing an issue][github-repo]. |
| /// |
| /// # Safety |
| /// |
| /// On its own, `T: TryFromBytes` does not make any guarantees about the layout |
| /// or representation of `T`. It merely provides the ability to perform a |
| /// validity check at runtime via methods like [`try_from_ref`]. |
| /// |
| /// Currently, it is not possible to stably implement `TryFromBytes` other than |
| /// by using `#[derive(TryFromBytes)]`. While there are `#[doc(hidden)]` items |
| /// on this trait that provide well-defined safety invariants, no stability |
| /// guarantees are made with respect to these items. In particular, future |
| /// releases of zerocopy may make backwards-breaking changes to these items, |
| /// including changes that only affect soundness, which may cause code which |
| /// uses those items to silently become unsound. |
| /// |
| /// [undefined behavior]: https://raphlinus.github.io/programming/rust/2018/08/17/undefined-behavior.html |
| /// [github-repo]: https://github.com/google/zerocopy |
| /// [`try_from_ref`]: TryFromBytes::try_from_ref |
| // TODO(#5): Update `try_from_ref` doc link once it exists |
| #[doc(hidden)] |
| pub unsafe trait TryFromBytes { |
| /// Does a given memory range contain a valid instance of `Self`? |
| /// |
| /// # Safety |
| /// |
| /// ## Preconditions |
| /// |
| /// The memory referenced by `candidate` may only be accessed via reads for |
| /// the duration of this method call. This prohibits writes through mutable |
| /// references and through [`UnsafeCell`]s. There may exist immutable |
| /// references to the same memory which contain `UnsafeCell`s so long as: |
| /// - Those `UnsafeCell`s exist at the same byte ranges as `UnsafeCell`s in |
| /// `Self`. This is a bidirectional property: `Self` may not contain |
| /// `UnsafeCell`s where other references to the same memory do not, and |
| /// vice-versa. |
| /// - Those `UnsafeCell`s are never used to perform mutation for the |
| /// duration of this method call. |
| /// |
| /// The memory referenced by `candidate` may not be referenced by any |
| /// mutable references even if these references are not used to perform |
| /// mutation. |
| /// |
| /// `candidate` is not required to refer to a valid `Self`. However, it must |
| /// satisfy the requirement that uninitialized bytes may only be present |
| /// where it is possible for them to be present in `Self`. This is a dynamic |
| /// property: if, at a particular byte offset, a valid enum discriminant is |
| /// set, the subsequent bytes may only have uninitialized bytes as |
| /// specificed by the corresponding enum. |
| /// |
| /// Formally, given `len = size_of_val_raw(candidate)`, at every byte |
| /// offset, `b`, in the range `[0, len)`: |
| /// - If, in all instances `s: Self` of length `len`, the byte at offset `b` |
| /// in `s` is initialized, then the byte at offset `b` within `*candidate` |
| /// must be initialized. |
| /// - Let `c` be the contents of the byte range `[0, b)` in `*candidate`. |
| /// Let `S` be the subset of valid instances of `Self` of length `len` |
| /// which contain `c` in the offset range `[0, b)`. If, for all instances |
| /// of `s: Self` in `S`, the byte at offset `b` in `s` is initialized, |
| /// then the byte at offset `b` in `*candidate` must be initialized. |
| /// |
| /// Pragmatically, this means that if `*candidate` is guaranteed to |
| /// contain an enum type at a particular offset, and the enum discriminant |
| /// stored in `*candidate` corresponds to a valid variant of that enum |
| /// type, then it is guaranteed that the appropriate bytes of `*candidate` |
| /// are initialized as defined by that variant's bit validity (although |
| /// note that the variant may contain another enum type, in which case the |
| /// same rules apply depending on the state of its discriminant, and so on |
| /// recursively). |
| /// |
| /// ## Postconditions |
| /// |
| /// Unsafe code may assume that, if `is_bit_valid(candidate)` returns true, |
| /// `*candidate` contains a valid `Self`. |
| /// |
| /// # Panics |
| /// |
| /// `is_bit_valid` may panic. Callers are responsible for ensuring that any |
| /// `unsafe` code remains sound even in the face of `is_bit_valid` |
| /// panicking. (We support user-defined validation routines; so long as |
| /// these routines are not required to be `unsafe`, there is no way to |
| /// ensure that these do not generate panics.) |
| /// |
| /// [`UnsafeCell`]: core::cell::UnsafeCell |
| #[doc(hidden)] |
| unsafe fn is_bit_valid(candidate: Ptr<'_, Self>) -> bool; |
| |
| /// Attempts to interpret a byte slice as a `Self`. |
| /// |
| /// `try_from_ref` validates that `bytes` contains a valid `Self`, and that |
| /// it satisfies `Self`'s alignment requirement. If it does, then `bytes` is |
| /// reinterpreted as a `Self`. |
| /// |
| /// Note that Rust's bit validity rules are still being decided. As such, |
| /// there exist types whose bit validity is ambiguous. See the |
| /// `TryFromBytes` docs for a discussion of how these cases are handled. |
| // TODO(#251): In a future in which we distinguish between `FromBytes` and |
| // `RefFromBytes`, this requires `where Self: RefFromBytes` to disallow |
| // interior mutability. |
| #[inline] |
| #[doc(hidden)] // TODO(#5): Finalize name before remove this attribute. |
| fn try_from_ref(bytes: &[u8]) -> Option<&Self> |
| where |
| Self: KnownLayout, |
| { |
| let maybe_self = Ptr::from(bytes).try_cast_into_no_leftover::<Self>()?; |
| |
| // SAFETY: |
| // - Since `bytes` is an immutable reference, we know that no mutable |
| // references exist to this memory region. |
| // - Since `[u8]` contains no `UnsafeCell`s, we know there are no |
| // `&UnsafeCell` references to this memory region. |
| // - Since we don't permit implementing `TryFromBytes` for types which |
| // contain `UnsafeCell`s, there are no `UnsafeCell`s in `Self`, and so |
| // the requirement that all references contain `UnsafeCell`s at the |
| // same offsets is trivially satisfied. |
| // - All bytes of `bytes` are initialized. |
| // |
| // This call may panic. If that happens, it doesn't cause any soundness |
| // issues, as we have not generated any invalid state which we need to |
| // fix before returning. |
| if unsafe { !Self::is_bit_valid(maybe_self) } { |
| return None; |
| } |
| |
| // SAFETY: |
| // - Preconditions for `as_ref`: |
| // - `is_bit_valid` guarantees that `*maybe_self` contains a valid |
| // `Self`. Since `&[u8]` does not permit interior mutation, this |
| // cannot be invalidated after this method returns. |
| // - Since the argument and return types are immutable references, |
| // Rust will prevent the caller from producing any mutable |
| // references to the same memory region. |
| // - Since `Self` is not allowed to contain any `UnsafeCell`s and the |
| // same is true of `[u8]`, interior mutation is not possible. Thus, |
| // no mutation is possible. For the same reason, there is no |
| // mismatch between the two types in terms of which byte ranges are |
| // referenced as `UnsafeCell`s. |
| // - Since interior mutation isn't possible within `Self`, there's no |
| // way for the returned reference to be used to modify the byte range, |
| // and thus there's no way for the returned reference to be used to |
| // write an invalid `[u8]` which would be observable via the original |
| // `&[u8]`. |
| Some(unsafe { maybe_self.as_ref() }) |
| } |
| } |
| |
| /// Types for which a sequence of bytes all set to zero represents a valid |
| /// instance of the type. |
| /// |
| /// Any memory region of the appropriate length which is guaranteed to contain |
| /// only zero bytes can be viewed as any `FromZeroes` type with no runtime |
| /// overhead. This is useful whenever memory is known to be in a zeroed state, |
| /// such memory returned from some allocation routines. |
| /// |
| /// # Implementation |
| /// |
| /// **Do not implement this trait yourself!** Instead, use |
| /// [`#[derive(FromZeroes)]`][derive] (requires the `derive` Cargo feature); |
| /// e.g.: |
| /// |
| /// ``` |
| /// # use zerocopy_derive::FromZeroes; |
| /// #[derive(FromZeroes)] |
| /// struct MyStruct { |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes)] |
| /// #[repr(u8)] |
| /// enum MyEnum { |
| /// # Variant0, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes)] |
| /// union MyUnion { |
| /// # variant: u8, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// ``` |
| /// |
| /// This derive performs a sophisticated, compile-time safety analysis to |
| /// determine whether a type is `FromZeroes`. |
| /// |
| /// # Safety |
| /// |
| /// *This section describes what is required in order for `T: FromZeroes`, and |
| /// what unsafe code may assume of such types. If you don't plan on implementing |
| /// `FromZeroes` manually, and you don't plan on writing unsafe code that |
| /// operates on `FromZeroes` types, then you don't need to read this section.* |
| /// |
| /// If `T: FromZeroes`, then unsafe code may assume that: |
| /// - It is sound to treat any initialized sequence of zero bytes of length |
| /// `size_of::<T>()` as a `T`. |
| /// - Given `b: &[u8]` where `b.len() == size_of::<T>()`, `b` is aligned to |
| /// `align_of::<T>()`, and `b` contains only zero bytes, it is sound to |
| /// construct a `t: &T` at the same address as `b`, and it is sound for both |
| /// `b` and `t` to be live at the same time. |
| /// |
| /// If a type is marked as `FromZeroes` which violates this contract, it may |
| /// cause undefined behavior. |
| /// |
| /// `#[derive(FromZeroes)]` only permits [types which satisfy these |
| /// requirements][derive-analysis]. |
| /// |
| #[cfg_attr( |
| feature = "derive", |
| doc = "[derive]: zerocopy_derive::FromZeroes", |
| doc = "[derive-analysis]: zerocopy_derive::FromZeroes#analysis" |
| )] |
| #[cfg_attr( |
| not(feature = "derive"), |
| doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromZeroes.html"), |
| doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromZeroes.html#analysis"), |
| )] |
| pub unsafe trait FromZeroes { |
| // The `Self: Sized` bound makes it so that `FromZeroes` is still object |
| // safe. |
| #[doc(hidden)] |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized; |
| |
| /// Overwrites `self` with zeroes. |
| /// |
| /// Sets every byte in `self` to 0. While this is similar to doing `*self = |
| /// Self::new_zeroed()`, it differs in that `zero` does not semantically |
| /// drop the current value and replace it with a new one - it simply |
| /// modifies the bytes of the existing value. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use zerocopy::FromZeroes; |
| /// # use zerocopy_derive::*; |
| /// # |
| /// #[derive(FromZeroes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let mut header = PacketHeader { |
| /// src_port: 100u16.to_be_bytes(), |
| /// dst_port: 200u16.to_be_bytes(), |
| /// length: 300u16.to_be_bytes(), |
| /// checksum: 400u16.to_be_bytes(), |
| /// }; |
| /// |
| /// header.zero(); |
| /// |
| /// assert_eq!(header.src_port, [0, 0]); |
| /// assert_eq!(header.dst_port, [0, 0]); |
| /// assert_eq!(header.length, [0, 0]); |
| /// assert_eq!(header.checksum, [0, 0]); |
| /// ``` |
| #[inline(always)] |
| fn zero(&mut self) { |
| let slf: *mut Self = self; |
| let len = mem::size_of_val(self); |
| // SAFETY: |
| // - `self` is guaranteed by the type system to be valid for writes of |
| // size `size_of_val(self)`. |
| // - `u8`'s alignment is 1, and thus `self` is guaranteed to be aligned |
| // as required by `u8`. |
| // - Since `Self: FromZeroes`, the all-zeroes instance is a valid |
| // instance of `Self.` |
| // |
| // TODO(#429): Add references to docs and quotes. |
| unsafe { ptr::write_bytes(slf.cast::<u8>(), 0, len) }; |
| } |
| |
| /// Creates an instance of `Self` from zeroed bytes. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use zerocopy::FromZeroes; |
| /// # use zerocopy_derive::*; |
| /// # |
| /// #[derive(FromZeroes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let header: PacketHeader = FromZeroes::new_zeroed(); |
| /// |
| /// assert_eq!(header.src_port, [0, 0]); |
| /// assert_eq!(header.dst_port, [0, 0]); |
| /// assert_eq!(header.length, [0, 0]); |
| /// assert_eq!(header.checksum, [0, 0]); |
| /// ``` |
| #[inline(always)] |
| fn new_zeroed() -> Self |
| where |
| Self: Sized, |
| { |
| // SAFETY: `FromZeroes` says that the all-zeroes bit pattern is legal. |
| unsafe { mem::zeroed() } |
| } |
| |
| /// Creates a `Box<Self>` from zeroed bytes. |
| /// |
| /// This function is useful for allocating large values on the heap and |
| /// zero-initializing them, without ever creating a temporary instance of |
| /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()` |
| /// will allocate `[u8; 1048576]` directly on the heap; it does not require |
| /// storing `[u8; 1048576]` in a temporary variable on the stack. |
| /// |
| /// On systems that use a heap implementation that supports allocating from |
| /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may |
| /// have performance benefits. |
| /// |
| /// Note that `Box<Self>` can be converted to `Arc<Self>` and other |
| /// container types without reallocation. |
| /// |
| /// # Panics |
| /// |
| /// Panics if allocation of `size_of::<Self>()` bytes fails. |
| #[cfg(feature = "alloc")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] |
| #[inline] |
| fn new_box_zeroed() -> Box<Self> |
| where |
| Self: Sized, |
| { |
| // If `T` is a ZST, then return a proper boxed instance of it. There is |
| // no allocation, but `Box` does require a correct dangling pointer. |
| let layout = Layout::new::<Self>(); |
| if layout.size() == 0 { |
| return Box::new(Self::new_zeroed()); |
| } |
| |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() }; |
| if ptr.is_null() { |
| alloc::alloc::handle_alloc_error(layout); |
| } |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| Box::from_raw(ptr) |
| } |
| } |
| |
| /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes. |
| /// |
| /// This function is useful for allocating large values of `[Self]` on the |
| /// heap and zero-initializing them, without ever creating a temporary |
| /// instance of `[Self; _]` on the stack. For example, |
| /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on |
| /// the heap; it does not require storing the slice on the stack. |
| /// |
| /// On systems that use a heap implementation that supports allocating from |
| /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance |
| /// benefits. |
| /// |
| /// If `Self` is a zero-sized type, then this function will return a |
| /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any |
| /// actual information, but its `len()` property will report the correct |
| /// value. |
| /// |
| /// # Panics |
| /// |
| /// * Panics if `size_of::<Self>() * len` overflows. |
| /// * Panics if allocation of `size_of::<Self>() * len` bytes fails. |
| #[cfg(feature = "alloc")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] |
| #[inline] |
| fn new_box_slice_zeroed(len: usize) -> Box<[Self]> |
| where |
| Self: Sized, |
| { |
| let size = mem::size_of::<Self>() |
| .checked_mul(len) |
| .expect("mem::size_of::<Self>() * len overflows `usize`"); |
| let align = mem::align_of::<Self>(); |
| // On stable Rust versions <= 1.64.0, `Layout::from_size_align` has a |
| // bug in which sufficiently-large allocations (those which, when |
| // rounded up to the alignment, overflow `isize`) are not rejected, |
| // which can cause undefined behavior. See #64 for details. |
| // |
| // TODO(#67): Once our MSRV is > 1.64.0, remove this assertion. |
| #[allow(clippy::as_conversions)] |
| let max_alloc = (isize::MAX as usize).saturating_sub(align); |
| assert!(size <= max_alloc); |
| // TODO(https://github.com/rust-lang/rust/issues/55724): Use |
| // `Layout::repeat` once it's stabilized. |
| let layout = |
| Layout::from_size_align(size, align).expect("total allocation size overflows `isize`"); |
| |
| let ptr = if layout.size() != 0 { |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| let ptr = unsafe { alloc::alloc::alloc_zeroed(layout).cast::<Self>() }; |
| if ptr.is_null() { |
| alloc::alloc::handle_alloc_error(layout); |
| } |
| ptr |
| } else { |
| // `Box<[T]>` does not allocate when `T` is zero-sized or when `len` |
| // is zero, but it does require a non-null dangling pointer for its |
| // allocation. |
| NonNull::<Self>::dangling().as_ptr() |
| }; |
| |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| Box::from_raw(slice::from_raw_parts_mut(ptr, len)) |
| } |
| } |
| |
| /// Creates a `Vec<Self>` from zeroed bytes. |
| /// |
| /// This function is useful for allocating large values of `Vec`s and |
| /// zero-initializing them, without ever creating a temporary instance of |
| /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For |
| /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the |
| /// heap; it does not require storing intermediate values on the stack. |
| /// |
| /// On systems that use a heap implementation that supports allocating from |
| /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits. |
| /// |
| /// If `Self` is a zero-sized type, then this function will return a |
| /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any |
| /// actual information, but its `len()` property will report the correct |
| /// value. |
| /// |
| /// # Panics |
| /// |
| /// * Panics if `size_of::<Self>() * len` overflows. |
| /// * Panics if allocation of `size_of::<Self>() * len` bytes fails. |
| #[cfg(feature = "alloc")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "new_vec_zeroed")))] |
| #[inline(always)] |
| fn new_vec_zeroed(len: usize) -> Vec<Self> |
| where |
| Self: Sized, |
| { |
| Self::new_box_slice_zeroed(len).into() |
| } |
| } |
| |
| /// Analyzes whether a type is [`FromBytes`]. |
| /// |
| /// This derive analyzes, at compile time, whether the annotated type satisfies |
| /// the [safety conditions] of `FromBytes` and implements `FromBytes` if it is |
| /// sound to do so. This derive can be applied to structs, enums, and unions; |
| /// e.g.: |
| /// |
| /// ``` |
| /// # use zerocopy_derive::{FromBytes, FromZeroes}; |
| /// #[derive(FromZeroes, FromBytes)] |
| /// struct MyStruct { |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(u8)] |
| /// enum MyEnum { |
| /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
| /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
| /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
| /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
| /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
| /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
| /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
| /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
| /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
| /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
| /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
| /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
| /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
| /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
| /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
| /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
| /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
| /// # VFF, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// union MyUnion { |
| /// # variant: u8, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// ``` |
| /// |
| /// [safety conditions]: trait@FromBytes#safety |
| /// |
| /// # Analysis |
| /// |
| /// *This section describes, roughly, the analysis performed by this derive to |
| /// determine whether it is sound to implement `FromBytes` for a given type. |
| /// Unless you are modifying the implementation of this derive, or attempting to |
| /// manually implement `FromBytes` for a type yourself, you don't need to read |
| /// this section.* |
| /// |
| /// If a type has the following properties, then this derive can implement |
| /// `FromBytes` for that type: |
| /// |
| /// - If the type is a struct, all of its fields must be `FromBytes`. |
| /// - If the type is an enum: |
| /// - It must be a C-like enum (meaning that all variants have no fields). |
| /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
| /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
| /// - The maximum number of discriminants must be used (so that every possible |
| /// bit pattern is a valid one). Be very careful when using the `C`, |
| /// `usize`, or `isize` representations, as their size is |
| /// platform-dependent. |
| /// - The type must not contain any [`UnsafeCell`]s (this is required in order |
| /// for it to be sound to construct a `&[u8]` and a `&T` to the same region of |
| /// memory). The type may contain references or pointers to `UnsafeCell`s so |
| /// long as those values can themselves be initialized from zeroes |
| /// (`FromBytes` is not currently implemented for, e.g., `Option<*const |
| /// UnsafeCell<_>>`, but it could be one day). |
| /// |
| /// [`UnsafeCell`]: core::cell::UnsafeCell |
| /// |
| /// This analysis is subject to change. Unsafe code may *only* rely on the |
| /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
| /// implementation details of this derive. |
| /// |
| /// ## Why isn't an explicit representation required for structs? |
| /// |
| /// Neither this derive, nor the [safety conditions] of `FromBytes`, requires |
| /// that structs are marked with `#[repr(C)]`. |
| /// |
| /// Per the [Rust reference](reference), |
| /// |
| /// > The representation of a type can change the padding between fields, but |
| /// does not change the layout of the fields themselves. |
| /// |
| /// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations |
| /// |
| /// Since the layout of structs only consists of padding bytes and field bytes, |
| /// a struct is soundly `FromBytes` if: |
| /// 1. its padding is soundly `FromBytes`, and |
| /// 2. its fields are soundly `FromBytes`. |
| /// |
| /// The answer to the first question is always yes: padding bytes do not have |
| /// any validity constraints. A [discussion] of this question in the Unsafe Code |
| /// Guidelines Working Group concluded that it would be virtually unimaginable |
| /// for future versions of rustc to add validity constraints to padding bytes. |
| /// |
| /// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174 |
| /// |
| /// Whether a struct is soundly `FromBytes` therefore solely depends on whether |
| /// its fields are `FromBytes`. |
| // TODO(#146): Document why we don't require an enum to have an explicit `repr` |
| // attribute. |
| #[cfg(any(feature = "derive", test))] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))] |
| pub use zerocopy_derive::FromBytes; |
| |
| /// Types for which any bit pattern is valid. |
| /// |
| /// Any memory region of the appropriate length which contains initialized bytes |
| /// can be viewed as any `FromBytes` type with no runtime overhead. This is |
| /// useful for efficiently parsing bytes as structured data. |
| /// |
| /// # Implementation |
| /// |
| /// **Do not implement this trait yourself!** Instead, use |
| /// [`#[derive(FromBytes)]`][derive] (requires the `derive` Cargo feature); |
| /// e.g.: |
| /// |
| /// ``` |
| /// # use zerocopy_derive::{FromBytes, FromZeroes}; |
| /// #[derive(FromZeroes, FromBytes)] |
| /// struct MyStruct { |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(u8)] |
| /// enum MyEnum { |
| /// # V00, V01, V02, V03, V04, V05, V06, V07, V08, V09, V0A, V0B, V0C, V0D, V0E, |
| /// # V0F, V10, V11, V12, V13, V14, V15, V16, V17, V18, V19, V1A, V1B, V1C, V1D, |
| /// # V1E, V1F, V20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V2A, V2B, V2C, |
| /// # V2D, V2E, V2F, V30, V31, V32, V33, V34, V35, V36, V37, V38, V39, V3A, V3B, |
| /// # V3C, V3D, V3E, V3F, V40, V41, V42, V43, V44, V45, V46, V47, V48, V49, V4A, |
| /// # V4B, V4C, V4D, V4E, V4F, V50, V51, V52, V53, V54, V55, V56, V57, V58, V59, |
| /// # V5A, V5B, V5C, V5D, V5E, V5F, V60, V61, V62, V63, V64, V65, V66, V67, V68, |
| /// # V69, V6A, V6B, V6C, V6D, V6E, V6F, V70, V71, V72, V73, V74, V75, V76, V77, |
| /// # V78, V79, V7A, V7B, V7C, V7D, V7E, V7F, V80, V81, V82, V83, V84, V85, V86, |
| /// # V87, V88, V89, V8A, V8B, V8C, V8D, V8E, V8F, V90, V91, V92, V93, V94, V95, |
| /// # V96, V97, V98, V99, V9A, V9B, V9C, V9D, V9E, V9F, VA0, VA1, VA2, VA3, VA4, |
| /// # VA5, VA6, VA7, VA8, VA9, VAA, VAB, VAC, VAD, VAE, VAF, VB0, VB1, VB2, VB3, |
| /// # VB4, VB5, VB6, VB7, VB8, VB9, VBA, VBB, VBC, VBD, VBE, VBF, VC0, VC1, VC2, |
| /// # VC3, VC4, VC5, VC6, VC7, VC8, VC9, VCA, VCB, VCC, VCD, VCE, VCF, VD0, VD1, |
| /// # VD2, VD3, VD4, VD5, VD6, VD7, VD8, VD9, VDA, VDB, VDC, VDD, VDE, VDF, VE0, |
| /// # VE1, VE2, VE3, VE4, VE5, VE6, VE7, VE8, VE9, VEA, VEB, VEC, VED, VEE, VEF, |
| /// # VF0, VF1, VF2, VF3, VF4, VF5, VF6, VF7, VF8, VF9, VFA, VFB, VFC, VFD, VFE, |
| /// # VFF, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// union MyUnion { |
| /// # variant: u8, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// ``` |
| /// |
| /// This derive performs a sophisticated, compile-time safety analysis to |
| /// determine whether a type is `FromBytes`. |
| /// |
| /// # Safety |
| /// |
| /// *This section describes what is required in order for `T: FromBytes`, and |
| /// what unsafe code may assume of such types. If you don't plan on implementing |
| /// `FromBytes` manually, and you don't plan on writing unsafe code that |
| /// operates on `FromBytes` types, then you don't need to read this section.* |
| /// |
| /// If `T: FromBytes`, then unsafe code may assume that: |
| /// - It is sound to treat any initialized sequence of bytes of length |
| /// `size_of::<T>()` as a `T`. |
| /// - Given `b: &[u8]` where `b.len() == size_of::<T>()`, `b` is aligned to |
| /// `align_of::<T>()` it is sound to construct a `t: &T` at the same address |
| /// as `b`, and it is sound for both `b` and `t` to be live at the same time. |
| /// |
| /// If a type is marked as `FromBytes` which violates this contract, it may |
| /// cause undefined behavior. |
| /// |
| /// `#[derive(FromBytes)]` only permits [types which satisfy these |
| /// requirements][derive-analysis]. |
| /// |
| #[cfg_attr( |
| feature = "derive", |
| doc = "[derive]: zerocopy_derive::FromBytes", |
| doc = "[derive-analysis]: zerocopy_derive::FromBytes#analysis" |
| )] |
| #[cfg_attr( |
| not(feature = "derive"), |
| doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromBytes.html"), |
| doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.FromBytes.html#analysis"), |
| )] |
| pub unsafe trait FromBytes: FromZeroes { |
| // The `Self: Sized` bound makes it so that `FromBytes` is still object |
| // safe. |
| #[doc(hidden)] |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized; |
| |
| /// Interprets the given `bytes` as a `&Self` without copying. |
| /// |
| /// If `bytes.len() != size_of::<Self>()` or `bytes` is not aligned to |
| /// `align_of::<Self>()`, this returns `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// // These bytes encode a `PacketHeader`. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice(); |
| /// |
| /// let header = PacketHeader::ref_from(bytes).unwrap(); |
| /// |
| /// assert_eq!(header.src_port, [0, 1]); |
| /// assert_eq!(header.dst_port, [2, 3]); |
| /// assert_eq!(header.length, [4, 5]); |
| /// assert_eq!(header.checksum, [6, 7]); |
| /// ``` |
| #[inline] |
| fn ref_from(bytes: &[u8]) -> Option<&Self> |
| where |
| Self: Sized, |
| { |
| Ref::<&[u8], Self>::new(bytes).map(Ref::into_ref) |
| } |
| |
| /// Interprets the prefix of the given `bytes` as a `&Self` without copying. |
| /// |
| /// `ref_from_prefix` returns a reference to the first `size_of::<Self>()` |
| /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or `bytes` is not |
| /// aligned to `align_of::<Self>()`, this returns `None`. |
| /// |
| /// To also access the prefix bytes, use [`Ref::new_from_prefix`]. Then, use |
| /// [`Ref::into_ref`] to get a `&Self` with the same lifetime. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode a `PacketHeader`. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| /// |
| /// let header = PacketHeader::ref_from_prefix(bytes).unwrap(); |
| /// |
| /// assert_eq!(header.src_port, [0, 1]); |
| /// assert_eq!(header.dst_port, [2, 3]); |
| /// assert_eq!(header.length, [4, 5]); |
| /// assert_eq!(header.checksum, [6, 7]); |
| /// ``` |
| #[inline] |
| fn ref_from_prefix(bytes: &[u8]) -> Option<&Self> |
| where |
| Self: Sized, |
| { |
| Ref::<&[u8], Self>::new_from_prefix(bytes).map(|(r, _)| r.into_ref()) |
| } |
| |
| /// Interprets the suffix of the given `bytes` as a `&Self` without copying. |
| /// |
| /// `ref_from_suffix` returns a reference to the last `size_of::<Self>()` |
| /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or the suffix of |
| /// `bytes` is not aligned to `align_of::<Self>()`, this returns `None`. |
| /// |
| /// To also access the suffix bytes, use [`Ref::new_from_suffix`]. Then, use |
| /// [`Ref::into_ref`] to get a `&Self` with the same lifetime. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketTrailer { |
| /// frame_check_sequence: [u8; 4], |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode a `PacketTrailer`. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| /// |
| /// let trailer = PacketTrailer::ref_from_suffix(bytes).unwrap(); |
| /// |
| /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
| /// ``` |
| #[inline] |
| fn ref_from_suffix(bytes: &[u8]) -> Option<&Self> |
| where |
| Self: Sized, |
| { |
| Ref::<&[u8], Self>::new_from_suffix(bytes).map(|(_, r)| r.into_ref()) |
| } |
| |
| /// Interprets the given `bytes` as a `&mut Self` without copying. |
| /// |
| /// If `bytes.len() != size_of::<Self>()` or `bytes` is not aligned to |
| /// `align_of::<Self>()`, this returns `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// // These bytes encode a `PacketHeader`. |
| /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
| /// |
| /// let header = PacketHeader::mut_from(bytes).unwrap(); |
| /// |
| /// assert_eq!(header.src_port, [0, 1]); |
| /// assert_eq!(header.dst_port, [2, 3]); |
| /// assert_eq!(header.length, [4, 5]); |
| /// assert_eq!(header.checksum, [6, 7]); |
| /// |
| /// header.checksum = [0, 0]; |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0]); |
| /// ``` |
| #[inline] |
| fn mut_from(bytes: &mut [u8]) -> Option<&mut Self> |
| where |
| Self: Sized + AsBytes, |
| { |
| Ref::<&mut [u8], Self>::new(bytes).map(Ref::into_mut) |
| } |
| |
| /// Interprets the prefix of the given `bytes` as a `&mut Self` without |
| /// copying. |
| /// |
| /// `mut_from_prefix` returns a reference to the first `size_of::<Self>()` |
| /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or `bytes` is not |
| /// aligned to `align_of::<Self>()`, this returns `None`. |
| /// |
| /// To also access the prefix bytes, use [`Ref::new_from_prefix`]. Then, use |
| /// [`Ref::into_mut`] to get a `&mut Self` with the same lifetime. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode a `PacketHeader`. |
| /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| /// |
| /// let header = PacketHeader::mut_from_prefix(bytes).unwrap(); |
| /// |
| /// assert_eq!(header.src_port, [0, 1]); |
| /// assert_eq!(header.dst_port, [2, 3]); |
| /// assert_eq!(header.length, [4, 5]); |
| /// assert_eq!(header.checksum, [6, 7]); |
| /// |
| /// header.checksum = [0, 0]; |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 8, 9]); |
| /// ``` |
| #[inline] |
| fn mut_from_prefix(bytes: &mut [u8]) -> Option<&mut Self> |
| where |
| Self: Sized + AsBytes, |
| { |
| Ref::<&mut [u8], Self>::new_from_prefix(bytes).map(|(r, _)| r.into_mut()) |
| } |
| |
| /// Interprets the suffix of the given `bytes` as a `&mut Self` without copying. |
| /// |
| /// `mut_from_suffix` returns a reference to the last `size_of::<Self>()` |
| /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()` or the suffix of |
| /// `bytes` is not aligned to `align_of::<Self>()`, this returns `None`. |
| /// |
| /// To also access the suffix bytes, use [`Ref::new_from_suffix`]. Then, |
| /// use [`Ref::into_mut`] to get a `&mut Self` with the same lifetime. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketTrailer { |
| /// frame_check_sequence: [u8; 4], |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode a `PacketTrailer`. |
| /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| /// |
| /// let trailer = PacketTrailer::mut_from_suffix(bytes).unwrap(); |
| /// |
| /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
| /// |
| /// trailer.frame_check_sequence = [0, 0, 0, 0]; |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 0, 0]); |
| /// ``` |
| #[inline] |
| fn mut_from_suffix(bytes: &mut [u8]) -> Option<&mut Self> |
| where |
| Self: Sized + AsBytes, |
| { |
| Ref::<&mut [u8], Self>::new_from_suffix(bytes).map(|(_, r)| r.into_mut()) |
| } |
| |
| /// Interprets the given `bytes` as a `&[Self]` without copying. |
| /// |
| /// If `bytes.len() % size_of::<Self>() != 0` or `bytes` is not aligned to |
| /// `align_of::<Self>()`, this returns `None`. |
| /// |
| /// If you need to convert a specific number of slice elements, see |
| /// [`slice_from_prefix`](FromBytes::slice_from_prefix) or |
| /// [`slice_from_suffix`](FromBytes::slice_from_suffix). |
| /// |
| /// # Panics |
| /// |
| /// If `Self` is a zero-sized type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Debug, PartialEq, Eq)] |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct Pixel { |
| /// r: u8, |
| /// g: u8, |
| /// b: u8, |
| /// a: u8, |
| /// } |
| /// |
| /// // These bytes encode two `Pixel`s. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice(); |
| /// |
| /// let pixels = Pixel::slice_from(bytes).unwrap(); |
| /// |
| /// assert_eq!(pixels, &[ |
| /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| /// ]); |
| /// ``` |
| #[inline] |
| fn slice_from(bytes: &[u8]) -> Option<&[Self]> |
| where |
| Self: Sized, |
| { |
| Ref::<_, [Self]>::new_slice(bytes).map(|r| r.into_slice()) |
| } |
| |
| /// Interprets the prefix of the given `bytes` as a `&[Self]` with length |
| /// equal to `count` without copying. |
| /// |
| /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// first `size_of::<T>() * count` bytes from `bytes` to construct a |
| /// `&[Self]`, and returns the remaining bytes to the caller. It also |
| /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| /// If any of the length, alignment, or overflow checks fail, it returns |
| /// `None`. |
| /// |
| /// # Panics |
| /// |
| /// If `T` is a zero-sized type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Debug, PartialEq, Eq)] |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct Pixel { |
| /// r: u8, |
| /// g: u8, |
| /// b: u8, |
| /// a: u8, |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode two `Pixel`s. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| /// |
| /// let (pixels, rest) = Pixel::slice_from_prefix(bytes, 2).unwrap(); |
| /// |
| /// assert_eq!(pixels, &[ |
| /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| /// ]); |
| /// |
| /// assert_eq!(rest, &[8, 9]); |
| /// ``` |
| #[inline] |
| fn slice_from_prefix(bytes: &[u8], count: usize) -> Option<(&[Self], &[u8])> |
| where |
| Self: Sized, |
| { |
| Ref::<_, [Self]>::new_slice_from_prefix(bytes, count).map(|(r, b)| (r.into_slice(), b)) |
| } |
| |
| /// Interprets the suffix of the given `bytes` as a `&[Self]` with length |
| /// equal to `count` without copying. |
| /// |
| /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// last `size_of::<T>() * count` bytes from `bytes` to construct a |
| /// `&[Self]`, and returns the preceding bytes to the caller. It also |
| /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| /// If any of the length, alignment, or overflow checks fail, it returns |
| /// `None`. |
| /// |
| /// # Panics |
| /// |
| /// If `T` is a zero-sized type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Debug, PartialEq, Eq)] |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct Pixel { |
| /// r: u8, |
| /// g: u8, |
| /// b: u8, |
| /// a: u8, |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode two `Pixel`s. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| /// |
| /// let (rest, pixels) = Pixel::slice_from_suffix(bytes, 2).unwrap(); |
| /// |
| /// assert_eq!(rest, &[0, 1]); |
| /// |
| /// assert_eq!(pixels, &[ |
| /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
| /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
| /// ]); |
| /// ``` |
| #[inline] |
| fn slice_from_suffix(bytes: &[u8], count: usize) -> Option<(&[u8], &[Self])> |
| where |
| Self: Sized, |
| { |
| Ref::<_, [Self]>::new_slice_from_suffix(bytes, count).map(|(b, r)| (b, r.into_slice())) |
| } |
| |
| /// Interprets the given `bytes` as a `&mut [Self]` without copying. |
| /// |
| /// If `bytes.len() % size_of::<T>() != 0` or `bytes` is not aligned to |
| /// `align_of::<T>()`, this returns `None`. |
| /// |
| /// If you need to convert a specific number of slice elements, see |
| /// [`mut_slice_from_prefix`](FromBytes::mut_slice_from_prefix) or |
| /// [`mut_slice_from_suffix`](FromBytes::mut_slice_from_suffix). |
| /// |
| /// # Panics |
| /// |
| /// If `T` is a zero-sized type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Debug, PartialEq, Eq)] |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct Pixel { |
| /// r: u8, |
| /// g: u8, |
| /// b: u8, |
| /// a: u8, |
| /// } |
| /// |
| /// // These bytes encode two `Pixel`s. |
| /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7][..]; |
| /// |
| /// let pixels = Pixel::mut_slice_from(bytes).unwrap(); |
| /// |
| /// assert_eq!(pixels, &[ |
| /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| /// ]); |
| /// |
| /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0]); |
| /// ``` |
| #[inline] |
| fn mut_slice_from(bytes: &mut [u8]) -> Option<&mut [Self]> |
| where |
| Self: Sized + AsBytes, |
| { |
| Ref::<_, [Self]>::new_slice(bytes).map(|r| r.into_mut_slice()) |
| } |
| |
| /// Interprets the prefix of the given `bytes` as a `&mut [Self]` with length |
| /// equal to `count` without copying. |
| /// |
| /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// first `size_of::<T>() * count` bytes from `bytes` to construct a |
| /// `&[Self]`, and returns the remaining bytes to the caller. It also |
| /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| /// If any of the length, alignment, or overflow checks fail, it returns |
| /// `None`. |
| /// |
| /// # Panics |
| /// |
| /// If `T` is a zero-sized type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Debug, PartialEq, Eq)] |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct Pixel { |
| /// r: u8, |
| /// g: u8, |
| /// b: u8, |
| /// a: u8, |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode two `Pixel`s. |
| /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| /// |
| /// let (pixels, rest) = Pixel::mut_slice_from_prefix(bytes, 2).unwrap(); |
| /// |
| /// assert_eq!(pixels, &[ |
| /// Pixel { r: 0, g: 1, b: 2, a: 3 }, |
| /// Pixel { r: 4, g: 5, b: 6, a: 7 }, |
| /// ]); |
| /// |
| /// assert_eq!(rest, &[8, 9]); |
| /// |
| /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 0, 0, 0, 0, 8, 9]); |
| /// ``` |
| #[inline] |
| fn mut_slice_from_prefix(bytes: &mut [u8], count: usize) -> Option<(&mut [Self], &mut [u8])> |
| where |
| Self: Sized + AsBytes, |
| { |
| Ref::<_, [Self]>::new_slice_from_prefix(bytes, count).map(|(r, b)| (r.into_mut_slice(), b)) |
| } |
| |
| /// Interprets the suffix of the given `bytes` as a `&mut [Self]` with length |
| /// equal to `count` without copying. |
| /// |
| /// This method verifies that `bytes.len() >= size_of::<T>() * count` |
| /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// last `size_of::<T>() * count` bytes from `bytes` to construct a |
| /// `&[Self]`, and returns the preceding bytes to the caller. It also |
| /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| /// If any of the length, alignment, or overflow checks fail, it returns |
| /// `None`. |
| /// |
| /// # Panics |
| /// |
| /// If `T` is a zero-sized type. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Debug, PartialEq, Eq)] |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct Pixel { |
| /// r: u8, |
| /// g: u8, |
| /// b: u8, |
| /// a: u8, |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode two `Pixel`s. |
| /// let bytes = &mut [0, 1, 2, 3, 4, 5, 6, 7, 8, 9][..]; |
| /// |
| /// let (rest, pixels) = Pixel::mut_slice_from_suffix(bytes, 2).unwrap(); |
| /// |
| /// assert_eq!(rest, &[0, 1]); |
| /// |
| /// assert_eq!(pixels, &[ |
| /// Pixel { r: 2, g: 3, b: 4, a: 5 }, |
| /// Pixel { r: 6, g: 7, b: 8, a: 9 }, |
| /// ]); |
| /// |
| /// pixels[1] = Pixel { r: 0, g: 0, b: 0, a: 0 }; |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 0, 0, 0, 0]); |
| /// ``` |
| #[inline] |
| fn mut_slice_from_suffix(bytes: &mut [u8], count: usize) -> Option<(&mut [u8], &mut [Self])> |
| where |
| Self: Sized + AsBytes, |
| { |
| Ref::<_, [Self]>::new_slice_from_suffix(bytes, count).map(|(b, r)| (b, r.into_mut_slice())) |
| } |
| |
| /// Reads a copy of `Self` from `bytes`. |
| /// |
| /// If `bytes.len() != size_of::<Self>()`, `read_from` returns `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// // These bytes encode a `PacketHeader`. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7].as_slice(); |
| /// |
| /// let header = PacketHeader::read_from(bytes).unwrap(); |
| /// |
| /// assert_eq!(header.src_port, [0, 1]); |
| /// assert_eq!(header.dst_port, [2, 3]); |
| /// assert_eq!(header.length, [4, 5]); |
| /// assert_eq!(header.checksum, [6, 7]); |
| /// ``` |
| #[inline] |
| fn read_from(bytes: &[u8]) -> Option<Self> |
| where |
| Self: Sized, |
| { |
| Ref::<_, Unalign<Self>>::new_unaligned(bytes).map(|r| r.read().into_inner()) |
| } |
| |
| /// Reads a copy of `Self` from the prefix of `bytes`. |
| /// |
| /// `read_from_prefix` reads a `Self` from the first `size_of::<Self>()` |
| /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns |
| /// `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode a `PacketHeader`. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| /// |
| /// let header = PacketHeader::read_from_prefix(bytes).unwrap(); |
| /// |
| /// assert_eq!(header.src_port, [0, 1]); |
| /// assert_eq!(header.dst_port, [2, 3]); |
| /// assert_eq!(header.length, [4, 5]); |
| /// assert_eq!(header.checksum, [6, 7]); |
| /// ``` |
| #[inline] |
| fn read_from_prefix(bytes: &[u8]) -> Option<Self> |
| where |
| Self: Sized, |
| { |
| Ref::<_, Unalign<Self>>::new_unaligned_from_prefix(bytes) |
| .map(|(r, _)| r.read().into_inner()) |
| } |
| |
| /// Reads a copy of `Self` from the suffix of `bytes`. |
| /// |
| /// `read_from_suffix` reads a `Self` from the last `size_of::<Self>()` |
| /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns |
| /// `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::FromBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketTrailer { |
| /// frame_check_sequence: [u8; 4], |
| /// } |
| /// |
| /// // These are more bytes than are needed to encode a `PacketTrailer`. |
| /// let bytes = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].as_slice(); |
| /// |
| /// let trailer = PacketTrailer::read_from_suffix(bytes).unwrap(); |
| /// |
| /// assert_eq!(trailer.frame_check_sequence, [6, 7, 8, 9]); |
| /// ``` |
| #[inline] |
| fn read_from_suffix(bytes: &[u8]) -> Option<Self> |
| where |
| Self: Sized, |
| { |
| Ref::<_, Unalign<Self>>::new_unaligned_from_suffix(bytes) |
| .map(|(_, r)| r.read().into_inner()) |
| } |
| } |
| |
| /// Analyzes whether a type is [`AsBytes`]. |
| /// |
| /// This derive analyzes, at compile time, whether the annotated type satisfies |
| /// the [safety conditions] of `AsBytes` and implements `AsBytes` if it is |
| /// sound to do so. This derive can be applied to structs, enums, and unions; |
| /// e.g.: |
| /// |
| /// ``` |
| /// # use zerocopy_derive::{AsBytes}; |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// struct MyStruct { |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(u8)] |
| /// enum MyEnum { |
| /// # Variant, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// union MyUnion { |
| /// # variant: u8, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// ``` |
| /// |
| /// [safety conditions]: trait@AsBytes#safety |
| /// |
| /// # Error Messages |
| /// |
| /// Due to the way that the custom derive for `AsBytes` is implemented, you may |
| /// get an error like this: |
| /// |
| /// ```text |
| /// error[E0277]: the trait bound `HasPadding<Foo, true>: ShouldBe<false>` is not satisfied |
| /// --> lib.rs:23:10 |
| /// | |
| /// 1 | #[derive(AsBytes)] |
| /// | ^^^^^^^ the trait `ShouldBe<false>` is not implemented for `HasPadding<Foo, true>` |
| /// | |
| /// = help: the trait `ShouldBe<VALUE>` is implemented for `HasPadding<T, VALUE>` |
| /// ``` |
| /// |
| /// This error indicates that the type being annotated has padding bytes, which |
| /// is illegal for `AsBytes` types. Consider reducing the alignment of some |
| /// fields by using types in the [`byteorder`] module, adding explicit struct |
| /// fields where those padding bytes would be, or using `#[repr(packed)]`. See |
| /// the Rust Reference's page on [type layout] for more information |
| /// about type layout and padding. |
| /// |
| /// [type layout]: https://doc.rust-lang.org/reference/type-layout.html |
| /// |
| /// # Analysis |
| /// |
| /// *This section describes, roughly, the analysis performed by this derive to |
| /// determine whether it is sound to implement `AsBytes` for a given type. |
| /// Unless you are modifying the implementation of this derive, or attempting to |
| /// manually implement `AsBytes` for a type yourself, you don't need to read |
| /// this section.* |
| /// |
| /// If a type has the following properties, then this derive can implement |
| /// `AsBytes` for that type: |
| /// |
| /// - If the type is a struct: |
| /// - It must have a defined representation (`repr(C)`, `repr(transparent)`, |
| /// or `repr(packed)`). |
| /// - All of its fields must be `AsBytes`. |
| /// - Its layout must have no padding. This is always true for |
| /// `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout |
| /// algorithm described in the [Rust Reference]. |
| /// - If the type is an enum: |
| /// - It must be a C-like enum (meaning that all variants have no fields). |
| /// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`, |
| /// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`). |
| /// - The type must not contain any [`UnsafeCell`]s (this is required in order |
| /// for it to be sound to construct a `&[u8]` and a `&T` to the same region of |
| /// memory). The type may contain references or pointers to `UnsafeCell`s so |
| /// long as those values can themselves be initialized from zeroes (`AsBytes` |
| /// is not currently implemented for, e.g., `Option<&UnsafeCell<_>>`, but it |
| /// could be one day). |
| /// |
| /// [`UnsafeCell`]: core::cell::UnsafeCell |
| /// |
| /// This analysis is subject to change. Unsafe code may *only* rely on the |
| /// documented [safety conditions] of `FromBytes`, and must *not* rely on the |
| /// implementation details of this derive. |
| /// |
| /// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html |
| #[cfg(any(feature = "derive", test))] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "derive")))] |
| pub use zerocopy_derive::AsBytes; |
| |
| /// Types that can be viewed as an immutable slice of initialized bytes. |
| /// |
| /// Any `AsBytes` type can be viewed as a slice of initialized bytes of the same |
| /// size. This is useful for efficiently serializing structured data as raw |
| /// bytes. |
| /// |
| /// # Implementation |
| /// |
| /// **Do not implement this trait yourself!** Instead, use |
| /// [`#[derive(AsBytes)]`][derive] (requires the `derive` Cargo feature); e.g.: |
| /// |
| /// ``` |
| /// # use zerocopy_derive::AsBytes; |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// struct MyStruct { |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(u8)] |
| /// enum MyEnum { |
| /// # Variant0, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// union MyUnion { |
| /// # variant: u8, |
| /// # /* |
| /// ... |
| /// # */ |
| /// } |
| /// ``` |
| /// |
| /// This derive performs a sophisticated, compile-time safety analysis to |
| /// determine whether a type is `AsBytes`. See the [derive |
| /// documentation][derive] for guidance on how to interpret error messages |
| /// produced by the derive's analysis. |
| /// |
| /// # Safety |
| /// |
| /// *This section describes what is required in order for `T: AsBytes`, and |
| /// what unsafe code may assume of such types. If you don't plan on implementing |
| /// `AsBytes` manually, and you don't plan on writing unsafe code that |
| /// operates on `AsBytes` types, then you don't need to read this section.* |
| /// |
| /// If `T: AsBytes`, then unsafe code may assume that: |
| /// - It is sound to treat any `t: T` as an immutable `[u8]` of length |
| /// `size_of_val(t)`. |
| /// - Given `t: &T`, it is sound to construct a `b: &[u8]` where `b.len() == |
| /// size_of_val(t)` at the same address as `t`, and it is sound for both `b` |
| /// and `t` to be live at the same time. |
| /// |
| /// If a type is marked as `AsBytes` which violates this contract, it may cause |
| /// undefined behavior. |
| /// |
| /// `#[derive(AsBytes)]` only permits [types which satisfy these |
| /// requirements][derive-analysis]. |
| /// |
| #[cfg_attr( |
| feature = "derive", |
| doc = "[derive]: zerocopy_derive::AsBytes", |
| doc = "[derive-analysis]: zerocopy_derive::AsBytes#analysis" |
| )] |
| #[cfg_attr( |
| not(feature = "derive"), |
| doc = concat!("[derive]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.AsBytes.html"), |
| doc = concat!("[derive-analysis]: https://docs.rs/zerocopy/", env!("CARGO_PKG_VERSION"), "/zerocopy/derive.AsBytes.html#analysis"), |
| )] |
| pub unsafe trait AsBytes { |
| // The `Self: Sized` bound makes it so that this function doesn't prevent |
| // `AsBytes` from being object safe. Note that other `AsBytes` methods |
| // prevent object safety, but those provide a benefit in exchange for object |
| // safety. If at some point we remove those methods, change their type |
| // signatures, or move them out of this trait so that `AsBytes` is object |
| // safe again, it's important that this function not prevent object safety. |
| #[doc(hidden)] |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized; |
| |
| /// Gets the bytes of this value. |
| /// |
| /// `as_bytes` provides access to the bytes of this value as an immutable |
| /// byte slice. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::AsBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let header = PacketHeader { |
| /// src_port: [0, 1], |
| /// dst_port: [2, 3], |
| /// length: [4, 5], |
| /// checksum: [6, 7], |
| /// }; |
| /// |
| /// let bytes = header.as_bytes(); |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
| /// ``` |
| #[inline(always)] |
| fn as_bytes(&self) -> &[u8] { |
| // Note that this method does not have a `Self: Sized` bound; |
| // `size_of_val` works for unsized values too. |
| let len = mem::size_of_val(self); |
| let slf: *const Self = self; |
| |
| // SAFETY: |
| // - `slf.cast::<u8>()` is valid for reads for `len * |
| // mem::size_of::<u8>()` many bytes because... |
| // - `slf` is the same pointer as `self`, and `self` is a reference |
| // which points to an object whose size is `len`. Thus... |
| // - The entire region of `len` bytes starting at `slf` is contained |
| // within a single allocation. |
| // - `slf` is non-null. |
| // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
| // - `Self: AsBytes` ensures that all of the bytes of `slf` are |
| // initialized. |
| // - Since `slf` is derived from `self`, and `self` is an immutable |
| // reference, the only other references to this memory region that |
| // could exist are other immutable references, and those don't allow |
| // mutation. `AsBytes` prohibits types which contain `UnsafeCell`s, |
| // which are the only types for which this rule wouldn't be sufficient. |
| // - The total size of the resulting slice is no larger than |
| // `isize::MAX` because no allocation produced by safe code can be |
| // larger than `isize::MAX`. |
| // |
| // TODO(#429): Add references to docs and quotes. |
| unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) } |
| } |
| |
| /// Gets the bytes of this value mutably. |
| /// |
| /// `as_bytes_mut` provides access to the bytes of this value as a mutable |
| /// byte slice. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::AsBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// # #[derive(Eq, PartialEq, Debug)] |
| /// #[derive(AsBytes, FromZeroes, FromBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let mut header = PacketHeader { |
| /// src_port: [0, 1], |
| /// dst_port: [2, 3], |
| /// length: [4, 5], |
| /// checksum: [6, 7], |
| /// }; |
| /// |
| /// let bytes = header.as_bytes_mut(); |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
| /// |
| /// bytes.reverse(); |
| /// |
| /// assert_eq!(header, PacketHeader { |
| /// src_port: [7, 6], |
| /// dst_port: [5, 4], |
| /// length: [3, 2], |
| /// checksum: [1, 0], |
| /// }); |
| /// ``` |
| #[inline(always)] |
| fn as_bytes_mut(&mut self) -> &mut [u8] |
| where |
| Self: FromBytes, |
| { |
| // Note that this method does not have a `Self: Sized` bound; |
| // `size_of_val` works for unsized values too. |
| let len = mem::size_of_val(self); |
| let slf: *mut Self = self; |
| |
| // SAFETY: |
| // - `slf.cast::<u8>()` is valid for reads and writes for `len * |
| // mem::size_of::<u8>()` many bytes because... |
| // - `slf` is the same pointer as `self`, and `self` is a reference |
| // which points to an object whose size is `len`. Thus... |
| // - The entire region of `len` bytes starting at `slf` is contained |
| // within a single allocation. |
| // - `slf` is non-null. |
| // - `slf` is trivially aligned to `align_of::<u8>() == 1`. |
| // - `Self: AsBytes` ensures that all of the bytes of `slf` are |
| // initialized. |
| // - `Self: FromBytes` ensures that no write to this memory region |
| // could result in it containing an invalid `Self`. |
| // - Since `slf` is derived from `self`, and `self` is a mutable |
| // reference, no other references to this memory region can exist. |
| // - The total size of the resulting slice is no larger than |
| // `isize::MAX` because no allocation produced by safe code can be |
| // larger than `isize::MAX`. |
| // |
| // TODO(#429): Add references to docs and quotes. |
| unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) } |
| } |
| |
| /// Writes a copy of `self` to `bytes`. |
| /// |
| /// If `bytes.len() != size_of_val(self)`, `write_to` returns `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::AsBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let header = PacketHeader { |
| /// src_port: [0, 1], |
| /// dst_port: [2, 3], |
| /// length: [4, 5], |
| /// checksum: [6, 7], |
| /// }; |
| /// |
| /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0]; |
| /// |
| /// header.write_to(&mut bytes[..]); |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7]); |
| /// ``` |
| /// |
| /// If too many or too few target bytes are provided, `write_to` returns |
| /// `None` and leaves the target bytes unmodified: |
| /// |
| /// ``` |
| /// # use zerocopy::AsBytes; |
| /// # let header = u128::MAX; |
| /// let mut excessive_bytes = &mut [0u8; 128][..]; |
| /// |
| /// let write_result = header.write_to(excessive_bytes); |
| /// |
| /// assert!(write_result.is_none()); |
| /// assert_eq!(excessive_bytes, [0u8; 128]); |
| /// ``` |
| #[inline] |
| fn write_to(&self, bytes: &mut [u8]) -> Option<()> { |
| if bytes.len() != mem::size_of_val(self) { |
| return None; |
| } |
| |
| bytes.copy_from_slice(self.as_bytes()); |
| Some(()) |
| } |
| |
| /// Writes a copy of `self` to the prefix of `bytes`. |
| /// |
| /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes |
| /// of `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::AsBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let header = PacketHeader { |
| /// src_port: [0, 1], |
| /// dst_port: [2, 3], |
| /// length: [4, 5], |
| /// checksum: [6, 7], |
| /// }; |
| /// |
| /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
| /// |
| /// header.write_to_prefix(&mut bytes[..]); |
| /// |
| /// assert_eq!(bytes, [0, 1, 2, 3, 4, 5, 6, 7, 0, 0]); |
| /// ``` |
| /// |
| /// If insufficient target bytes are provided, `write_to_prefix` returns |
| /// `None` and leaves the target bytes unmodified: |
| /// |
| /// ``` |
| /// # use zerocopy::AsBytes; |
| /// # let header = u128::MAX; |
| /// let mut insufficent_bytes = &mut [0, 0][..]; |
| /// |
| /// let write_result = header.write_to_suffix(insufficent_bytes); |
| /// |
| /// assert!(write_result.is_none()); |
| /// assert_eq!(insufficent_bytes, [0, 0]); |
| /// ``` |
| #[inline] |
| fn write_to_prefix(&self, bytes: &mut [u8]) -> Option<()> { |
| let size = mem::size_of_val(self); |
| bytes.get_mut(..size)?.copy_from_slice(self.as_bytes()); |
| Some(()) |
| } |
| |
| /// Writes a copy of `self` to the suffix of `bytes`. |
| /// |
| /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of |
| /// `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// use zerocopy::AsBytes; |
| /// # use zerocopy_derive::*; |
| /// |
| /// #[derive(AsBytes)] |
| /// #[repr(C)] |
| /// struct PacketHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// let header = PacketHeader { |
| /// src_port: [0, 1], |
| /// dst_port: [2, 3], |
| /// length: [4, 5], |
| /// checksum: [6, 7], |
| /// }; |
| /// |
| /// let mut bytes = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]; |
| /// |
| /// header.write_to_suffix(&mut bytes[..]); |
| /// |
| /// assert_eq!(bytes, [0, 0, 0, 1, 2, 3, 4, 5, 6, 7]); |
| /// |
| /// let mut insufficent_bytes = &mut [0, 0][..]; |
| /// |
| /// let write_result = header.write_to_suffix(insufficent_bytes); |
| /// |
| /// assert!(write_result.is_none()); |
| /// assert_eq!(insufficent_bytes, [0, 0]); |
| /// ``` |
| /// |
| /// If insufficient target bytes are provided, `write_to_suffix` returns |
| /// `None` and leaves the target bytes unmodified: |
| /// |
| /// ``` |
| /// # use zerocopy::AsBytes; |
| /// # let header = u128::MAX; |
| /// let mut insufficent_bytes = &mut [0, 0][..]; |
| /// |
| /// let write_result = header.write_to_suffix(insufficent_bytes); |
| /// |
| /// assert!(write_result.is_none()); |
| /// assert_eq!(insufficent_bytes, [0, 0]); |
| /// ``` |
| #[inline] |
| fn write_to_suffix(&self, bytes: &mut [u8]) -> Option<()> { |
| let start = bytes.len().checked_sub(mem::size_of_val(self))?; |
| bytes |
| .get_mut(start..) |
| .expect("`start` should be in-bounds of `bytes`") |
| .copy_from_slice(self.as_bytes()); |
| Some(()) |
| } |
| } |
| |
| /// Types with no alignment requirement. |
| /// |
| /// WARNING: Do not implement this trait yourself! Instead, use |
| /// `#[derive(Unaligned)]` (requires the `derive` Cargo feature). |
| /// |
| /// If `T: Unaligned`, then `align_of::<T>() == 1`. |
| /// |
| /// # Safety |
| /// |
| /// *This section describes what is required in order for `T: Unaligned`, and |
| /// what unsafe code may assume of such types. `#[derive(Unaligned)]` only |
| /// permits types which satisfy these requirements. If you don't plan on |
| /// implementing `Unaligned` manually, and you don't plan on writing unsafe code |
| /// that operates on `Unaligned` types, then you don't need to read this |
| /// section.* |
| /// |
| /// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a |
| /// reference to `T` at any memory location regardless of alignment. If a type |
| /// is marked as `Unaligned` which violates this contract, it may cause |
| /// undefined behavior. |
| pub unsafe trait Unaligned { |
| // The `Self: Sized` bound makes it so that `Unaligned` is still object |
| // safe. |
| #[doc(hidden)] |
| fn only_derive_is_allowed_to_implement_this_trait() |
| where |
| Self: Sized; |
| } |
| |
| safety_comment! { |
| /// SAFETY: |
| /// Per the reference [1], "the unit tuple (`()`) ... is guaranteed as a |
| /// zero-sized type to have a size of 0 and an alignment of 1." |
| /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: There |
| /// is only one possible sequence of 0 bytes, and `()` is inhabited. |
| /// - `AsBytes`: Since `()` has size 0, it contains no padding bytes. |
| /// - `Unaligned`: `()` has alignment 1. |
| /// |
| /// [1] https://doc.rust-lang.org/reference/type-layout.html#tuple-layout |
| unsafe_impl!((): TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_unaligned!(()); |
| } |
| |
| safety_comment! { |
| /// SAFETY: |
| /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: all bit |
| /// patterns are valid for numeric types [1] |
| /// - `AsBytes`: numeric types have no padding bytes [1] |
| /// - `Unaligned` (`u8` and `i8` only): The reference [2] specifies the size |
| /// of `u8` and `i8` as 1 byte. We also know that: |
| /// - Alignment is >= 1 [3] |
| /// - Size is an integer multiple of alignment [4] |
| /// - The only value >= 1 for which 1 is an integer multiple is 1 |
| /// Therefore, the only possible alignment for `u8` and `i8` is 1. |
| /// |
| /// [1] Per https://doc.rust-lang.org/beta/reference/types/numeric.html#bit-validity: |
| /// |
| /// For every numeric type, `T`, the bit validity of `T` is equivalent to |
| /// the bit validity of `[u8; size_of::<T>()]`. An uninitialized byte is |
| /// not a valid `u8`. |
| /// |
| /// TODO(https://github.com/rust-lang/reference/pull/1392): Once this text |
| /// is available on the Stable docs, cite those instead. |
| /// |
| /// [2] https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout |
| /// |
| /// [3] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment: |
| /// |
| /// Alignment is measured in bytes, and must be at least 1. |
| /// |
| /// [4] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment: |
| /// |
| /// The size of a value is always a multiple of its alignment. |
| /// |
| /// TODO(#278): Once we've updated the trait docs to refer to `u8`s rather |
| /// than bits or bytes, update this comment, especially the reference to |
| /// [1]. |
| unsafe_impl!(u8: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| unsafe_impl!(i8: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_unaligned!(u8, i8); |
| unsafe_impl!(u16: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(i16: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(u32: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(i32: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(u64: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(i64: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(u128: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(i128: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(usize: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(isize: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(f32: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(f64: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| } |
| |
| safety_comment! { |
| /// SAFETY: |
| /// - `FromZeroes`: Valid since "[t]he value false has the bit pattern |
| /// 0x00" [1]. |
| /// - `AsBytes`: Since "the boolean type has a size and alignment of 1 each" |
| /// and "The value false has the bit pattern 0x00 and the value true has |
| /// the bit pattern 0x01" [1]. Thus, the only byte of the bool is always |
| /// initialized. |
| /// - `Unaligned`: Per the reference [1], "[a]n object with the boolean type |
| /// has a size and alignment of 1 each." |
| /// |
| /// [1] https://doc.rust-lang.org/reference/types/boolean.html |
| unsafe_impl!(bool: FromZeroes, AsBytes, Unaligned); |
| assert_unaligned!(bool); |
| /// SAFETY: |
| /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| /// closure: |
| /// - Given `t: *mut bool` and `let r = *mut u8`, `r` refers to an object |
| /// of the same size as that referred to by `t`. This is true because |
| /// `bool` and `u8` have the same size (1 byte) [1]. |
| /// - Since the closure takes a `&u8` argument, given a `Ptr<'a, bool>` |
| /// which satisfies the preconditions of |
| /// `TryFromBytes::<bool>::is_bit_valid`, it must be guaranteed that the |
| /// memory referenced by that `Ptr` always contains a valid `u8`. Since |
| /// `bool`'s single byte is always initialized, `is_bit_valid`'s |
| /// precondition requires that the same is true of its argument. Since |
| /// `u8`'s only bit validity invariant is that its single byte must be |
| /// initialized, this memory is guaranteed to contain a valid `u8`. |
| /// - The alignment of `bool` is equal to the alignment of `u8`. [1] [2] |
| /// - The impl must only return `true` for its argument if the original |
| /// `Ptr<bool>` refers to a valid `bool`. We only return true if the |
| /// `u8` value is 0 or 1, and both of these are valid values for `bool`. |
| /// [3] |
| /// |
| /// [1] Per https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout: |
| /// |
| /// The size of most primitives is given in this table. |
| /// |
| /// | Type | `size_of::<Type>() ` | |
| /// |-----------|----------------------| |
| /// | `bool` | 1 | |
| /// | `u8`/`i8` | 1 | |
| /// |
| /// [2] Per https://doc.rust-lang.org/reference/type-layout.html#size-and-alignment: |
| /// |
| /// The size of a value is always a multiple of its alignment. |
| /// |
| /// [3] Per https://doc.rust-lang.org/reference/types/boolean.html: |
| /// |
| /// The value false has the bit pattern 0x00 and the value true has the |
| /// bit pattern 0x01. |
| unsafe_impl!(bool: TryFromBytes; |byte: &u8| *byte < 2); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// - `FromZeroes`: Per reference [1], "[a] value of type char is a Unicode |
| /// scalar value (i.e. a code point that is not a surrogate), represented |
| /// as a 32-bit unsigned word in the 0x0000 to 0xD7FF or 0xE000 to |
| /// 0x10FFFF range" which contains 0x0000. |
| /// - `AsBytes`: `char` is per reference [1] "represented as a 32-bit |
| /// unsigned word" (`u32`) which is `AsBytes`. Note that unlike `u32`, not |
| /// all bit patterns are valid for `char`. |
| /// |
| /// [1] https://doc.rust-lang.org/reference/types/textual.html |
| unsafe_impl!(char: FromZeroes, AsBytes); |
| /// SAFETY: |
| /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| /// closure: |
| /// - Given `t: *mut char` and `let r = *mut u32`, `r` refers to an object |
| /// of the same size as that referred to by `t`. This is true because |
| /// `char` and `u32` have the same size [1]. |
| /// - Since the closure takes a `&u32` argument, given a `Ptr<'a, char>` |
| /// which satisfies the preconditions of |
| /// `TryFromBytes::<char>::is_bit_valid`, it must be guaranteed that the |
| /// memory referenced by that `Ptr` always contains a valid `u32`. Since |
| /// `char`'s bytes are always initialized [2], `is_bit_valid`'s |
| /// precondition requires that the same is true of its argument. Since |
| /// `u32`'s only bit validity invariant is that its bytes must be |
| /// initialized, this memory is guaranteed to contain a valid `u32`. |
| /// - The alignment of `char` is equal to the alignment of `u32`. [1] |
| /// - The impl must only return `true` for its argument if the original |
| /// `Ptr<char>` refers to a valid `char`. `char::from_u32` guarantees |
| /// that it returns `None` if its input is not a valid `char`. [3] |
| /// |
| /// [1] Per https://doc.rust-lang.org/nightly/reference/types/textual.html#layout-and-bit-validity: |
| /// |
| /// `char` is guaranteed to have the same size and alignment as `u32` on |
| /// all platforms. |
| /// |
| /// [2] Per https://doc.rust-lang.org/core/primitive.char.html#method.from_u32: |
| /// |
| /// Every byte of a `char` is guaranteed to be initialized. |
| /// |
| /// [3] Per https://doc.rust-lang.org/core/primitive.char.html#method.from_u32: |
| /// |
| /// `from_u32()` will return `None` if the input is not a valid value for |
| /// a `char`. |
| unsafe_impl!(char: TryFromBytes; |candidate: &u32| char::from_u32(*candidate).is_some()); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// - `FromZeroes`, `AsBytes`, `Unaligned`: Per the reference [1], `str` |
| /// has the same layout as `[u8]`, and `[u8]` is `FromZeroes`, `AsBytes`, |
| /// and `Unaligned`. |
| /// |
| /// Note that we don't `assert_unaligned!(str)` because `assert_unaligned!` |
| /// uses `align_of`, which only works for `Sized` types. |
| /// |
| /// TODO(#429): Add quotes from documentation. |
| /// |
| /// [1] https://doc.rust-lang.org/reference/type-layout.html#str-layout |
| unsafe_impl!(str: FromZeroes, AsBytes, Unaligned); |
| /// SAFETY: |
| /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| /// closure: |
| /// - Given `t: *mut str` and `let r = *mut [u8]`, `r` refers to an object |
| /// of the same size as that referred to by `t`. This is true because |
| /// `str` and `[u8]` have the same representation. [1] |
| /// - Since the closure takes a `&[u8]` argument, given a `Ptr<'a, str>` |
| /// which satisfies the preconditions of |
| /// `TryFromBytes::<str>::is_bit_valid`, it must be guaranteed that the |
| /// memory referenced by that `Ptr` always contains a valid `[u8]`. |
| /// Since `str`'s bytes are always initialized [1], `is_bit_valid`'s |
| /// precondition requires that the same is true of its argument. Since |
| /// `[u8]`'s only bit validity invariant is that its bytes must be |
| /// initialized, this memory is guaranteed to contain a valid `[u8]`. |
| /// - The alignment of `str` is equal to the alignment of `[u8]`. [1] |
| /// - The impl must only return `true` for its argument if the original |
| /// `Ptr<str>` refers to a valid `str`. `str::from_utf8` guarantees that |
| /// it returns `Err` if its input is not a valid `str`. [2] |
| /// |
| /// [1] Per https://doc.rust-lang.org/reference/types/textual.html: |
| /// |
| /// A value of type `str` is represented the same was as `[u8]`. |
| /// |
| /// [2] Per https://doc.rust-lang.org/core/str/fn.from_utf8.html#errors: |
| /// |
| /// Returns `Err` if the slice is not UTF-8. |
| unsafe_impl!(str: TryFromBytes; |candidate: &[u8]| core::str::from_utf8(candidate).is_ok()); |
| } |
| |
| safety_comment! { |
| // `NonZeroXxx` is `AsBytes`, but not `FromZeroes` or `FromBytes`. |
| // |
| /// SAFETY: |
| /// - `AsBytes`: `NonZeroXxx` has the same layout as its associated |
| /// primitive. Since it is the same size, this guarantees it has no |
| /// padding - integers have no padding, and there's no room for padding |
| /// if it can represent all of the same values except 0. |
| /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that |
| /// `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2] |
| /// This is worded in a way that makes it unclear whether it's meant as a |
| /// guarantee, but given the purpose of those types, it's virtually |
| /// unthinkable that that would ever change. `Option` cannot be smaller |
| /// than its contained type, which implies that, and `NonZeroX8` are of |
| /// size 1 or 0. `NonZeroX8` can represent multiple states, so they cannot |
| /// be 0 bytes, which means that they must be 1 byte. The only valid |
| /// alignment for a 1-byte type is 1. |
| /// |
| /// TODO(#429): Add quotes from documentation. |
| /// |
| /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html |
| /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html |
| /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation |
| /// that layout is the same as primitive layout. |
| unsafe_impl!(NonZeroU8: AsBytes, Unaligned); |
| unsafe_impl!(NonZeroI8: AsBytes, Unaligned); |
| assert_unaligned!(NonZeroU8, NonZeroI8); |
| unsafe_impl!(NonZeroU16: AsBytes); |
| unsafe_impl!(NonZeroI16: AsBytes); |
| unsafe_impl!(NonZeroU32: AsBytes); |
| unsafe_impl!(NonZeroI32: AsBytes); |
| unsafe_impl!(NonZeroU64: AsBytes); |
| unsafe_impl!(NonZeroI64: AsBytes); |
| unsafe_impl!(NonZeroU128: AsBytes); |
| unsafe_impl!(NonZeroI128: AsBytes); |
| unsafe_impl!(NonZeroUsize: AsBytes); |
| unsafe_impl!(NonZeroIsize: AsBytes); |
| /// SAFETY: |
| /// - The safety requirements for `unsafe_impl!` with an `is_bit_valid` |
| /// closure: |
| /// - Given `t: *mut NonZeroXxx` and `let r = *mut xxx`, `r` refers to an |
| /// object of the same size as that referred to by `t`. This is true |
| /// because `NonZeroXxx` and `xxx` have the same size. [1] |
| /// - Since the closure takes a `&xxx` argument, given a `Ptr<'a, |
| /// NonZeroXxx>` which satisfies the preconditions of |
| /// `TryFromBytes::<NonZeroXxx>::is_bit_valid`, it must be guaranteed |
| /// that the memory referenced by that `Ptr` always contains a valid |
| /// `xxx`. Since `NonZeroXxx`'s bytes are always initialized [1], |
| /// `is_bit_valid`'s precondition requires that the same is true of its |
| /// argument. Since `xxx`'s only bit validity invariant is that its |
| /// bytes must be initialized, this memory is guaranteed to contain a |
| /// valid `xxx`. |
| /// - The alignment of `NonZeroXxx` is equal to the alignment of `xxx`. |
| /// [1] |
| /// - The impl must only return `true` for its argument if the original |
| /// `Ptr<NonZeroXxx>` refers to a valid `NonZeroXxx`. The only `xxx` |
| /// which is not also a valid `NonZeroXxx` is 0. [1] |
| /// |
| /// [1] Per https://doc.rust-lang.org/core/num/struct.NonZeroU16.html: |
| /// |
| /// `NonZeroU16` is guaranteed to have the same layout and bit validity as |
| /// `u16` with the exception that `0` is not a valid instance. |
| unsafe_impl!(NonZeroU8: TryFromBytes; |n: &u8| *n != 0); |
| unsafe_impl!(NonZeroI8: TryFromBytes; |n: &i8| *n != 0); |
| unsafe_impl!(NonZeroU16: TryFromBytes; |n: &u16| *n != 0); |
| unsafe_impl!(NonZeroI16: TryFromBytes; |n: &i16| *n != 0); |
| unsafe_impl!(NonZeroU32: TryFromBytes; |n: &u32| *n != 0); |
| unsafe_impl!(NonZeroI32: TryFromBytes; |n: &i32| *n != 0); |
| unsafe_impl!(NonZeroU64: TryFromBytes; |n: &u64| *n != 0); |
| unsafe_impl!(NonZeroI64: TryFromBytes; |n: &i64| *n != 0); |
| unsafe_impl!(NonZeroU128: TryFromBytes; |n: &u128| *n != 0); |
| unsafe_impl!(NonZeroI128: TryFromBytes; |n: &i128| *n != 0); |
| unsafe_impl!(NonZeroUsize: TryFromBytes; |n: &usize| *n != 0); |
| unsafe_impl!(NonZeroIsize: TryFromBytes; |n: &isize| *n != 0); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`, |
| /// `AsBytes`: The Rust compiler reuses `0` value to represent `None`, so |
| /// `size_of::<Option<NonZeroXxx>>() == size_of::<xxx>()`; see |
| /// `NonZeroXxx` documentation. |
| /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that |
| /// `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2] |
| /// This is worded in a way that makes it unclear whether it's meant as a |
| /// guarantee, but given the purpose of those types, it's virtually |
| /// unthinkable that that would ever change. The only valid alignment for |
| /// a 1-byte type is 1. |
| /// |
| /// TODO(#429): Add quotes from documentation. |
| /// |
| /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html |
| /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html |
| /// |
| /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation |
| /// for layout guarantees. |
| unsafe_impl!(Option<NonZeroU8>: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| unsafe_impl!(Option<NonZeroI8>: TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_unaligned!(Option<NonZeroU8>, Option<NonZeroI8>); |
| unsafe_impl!(Option<NonZeroU16>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroI16>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroU32>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroI32>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroU64>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroI64>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroU128>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroI128>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroUsize>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| unsafe_impl!(Option<NonZeroIsize>: TryFromBytes, FromZeroes, FromBytes, AsBytes); |
| } |
| |
| safety_comment! { |
| /// SAFETY: |
| /// The following types can be transmuted from `[0u8; size_of::<T>()]`. [1] |
| /// None of them contain `UnsafeCell`s, and so they all soundly implement |
| /// `FromZeroes`. |
| /// |
| /// [1] Per |
| /// https://doc.rust-lang.org/nightly/core/option/index.html#representation: |
| /// |
| /// Rust guarantees to optimize the following types `T` such that |
| /// [`Option<T>`] has the same size and alignment as `T`. In some of these |
| /// cases, Rust further guarantees that `transmute::<_, Option<T>>([0u8; |
| /// size_of::<T>()])` is sound and produces `Option::<T>::None`. These |
| /// cases are identified by the second column: |
| /// |
| /// | `T` | `transmute::<_, Option<T>>([0u8; size_of::<T>()])` sound? | |
| /// |-----------------------|-----------------------------------------------------------| |
| /// | [`Box<U>`] | when `U: Sized` | |
| /// | `&U` | when `U: Sized` | |
| /// | `&mut U` | when `U: Sized` | |
| /// | [`ptr::NonNull<U>`] | when `U: Sized` | |
| /// | `fn`, `extern "C" fn` | always | |
| /// |
| /// TODO(#429), TODO(https://github.com/rust-lang/rust/pull/115333): Cite |
| /// the Stable docs once they're available. |
| #[cfg(feature = "alloc")] |
| unsafe_impl!( |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] |
| T => FromZeroes for Option<Box<T>> |
| ); |
| unsafe_impl!(T => FromZeroes for Option<&'_ T>); |
| unsafe_impl!(T => FromZeroes for Option<&'_ mut T>); |
| unsafe_impl!(T => FromZeroes for Option<NonNull<T>>); |
| unsafe_impl_for_power_set!(A, B, C, D, E, F, G, H, I, J, K, L -> M => FromZeroes for opt_fn!(...)); |
| unsafe_impl_for_power_set!(A, B, C, D, E, F, G, H, I, J, K, L -> M => FromZeroes for opt_extern_c_fn!(...)); |
| } |
| |
| safety_comment! { |
| /// SAFETY: |
| /// Per reference [1]: |
| /// "For all T, the following are guaranteed: |
| /// size_of::<PhantomData<T>>() == 0 |
| /// align_of::<PhantomData<T>>() == 1". |
| /// This gives: |
| /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: There |
| /// is only one possible sequence of 0 bytes, and `PhantomData` is |
| /// inhabited. |
| /// - `AsBytes`: Since `PhantomData` has size 0, it contains no padding |
| /// bytes. |
| /// - `Unaligned`: Per the preceding reference, `PhantomData` has alignment |
| /// 1. |
| /// |
| /// [1] https://doc.rust-lang.org/std/marker/struct.PhantomData.html#layout-1 |
| unsafe_impl!(T: ?Sized => TryFromBytes for PhantomData<T>); |
| unsafe_impl!(T: ?Sized => FromZeroes for PhantomData<T>); |
| unsafe_impl!(T: ?Sized => FromBytes for PhantomData<T>); |
| unsafe_impl!(T: ?Sized => AsBytes for PhantomData<T>); |
| unsafe_impl!(T: ?Sized => Unaligned for PhantomData<T>); |
| assert_unaligned!(PhantomData<()>, PhantomData<u8>, PhantomData<u64>); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// `Wrapping<T>` is guaranteed by its docs [1] to have the same layout and |
| /// bit validity as `T`. Also, `Wrapping<T>` is `#[repr(transparent)]`, and |
| /// has a single field, which is `pub`. Per the reference [2], this means |
| /// that the `#[repr(transparent)]` attribute is "considered part of the |
| /// public ABI". |
| /// |
| /// - `TryFromBytes`: The safety requirements for `unsafe_impl!` with an |
| /// `is_bit_valid` closure: |
| /// - Given `t: *mut Wrapping<T>` and `let r = *mut T`, `r` refers to an |
| /// object of the same size as that referred to by `t`. This is true |
| /// because `Wrapping<T>` and `T` have the same layout |
| /// - The alignment of `Wrapping<T>` is equal to the alignment of `T`. |
| /// - The impl must only return `true` for its argument if the original |
| /// `Ptr<Wrapping<T>>` refers to a valid `Wrapping<T>`. Since |
| /// `Wrapping<T>` has the same bit validity as `T`, and since our impl |
| /// just calls `T::is_bit_valid`, our impl returns `true` exactly when |
| /// its argument contains a valid `Wrapping<T>`. |
| /// - `FromBytes`: Since `Wrapping<T>` has the same bit validity as `T`, if |
| /// `T: FromBytes`, then all initialized byte sequences are valid |
| /// instances of `Wrapping<T>`. Similarly, if `T: FromBytes`, then |
| /// `Wrapping<T>` doesn't contain any `UnsafeCell`s. Thus, `impl FromBytes |
| /// for Wrapping<T> where T: FromBytes` is a sound impl. |
| /// - `AsBytes`: Since `Wrapping<T>` has the same bit validity as `T`, if |
| /// `T: AsBytes`, then all valid instances of `Wrapping<T>` have all of |
| /// their bytes initialized. Similarly, if `T: AsBytes`, then |
| /// `Wrapping<T>` doesn't contain any `UnsafeCell`s. Thus, `impl AsBytes |
| /// for Wrapping<T> where T: AsBytes` is a valid impl. |
| /// - `Unaligned`: Since `Wrapping<T>` has the same layout as `T`, |
| /// `Wrapping<T>` has alignment 1 exactly when `T` does. |
| /// |
| /// [1] Per https://doc.rust-lang.org/core/num/struct.NonZeroU16.html: |
| /// |
| /// `NonZeroU16` is guaranteed to have the same layout and bit validity as |
| /// `u16` with the exception that `0` is not a valid instance. |
| /// |
| /// TODO(#429): Add quotes from documentation. |
| /// |
| /// [1] TODO(https://doc.rust-lang.org/nightly/core/num/struct.Wrapping.html#layout-1): |
| /// Reference this documentation once it's available on stable. |
| /// |
| /// [2] https://doc.rust-lang.org/nomicon/other-reprs.html#reprtransparent |
| unsafe_impl!(T: TryFromBytes => TryFromBytes for Wrapping<T>; |candidate: Ptr<T>| { |
| // SAFETY: |
| // - Since `T` and `Wrapping<T>` have the same layout and bit validity |
| // and contain the same fields, `T` contains `UnsafeCell`s exactly |
| // where `Wrapping<T>` does. Thus, all memory and `UnsafeCell` |
| // preconditions of `T::is_bit_valid` hold exactly when the same |
| // preconditions for `Wrapping<T>::is_bit_valid` hold. |
| // - By the same token, since `candidate` is guaranteed to have its |
| // bytes initialized where there are always initialized bytes in |
| // `Wrapping<T>`, the same is true for `T`. |
| unsafe { T::is_bit_valid(candidate) } |
| }); |
| unsafe_impl!(T: FromZeroes => FromZeroes for Wrapping<T>); |
| unsafe_impl!(T: FromBytes => FromBytes for Wrapping<T>); |
| unsafe_impl!(T: AsBytes => AsBytes for Wrapping<T>); |
| unsafe_impl!(T: Unaligned => Unaligned for Wrapping<T>); |
| assert_unaligned!(Wrapping<()>, Wrapping<u8>); |
| } |
| safety_comment! { |
| // `MaybeUninit<T>` is `FromZeroes` and `FromBytes`, but never `AsBytes` |
| // since it may contain uninitialized bytes. |
| // |
| /// SAFETY: |
| /// - `TryFromBytes` (with no validator), `FromZeroes`, `FromBytes`: |
| /// `MaybeUninit<T>` has no restrictions on its contents. Unfortunately, |
| /// in addition to bit validity, `TryFromBytes`, `FromZeroes` and |
| /// `FromBytes` also require that implementers contain no `UnsafeCell`s. |
| /// Thus, we require `T: Trait` in order to ensure that `T` - and thus |
| /// `MaybeUninit<T>` - contains to `UnsafeCell`s. Thus, requiring that `T` |
| /// implement each of these traits is sufficient. |
| /// - `Unaligned`: "MaybeUninit<T> is guaranteed to have the same size, |
| /// alignment, and ABI as T" [1] |
| /// |
| /// [1] https://doc.rust-lang.org/stable/core/mem/union.MaybeUninit.html#layout-1 |
| /// |
| /// TODO(https://github.com/google/zerocopy/issues/251): If we split |
| /// `FromBytes` and `RefFromBytes`, or if we introduce a separate |
| /// `NoCell`/`Freeze` trait, we can relax the trait bounds for `FromZeroes` |
| /// and `FromBytes`. |
| unsafe_impl!(T: TryFromBytes => TryFromBytes for MaybeUninit<T>); |
| unsafe_impl!(T: FromZeroes => FromZeroes for MaybeUninit<T>); |
| unsafe_impl!(T: FromBytes => FromBytes for MaybeUninit<T>); |
| unsafe_impl!(T: Unaligned => Unaligned for MaybeUninit<T>); |
| assert_unaligned!(MaybeUninit<()>, MaybeUninit<u8>); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// `ManuallyDrop` has the same layout and bit validity as `T` [1], and |
| /// accessing the inner value is safe (meaning that it's unsound to leave |
| /// the inner value uninitialized while exposing the `ManuallyDrop` to safe |
| /// code). |
| /// - `FromZeroes`, `FromBytes`: Since it has the same layout as `T`, any |
| /// valid `T` is a valid `ManuallyDrop<T>`. If `T: FromZeroes`, a sequence |
| /// of zero bytes is a valid `T`, and thus a valid `ManuallyDrop<T>`. If |
| /// `T: FromBytes`, any sequence of bytes is a valid `T`, and thus a valid |
| /// `ManuallyDrop<T>`. |
| /// - `AsBytes`: Since it has the same layout as `T`, and since it's unsound |
| /// to let safe code access a `ManuallyDrop` whose inner value is |
| /// uninitialized, safe code can only ever access a `ManuallyDrop` whose |
| /// contents are a valid `T`. Since `T: AsBytes`, this means that safe |
| /// code can only ever access a `ManuallyDrop` with all initialized bytes. |
| /// - `Unaligned`: `ManuallyDrop` has the same layout (and thus alignment) |
| /// as `T`, and `T: Unaligned` guarantees that that alignment is 1. |
| /// |
| /// `ManuallyDrop<T>` is guaranteed to have the same layout and bit |
| /// validity as `T` |
| /// |
| /// [1] Per https://doc.rust-lang.org/nightly/core/mem/struct.ManuallyDrop.html: |
| /// |
| /// TODO(#429): |
| /// - Add quotes from docs. |
| /// - Once [1] (added in |
| /// https://github.com/rust-lang/rust/pull/115522) is available on stable, |
| /// quote the stable docs instead of the nightly docs. |
| unsafe_impl!(T: ?Sized + FromZeroes => FromZeroes for ManuallyDrop<T>); |
| unsafe_impl!(T: ?Sized + FromBytes => FromBytes for ManuallyDrop<T>); |
| unsafe_impl!(T: ?Sized + AsBytes => AsBytes for ManuallyDrop<T>); |
| unsafe_impl!(T: ?Sized + Unaligned => Unaligned for ManuallyDrop<T>); |
| assert_unaligned!(ManuallyDrop<()>, ManuallyDrop<u8>); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// Per the reference [1]: |
| /// |
| /// An array of `[T; N]` has a size of `size_of::<T>() * N` and the same |
| /// alignment of `T`. Arrays are laid out so that the zero-based `nth` |
| /// element of the array is offset from the start of the array by `n * |
| /// size_of::<T>()` bytes. |
| /// |
| /// ... |
| /// |
| /// Slices have the same layout as the section of the array they slice. |
| /// |
| /// In other words, the layout of a `[T]` or `[T; N]` is a sequence of `T`s |
| /// laid out back-to-back with no bytes in between. Therefore, `[T]` or `[T; |
| /// N]` are `TryFromBytes`, `FromZeroes`, `FromBytes`, and `AsBytes` if `T` |
| /// is (respectively). Furthermore, since an array/slice has "the same |
| /// alignment of `T`", `[T]` and `[T; N]` are `Unaligned` if `T` is. |
| /// |
| /// Note that we don't `assert_unaligned!` for slice types because |
| /// `assert_unaligned!` uses `align_of`, which only works for `Sized` types. |
| /// |
| /// [1] https://doc.rust-lang.org/reference/type-layout.html#array-layout |
| unsafe_impl!(const N: usize, T: FromZeroes => FromZeroes for [T; N]); |
| unsafe_impl!(const N: usize, T: FromBytes => FromBytes for [T; N]); |
| unsafe_impl!(const N: usize, T: AsBytes => AsBytes for [T; N]); |
| unsafe_impl!(const N: usize, T: Unaligned => Unaligned for [T; N]); |
| assert_unaligned!([(); 0], [(); 1], [u8; 0], [u8; 1]); |
| unsafe_impl!(T: TryFromBytes => TryFromBytes for [T]; |c: Ptr<[T]>| { |
| // SAFETY: Assuming the preconditions of `is_bit_valid` are satisfied, |
| // so too will the postcondition: that, if `is_bit_valid(candidate)` |
| // returns true, `*candidate` contains a valid `Self`. Per the reference |
| // [1]: |
| // |
| // An array of `[T; N]` has a size of `size_of::<T>() * N` and the |
| // same alignment of `T`. Arrays are laid out so that the zero-based |
| // `nth` element of the array is offset from the start of the array by |
| // `n * size_of::<T>()` bytes. |
| // |
| // ... |
| // |
| // Slices have the same layout as the section of the array they slice. |
| // |
| // In other words, the layout of a `[T] is a sequence of `T`s laid out |
| // back-to-back with no bytes in between. If all elements in `candidate` |
| // are `is_bit_valid`, so too is `candidate`. |
| // |
| // Note that any of the below calls may panic, but it would still be |
| // sound even if it did. `is_bit_valid` does not promise that it will |
| // not panic (in fact, it explicitly warns that it's a possibility), and |
| // we have not violated any safety invariants that we must fix before |
| // returning. |
| c.iter().all(|elem| |
| // SAFETY: We uphold the safety contract of `is_bit_valid(elem)`, by |
| // precondition on the surrounding call to `is_bit_valid`. The |
| // memory referenced by `elem` is contained entirely within `c`, and |
| // satisfies the preconditions satisfied by `c`. By axiom, we assume |
| // that `Iterator:all` does not invalidate these preconditions |
| // (e.g., by writing to `elem`.) Since `elem` is derived from `c`, |
| // it is only possible for uninitialized bytes to occur in `elem` at |
| // the same bytes they occur within `c`. |
| unsafe { <T as TryFromBytes>::is_bit_valid(elem) } |
| ) |
| }); |
| unsafe_impl!(T: FromZeroes => FromZeroes for [T]); |
| unsafe_impl!(T: FromBytes => FromBytes for [T]); |
| unsafe_impl!(T: AsBytes => AsBytes for [T]); |
| unsafe_impl!(T: Unaligned => Unaligned for [T]); |
| } |
| safety_comment! { |
| /// SAFETY: |
| /// - `FromZeroes`: For thin pointers (note that `T: Sized`), the zero |
| /// pointer is considered "null". [1] No operations which require |
| /// provenance are legal on null pointers, so this is not a footgun. |
| /// |
| /// NOTE(#170): Implementing `FromBytes` and `AsBytes` for raw pointers |
| /// would be sound, but carries provenance footguns. We want to support |
| /// `FromBytes` and `AsBytes` for raw pointers eventually, but we are |
| /// holding off until we can figure out how to address those footguns. |
| /// |
| /// [1] TODO(https://github.com/rust-lang/rust/pull/116988): Cite the |
| /// documentation once this PR lands. |
| unsafe_impl!(T => FromZeroes for *const T); |
| unsafe_impl!(T => FromZeroes for *mut T); |
| } |
| |
| // SIMD support |
| // |
| // Per the Unsafe Code Guidelines Reference [1]: |
| // |
| // Packed SIMD vector types are `repr(simd)` homogeneous tuple-structs |
| // containing `N` elements of type `T` where `N` is a power-of-two and the |
| // size and alignment requirements of `T` are equal: |
| // |
| // ```rust |
| // #[repr(simd)] |
| // struct Vector<T, N>(T_0, ..., T_(N - 1)); |
| // ``` |
| // |
| // ... |
| // |
| // The size of `Vector` is `N * size_of::<T>()` and its alignment is an |
| // implementation-defined function of `T` and `N` greater than or equal to |
| // `align_of::<T>()`. |
| // |
| // ... |
| // |
| // Vector elements are laid out in source field order, enabling random access |
| // to vector elements by reinterpreting the vector as an array: |
| // |
| // ```rust |
| // union U { |
| // vec: Vector<T, N>, |
| // arr: [T; N] |
| // } |
| // |
| // assert_eq!(size_of::<Vector<T, N>>(), size_of::<[T; N]>()); |
| // assert!(align_of::<Vector<T, N>>() >= align_of::<[T; N]>()); |
| // |
| // unsafe { |
| // let u = U { vec: Vector<T, N>(t_0, ..., t_(N - 1)) }; |
| // |
| // assert_eq!(u.vec.0, u.arr[0]); |
| // // ... |
| // assert_eq!(u.vec.(N - 1), u.arr[N - 1]); |
| // } |
| // ``` |
| // |
| // Given this background, we can observe that: |
| // - The size and bit pattern requirements of a SIMD type are equivalent to the |
| // equivalent array type. Thus, for any SIMD type whose primitive `T` is |
| // `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes`, that SIMD type is |
| // also `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes` respectively. |
| // - Since no upper bound is placed on the alignment, no SIMD type can be |
| // guaranteed to be `Unaligned`. |
| // |
| // Also per [1]: |
| // |
| // This chapter represents the consensus from issue #38. The statements in |
| // here are not (yet) "guaranteed" not to change until an RFC ratifies them. |
| // |
| // See issue #38 [2]. While this behavior is not technically guaranteed, the |
| // likelihood that the behavior will change such that SIMD types are no longer |
| // `TryFromBytes`, `FromZeroes`, `FromBytes`, or `AsBytes` is next to zero, as |
| // that would defeat the entire purpose of SIMD types. Nonetheless, we put this |
| // behavior behind the `simd` Cargo feature, which requires consumers to opt |
| // into this stability hazard. |
| // |
| // [1] https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html |
| // [2] https://github.com/rust-lang/unsafe-code-guidelines/issues/38 |
| #[cfg(feature = "simd")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "simd")))] |
| mod simd { |
| /// Defines a module which implements `TryFromBytes`, `FromZeroes`, |
| /// `FromBytes`, and `AsBytes` for a set of types from a module in |
| /// `core::arch`. |
| /// |
| /// `$arch` is both the name of the defined module and the name of the |
| /// module in `core::arch`, and `$typ` is the list of items from that module |
| /// to implement `FromZeroes`, `FromBytes`, and `AsBytes` for. |
| #[allow(unused_macros)] // `allow(unused_macros)` is needed because some |
| // target/feature combinations don't emit any impls |
| // and thus don't use this macro. |
| macro_rules! simd_arch_mod { |
| (#[cfg $cfg:tt] $arch:ident, $mod:ident, $($typ:ident),*) => { |
| #[cfg $cfg] |
| #[cfg_attr(doc_cfg, doc(cfg $cfg))] |
| mod $mod { |
| use core::arch::$arch::{$($typ),*}; |
| |
| use crate::*; |
| impl_known_layout!($($typ),*); |
| safety_comment! { |
| /// SAFETY: |
| /// See comment on module definition for justification. |
| $( unsafe_impl!($typ: TryFromBytes, FromZeroes, FromBytes, AsBytes); )* |
| } |
| } |
| }; |
| } |
| |
| #[rustfmt::skip] |
| const _: () = { |
| simd_arch_mod!( |
| #[cfg(target_arch = "x86")] |
| x86, x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i |
| ); |
| simd_arch_mod!( |
| #[cfg(all(feature = "simd-nightly", target_arch = "x86"))] |
| x86, x86_nightly, __m512bh, __m512, __m512d, __m512i |
| ); |
| simd_arch_mod!( |
| #[cfg(target_arch = "x86_64")] |
| x86_64, x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i |
| ); |
| simd_arch_mod!( |
| #[cfg(all(feature = "simd-nightly", target_arch = "x86_64"))] |
| x86_64, x86_64_nightly, __m512bh, __m512, __m512d, __m512i |
| ); |
| simd_arch_mod!( |
| #[cfg(target_arch = "wasm32")] |
| wasm32, wasm32, v128 |
| ); |
| simd_arch_mod!( |
| #[cfg(all(feature = "simd-nightly", target_arch = "powerpc"))] |
| powerpc, powerpc, vector_bool_long, vector_double, vector_signed_long, vector_unsigned_long |
| ); |
| simd_arch_mod!( |
| #[cfg(all(feature = "simd-nightly", target_arch = "powerpc64"))] |
| powerpc64, powerpc64, vector_bool_long, vector_double, vector_signed_long, vector_unsigned_long |
| ); |
| simd_arch_mod!( |
| #[cfg(target_arch = "aarch64")] |
| aarch64, aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t, |
| int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t, |
| int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, |
| poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t, |
| poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t, |
| uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t, |
| uint64x1_t, uint64x2_t |
| ); |
| simd_arch_mod!( |
| #[cfg(all(feature = "simd-nightly", target_arch = "arm"))] |
| arm, arm, int8x4_t, uint8x4_t |
| ); |
| }; |
| } |
| |
| /// Safely transmutes a value of one type to a value of another type of the same |
| /// size. |
| /// |
| /// The expression `$e` must have a concrete type, `T`, which implements |
| /// `AsBytes`. The `transmute!` expression must also have a concrete type, `U` |
| /// (`U` is inferred from the calling context), and `U` must implement |
| /// `FromBytes`. |
| /// |
| /// Note that the `T` produced by the expression `$e` will *not* be dropped. |
| /// Semantically, its bits will be copied into a new value of type `U`, the |
| /// original `T` will be forgotten, and the value of type `U` will be returned. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use zerocopy::transmute; |
| /// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; |
| /// |
| /// let two_dimensional: [[u8; 4]; 2] = transmute!(one_dimensional); |
| /// |
| /// assert_eq!(two_dimensional, [[0, 1, 2, 3], [4, 5, 6, 7]]); |
| /// ``` |
| #[macro_export] |
| macro_rules! transmute { |
| ($e:expr) => {{ |
| // NOTE: This must be a macro (rather than a function with trait bounds) |
| // because there's no way, in a generic context, to enforce that two |
| // types have the same size. `core::mem::transmute` uses compiler magic |
| // to enforce this so long as the types are concrete. |
| |
| let e = $e; |
| if false { |
| // This branch, though never taken, ensures that the type of `e` is |
| // `AsBytes` and that the type of this macro invocation expression |
| // is `FromBytes`. |
| |
| struct AssertIsAsBytes<T: $crate::AsBytes>(T); |
| let _ = AssertIsAsBytes(e); |
| |
| struct AssertIsFromBytes<U: $crate::FromBytes>(U); |
| #[allow(unused, unreachable_code)] |
| let u = AssertIsFromBytes(loop {}); |
| u.0 |
| } else { |
| // SAFETY: `core::mem::transmute` ensures that the type of `e` and |
| // the type of this macro invocation expression have the same size. |
| // We know this transmute is safe thanks to the `AsBytes` and |
| // `FromBytes` bounds enforced by the `false` branch. |
| // |
| // We use this reexport of `core::mem::transmute` because we know it |
| // will always be available for crates which are using the 2015 |
| // edition of Rust. By contrast, if we were to use |
| // `std::mem::transmute`, this macro would not work for such crates |
| // in `no_std` contexts, and if we were to use |
| // `core::mem::transmute`, this macro would not work in `std` |
| // contexts in which `core` was not manually imported. This is not a |
| // problem for 2018 edition crates. |
| unsafe { |
| // Clippy: It's okay to transmute a type to itself. |
| #[allow(clippy::useless_transmute)] |
| $crate::macro_util::core_reexport::mem::transmute(e) |
| } |
| } |
| }} |
| } |
| |
| /// Safely transmutes a mutable or immutable reference of one type to an |
| /// immutable reference of another type of the same size. |
| /// |
| /// The expression `$e` must have a concrete type, `&T` or `&mut T`, where `T: |
| /// Sized + AsBytes`. The `transmute_ref!` expression must also have a concrete |
| /// type, `&U` (`U` is inferred from the calling context), where `U: Sized + |
| /// FromBytes`. It must be the case that `align_of::<T>() >= align_of::<U>()`. |
| /// |
| /// The lifetime of the input type, `&T` or `&mut T`, must be the same as or |
| /// outlive the lifetime of the output type, `&U`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use zerocopy::transmute_ref; |
| /// let one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; |
| /// |
| /// let two_dimensional: &[[u8; 4]; 2] = transmute_ref!(&one_dimensional); |
| /// |
| /// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]); |
| /// ``` |
| /// |
| /// # Alignment increase error message |
| /// |
| /// Because of limitations on macros, the error message generated when |
| /// `transmute_ref!` is used to transmute from a type of lower alignment to a |
| /// type of higher alignment is somewhat confusing. For example, the following |
| /// code: |
| /// |
| /// ```compile_fail |
| /// const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]); |
| /// ``` |
| /// |
| /// ...generates the following error: |
| /// |
| /// ```text |
| /// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types |
| /// --> src/lib.rs:1524:34 |
| /// | |
| /// 5 | const INCREASE_ALIGNMENT: &u16 = zerocopy::transmute_ref!(&[0u8; 2]); |
| /// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| /// | |
| /// = note: source type: `AlignOf<[u8; 2]>` (8 bits) |
| /// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits) |
| /// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_ref` (in Nightly builds, run with -Z macro-backtrace for more info) |
| /// ``` |
| /// |
| /// This is saying that `max(align_of::<T>(), align_of::<U>()) != |
| /// align_of::<T>()`, which is equivalent to `align_of::<T>() < |
| /// align_of::<U>()`. |
| #[macro_export] |
| macro_rules! transmute_ref { |
| ($e:expr) => {{ |
| // NOTE: This must be a macro (rather than a function with trait bounds) |
| // because there's no way, in a generic context, to enforce that two |
| // types have the same size or alignment. |
| |
| // Ensure that the source type is a reference or a mutable reference |
| // (note that mutable references are implicitly reborrowed here). |
| let e: &_ = $e; |
| |
| #[allow(unused, clippy::diverging_sub_expression)] |
| if false { |
| // This branch, though never taken, ensures that the type of `e` is |
| // `&T` where `T: 't + Sized + AsBytes`, that the type of this macro |
| // expression is `&U` where `U: 'u + Sized + FromBytes`, and that |
| // `'t` outlives `'u`. |
| |
| struct AssertIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T); |
| let _ = AssertIsAsBytes(e); |
| |
| struct AssertIsFromBytes<'a, U: ::core::marker::Sized + $crate::FromBytes>(&'a U); |
| #[allow(unused, unreachable_code)] |
| let u = AssertIsFromBytes(loop {}); |
| u.0 |
| } else if false { |
| // This branch, though never taken, ensures that `size_of::<T>() == |
| // size_of::<U>()` and that that `align_of::<T>() >= |
| // align_of::<U>()`. |
| |
| // `t` is inferred to have type `T` because it's assigned to `e` (of |
| // type `&T`) as `&t`. |
| let mut t = unreachable!(); |
| e = &t; |
| |
| // `u` is inferred to have type `U` because it's used as `&u` as the |
| // value returned from this branch. |
| let u; |
| |
| $crate::assert_size_eq!(t, u); |
| $crate::assert_align_gt_eq!(t, u); |
| |
| &u |
| } else { |
| // SAFETY: For source type `Src` and destination type `Dst`: |
| // - We know that `Src: AsBytes` and `Dst: FromBytes` thanks to the |
| // uses of `AssertIsAsBytes` and `AssertIsFromBytes` above. |
| // - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to |
| // the use of `assert_size_eq!` above. |
| // - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to |
| // the use of `assert_align_gt_eq!` above. |
| unsafe { $crate::macro_util::transmute_ref(e) } |
| } |
| }} |
| } |
| |
| /// Safely transmutes a mutable reference of one type to an mutable reference of |
| /// another type of the same size. |
| /// |
| /// The expression `$e` must have a concrete type, `&mut T`, where `T: Sized + |
| /// AsBytes`. The `transmute_mut!` expression must also have a concrete type, |
| /// `&mut U` (`U` is inferred from the calling context), where `U: Sized + |
| /// FromBytes`. It must be the case that `align_of::<T>() >= align_of::<U>()`. |
| /// |
| /// The lifetime of the input type, `&mut T`, must be the same as or outlive the |
| /// lifetime of the output type, `&mut U`. |
| /// |
| /// # Examples |
| /// |
| /// ``` |
| /// # use zerocopy::transmute_mut; |
| /// let mut one_dimensional: [u8; 8] = [0, 1, 2, 3, 4, 5, 6, 7]; |
| /// |
| /// let two_dimensional: &mut [[u8; 4]; 2] = transmute_mut!(&mut one_dimensional); |
| /// |
| /// assert_eq!(two_dimensional, &[[0, 1, 2, 3], [4, 5, 6, 7]]); |
| /// |
| /// two_dimensional.reverse(); |
| /// |
| /// assert_eq!(one_dimensional, [4, 5, 6, 7, 0, 1, 2, 3]); |
| /// ``` |
| /// |
| /// # Alignment increase error message |
| /// |
| /// Because of limitations on macros, the error message generated when |
| /// `transmute_mut!` is used to transmute from a type of lower alignment to a |
| /// type of higher alignment is somewhat confusing. For example, the following |
| /// code: |
| /// |
| /// ```compile_fail |
| /// const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]); |
| /// ``` |
| /// |
| /// ...generates the following error: |
| /// |
| /// ```text |
| /// error[E0512]: cannot transmute between types of different sizes, or dependently-sized types |
| /// --> src/lib.rs:1524:34 |
| /// | |
| /// 5 | const INCREASE_ALIGNMENT: &mut u16 = zerocopy::transmute_mut!(&mut [0u8; 2]); |
| /// | ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
| /// | |
| /// = note: source type: `AlignOf<[u8; 2]>` (8 bits) |
| /// = note: target type: `MaxAlignsOf<[u8; 2], u16>` (16 bits) |
| /// = note: this error originates in the macro `$crate::assert_align_gt_eq` which comes from the expansion of the macro `transmute_mut` (in Nightly builds, run with -Z macro-backtrace for more info) |
| /// ``` |
| /// |
| /// This is saying that `max(align_of::<T>(), align_of::<U>()) != |
| /// align_of::<T>()`, which is equivalent to `align_of::<T>() < |
| /// align_of::<U>()`. |
| #[macro_export] |
| macro_rules! transmute_mut { |
| ($e:expr) => {{ |
| // NOTE: This must be a macro (rather than a function with trait bounds) |
| // because there's no way, in a generic context, to enforce that two |
| // types have the same size or alignment. |
| |
| // Ensure that the source type is a mutable reference. |
| let e: &mut _ = $e; |
| |
| #[allow(unused, clippy::diverging_sub_expression)] |
| if false { |
| // This branch, though never taken, ensures that the type of `e` is |
| // `&mut T` where `T: 't + Sized + FromBytes + AsBytes`, that the |
| // type of this macro expression is `&mut U` where `U: 'u + Sized + |
| // FromBytes + AsBytes`. |
| |
| // We use immutable references here rather than mutable so that, if |
| // this macro is used in a const context (in which, as of this |
| // writing, mutable references are banned), the error message |
| // appears to originate in the user's code rather than in the |
| // internals of this macro. |
| struct AssertSrcIsFromBytes<'a, T: ::core::marker::Sized + $crate::FromBytes>(&'a T); |
| struct AssertSrcIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T); |
| struct AssertDstIsFromBytes<'a, T: ::core::marker::Sized + $crate::FromBytes>(&'a T); |
| struct AssertDstIsAsBytes<'a, T: ::core::marker::Sized + $crate::AsBytes>(&'a T); |
| |
| if true { |
| let _ = AssertSrcIsFromBytes(&*e); |
| } else { |
| let _ = AssertSrcIsAsBytes(&*e); |
| } |
| |
| if true { |
| #[allow(unused, unreachable_code)] |
| let u = AssertDstIsFromBytes(loop {}); |
| &mut *u.0 |
| } else { |
| #[allow(unused, unreachable_code)] |
| let u = AssertDstIsAsBytes(loop {}); |
| &mut *u.0 |
| } |
| } else if false { |
| // This branch, though never taken, ensures that `size_of::<T>() == |
| // size_of::<U>()` and that that `align_of::<T>() >= |
| // align_of::<U>()`. |
| |
| // `t` is inferred to have type `T` because it's assigned to `e` (of |
| // type `&mut T`) as `&mut t`. |
| let mut t = unreachable!(); |
| e = &mut t; |
| |
| // `u` is inferred to have type `U` because it's used as `&mut u` as |
| // the value returned from this branch. |
| let u; |
| |
| $crate::assert_size_eq!(t, u); |
| $crate::assert_align_gt_eq!(t, u); |
| |
| &mut u |
| } else { |
| // SAFETY: For source type `Src` and destination type `Dst`: |
| // - We know that `Src: FromBytes + AsBytes` and `Dst: FromBytes + |
| // AsBytes` thanks to the uses of `AssertSrcIsFromBytes`, |
| // `AssertSrcIsAsBytes`, `AssertDstIsFromBytes`, and |
| // `AssertDstIsAsBytes` above. |
| // - We know that `size_of::<Src>() == size_of::<Dst>()` thanks to |
| // the use of `assert_size_eq!` above. |
| // - We know that `align_of::<Src>() >= align_of::<Dst>()` thanks to |
| // the use of `assert_align_gt_eq!` above. |
| unsafe { $crate::macro_util::transmute_mut(e) } |
| } |
| }} |
| } |
| |
| /// Includes a file and safely transmutes it to a value of an arbitrary type. |
| /// |
| /// The file will be included as a byte array, `[u8; N]`, which will be |
| /// transmuted to another type, `T`. `T` is inferred from the calling context, |
| /// and must implement [`FromBytes`]. |
| /// |
| /// The file is located relative to the current file (similarly to how modules |
| /// are found). The provided path is interpreted in a platform-specific way at |
| /// compile time. So, for instance, an invocation with a Windows path containing |
| /// backslashes `\` would not compile correctly on Unix. |
| /// |
| /// `include_value!` is ignorant of byte order. For byte order-aware types, see |
| /// the [`byteorder`] module. |
| /// |
| /// # Examples |
| /// |
| /// Assume there are two files in the same directory with the following |
| /// contents: |
| /// |
| /// File `data` (no trailing newline): |
| /// |
| /// ```text |
| /// abcd |
| /// ``` |
| /// |
| /// File `main.rs`: |
| /// |
| /// ```rust |
| /// use zerocopy::include_value; |
| /// # macro_rules! include_value { |
| /// # ($file:expr) => { zerocopy::include_value!(concat!("../testdata/include_value/", $file)) }; |
| /// # } |
| /// |
| /// fn main() { |
| /// let as_u32: u32 = include_value!("data"); |
| /// assert_eq!(as_u32, u32::from_ne_bytes([b'a', b'b', b'c', b'd'])); |
| /// let as_i32: i32 = include_value!("data"); |
| /// assert_eq!(as_i32, i32::from_ne_bytes([b'a', b'b', b'c', b'd'])); |
| /// } |
| /// ``` |
| #[doc(alias("include_bytes", "include_data", "include_type"))] |
| #[macro_export] |
| macro_rules! include_value { |
| ($file:expr $(,)?) => { |
| $crate::transmute!(*::core::include_bytes!($file)) |
| }; |
| } |
| |
| /// A typed reference derived from a byte slice. |
| /// |
| /// A `Ref<B, T>` is a reference to a `T` which is stored in a byte slice, `B`. |
| /// Unlike a native reference (`&T` or `&mut T`), `Ref<B, T>` has the same |
| /// mutability as the byte slice it was constructed from (`B`). |
| /// |
| /// # Examples |
| /// |
| /// `Ref` can be used to treat a sequence of bytes as a structured type, and to |
| /// read and write the fields of that type as if the byte slice reference were |
| /// simply a reference to that type. |
| /// |
| /// ```rust |
| /// # #[cfg(feature = "derive")] { // This example uses derives, and won't compile without them |
| /// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, FromZeroes, Ref, Unaligned}; |
| /// |
| /// #[derive(FromZeroes, FromBytes, AsBytes, Unaligned)] |
| /// #[repr(C)] |
| /// struct UdpHeader { |
| /// src_port: [u8; 2], |
| /// dst_port: [u8; 2], |
| /// length: [u8; 2], |
| /// checksum: [u8; 2], |
| /// } |
| /// |
| /// struct UdpPacket<B> { |
| /// header: Ref<B, UdpHeader>, |
| /// body: B, |
| /// } |
| /// |
| /// impl<B: ByteSlice> UdpPacket<B> { |
| /// pub fn parse(bytes: B) -> Option<UdpPacket<B>> { |
| /// let (header, body) = Ref::new_unaligned_from_prefix(bytes)?; |
| /// Some(UdpPacket { header, body }) |
| /// } |
| /// |
| /// pub fn get_src_port(&self) -> [u8; 2] { |
| /// self.header.src_port |
| /// } |
| /// } |
| /// |
| /// impl<B: ByteSliceMut> UdpPacket<B> { |
| /// pub fn set_src_port(&mut self, src_port: [u8; 2]) { |
| /// self.header.src_port = src_port; |
| /// } |
| /// } |
| /// # } |
| /// ``` |
| pub struct Ref<B, T: ?Sized>(B, PhantomData<T>); |
| |
| /// Deprecated: prefer [`Ref`] instead. |
| #[deprecated(since = "0.7.0", note = "LayoutVerified has been renamed to Ref")] |
| #[doc(hidden)] |
| pub type LayoutVerified<B, T> = Ref<B, T>; |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSlice, |
| { |
| /// Constructs a new `Ref`. |
| /// |
| /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is |
| /// aligned to `align_of::<T>()`, and constructs a new `Ref`. If either of |
| /// these checks fail, it returns `None`. |
| #[inline] |
| pub fn new(bytes: B) -> Option<Ref<B, T>> { |
| if bytes.len() != mem::size_of::<T>() || !util::aligned_to::<_, T>(bytes.deref()) { |
| return None; |
| } |
| Some(Ref(bytes, PhantomData)) |
| } |
| |
| /// Constructs a new `Ref` from the prefix of a byte slice. |
| /// |
| /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that |
| /// `bytes` is aligned to `align_of::<T>()`. It consumes the first |
| /// `size_of::<T>()` bytes from `bytes` to construct a `Ref`, and returns |
| /// the remaining bytes to the caller. If either the length or alignment |
| /// checks fail, it returns `None`. |
| #[inline] |
| pub fn new_from_prefix(bytes: B) -> Option<(Ref<B, T>, B)> { |
| if bytes.len() < mem::size_of::<T>() || !util::aligned_to::<_, T>(bytes.deref()) { |
| return None; |
| } |
| let (bytes, suffix) = bytes.split_at(mem::size_of::<T>()); |
| Some((Ref(bytes, PhantomData), suffix)) |
| } |
| |
| /// Constructs a new `Ref` from the suffix of a byte slice. |
| /// |
| /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that |
| /// the last `size_of::<T>()` bytes of `bytes` are aligned to |
| /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| /// caller. If either the length or alignment checks fail, it returns |
| /// `None`. |
| #[inline] |
| pub fn new_from_suffix(bytes: B) -> Option<(B, Ref<B, T>)> { |
| let bytes_len = bytes.len(); |
| let split_at = bytes_len.checked_sub(mem::size_of::<T>())?; |
| let (prefix, bytes) = bytes.split_at(split_at); |
| if !util::aligned_to::<_, T>(bytes.deref()) { |
| return None; |
| } |
| Some((prefix, Ref(bytes, PhantomData))) |
| } |
| } |
| |
| impl<B, T> Ref<B, [T]> |
| where |
| B: ByteSlice, |
| { |
| /// Constructs a new `Ref` of a slice type. |
| /// |
| /// `new_slice` verifies that `bytes.len()` is a multiple of |
| /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and |
| /// constructs a new `Ref`. If either of these checks fail, it returns |
| /// `None`. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice` panics if `T` is a zero-sized type. |
| #[inline] |
| pub fn new_slice(bytes: B) -> Option<Ref<B, [T]>> { |
| let remainder = bytes |
| .len() |
| .checked_rem(mem::size_of::<T>()) |
| .expect("Ref::new_slice called on a zero-sized type"); |
| if remainder != 0 || !util::aligned_to::<_, T>(bytes.deref()) { |
| return None; |
| } |
| Some(Ref(bytes, PhantomData)) |
| } |
| |
| /// Constructs a new `Ref` of a slice type from the prefix of a byte slice. |
| /// |
| /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// first `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| /// and returns the remaining bytes to the caller. It also ensures that |
| /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| /// length, alignment, or overflow checks fail, it returns `None`. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_from_prefix` panics if `T` is a zero-sized type. |
| #[inline] |
| pub fn new_slice_from_prefix(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> { |
| let expected_len = match mem::size_of::<T>().checked_mul(count) { |
| Some(len) => len, |
| None => return None, |
| }; |
| if bytes.len() < expected_len { |
| return None; |
| } |
| let (prefix, bytes) = bytes.split_at(expected_len); |
| Self::new_slice(prefix).map(move |l| (l, bytes)) |
| } |
| |
| /// Constructs a new `Ref` of a slice type from the suffix of a byte slice. |
| /// |
| /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// last `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| /// and returns the preceding bytes to the caller. It also ensures that |
| /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| /// length, alignment, or overflow checks fail, it returns `None`. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_from_suffix` panics if `T` is a zero-sized type. |
| #[inline] |
| pub fn new_slice_from_suffix(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> { |
| let expected_len = match mem::size_of::<T>().checked_mul(count) { |
| Some(len) => len, |
| None => return None, |
| }; |
| let split_at = bytes.len().checked_sub(expected_len)?; |
| let (bytes, suffix) = bytes.split_at(split_at); |
| Self::new_slice(suffix).map(move |l| (bytes, l)) |
| } |
| } |
| |
| fn map_zeroed<B: ByteSliceMut, T: ?Sized>(opt: Option<Ref<B, T>>) -> Option<Ref<B, T>> { |
| match opt { |
| Some(mut r) => { |
| r.0.fill(0); |
| Some(r) |
| } |
| None => None, |
| } |
| } |
| |
| fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>( |
| opt: Option<(Ref<B, T>, B)>, |
| ) -> Option<(Ref<B, T>, B)> { |
| match opt { |
| Some((mut r, rest)) => { |
| r.0.fill(0); |
| Some((r, rest)) |
| } |
| None => None, |
| } |
| } |
| |
| fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>( |
| opt: Option<(B, Ref<B, T>)>, |
| ) -> Option<(B, Ref<B, T>)> { |
| map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a)) |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSliceMut, |
| { |
| /// Constructs a new `Ref` after zeroing the bytes. |
| /// |
| /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that |
| /// `bytes` is aligned to `align_of::<T>()`, and constructs a new `Ref`. If |
| /// either of these checks fail, it returns `None`. |
| /// |
| /// If the checks succeed, then `bytes` will be initialized to zero. This |
| /// can be useful when re-using buffers to ensure that sensitive data |
| /// previously stored in the buffer is not leaked. |
| #[inline(always)] |
| pub fn new_zeroed(bytes: B) -> Option<Ref<B, T>> { |
| map_zeroed(Self::new(bytes)) |
| } |
| |
| /// Constructs a new `Ref` from the prefix of a byte slice, zeroing the |
| /// prefix. |
| /// |
| /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()` |
| /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first |
| /// `size_of::<T>()` bytes from `bytes` to construct a `Ref`, and returns |
| /// the remaining bytes to the caller. If either the length or alignment |
| /// checks fail, it returns `None`. |
| /// |
| /// If the checks succeed, then the prefix which is consumed will be |
| /// initialized to zero. This can be useful when re-using buffers to ensure |
| /// that sensitive data previously stored in the buffer is not leaked. |
| #[inline(always)] |
| pub fn new_from_prefix_zeroed(bytes: B) -> Option<(Ref<B, T>, B)> { |
| map_prefix_tuple_zeroed(Self::new_from_prefix(bytes)) |
| } |
| |
| /// Constructs a new `Ref` from the suffix of a byte slice, zeroing the |
| /// suffix. |
| /// |
| /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()` |
| /// and that the last `size_of::<T>()` bytes of `bytes` are aligned to |
| /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| /// caller. If either the length or alignment checks fail, it returns |
| /// `None`. |
| /// |
| /// If the checks succeed, then the suffix which is consumed will be |
| /// initialized to zero. This can be useful when re-using buffers to ensure |
| /// that sensitive data previously stored in the buffer is not leaked. |
| #[inline(always)] |
| pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, Ref<B, T>)> { |
| map_suffix_tuple_zeroed(Self::new_from_suffix(bytes)) |
| } |
| } |
| |
| impl<B, T> Ref<B, [T]> |
| where |
| B: ByteSliceMut, |
| { |
| /// Constructs a new `Ref` of a slice type after zeroing the bytes. |
| /// |
| /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of |
| /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and |
| /// constructs a new `Ref`. If either of these checks fail, it returns |
| /// `None`. |
| /// |
| /// If the checks succeed, then `bytes` will be initialized to zero. This |
| /// can be useful when re-using buffers to ensure that sensitive data |
| /// previously stored in the buffer is not leaked. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_zeroed(bytes: B) -> Option<Ref<B, [T]>> { |
| map_zeroed(Self::new_slice(bytes)) |
| } |
| |
| /// Constructs a new `Ref` of a slice type from the prefix of a byte slice, |
| /// after zeroing the bytes. |
| /// |
| /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// first `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| /// and returns the remaining bytes to the caller. It also ensures that |
| /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| /// length, alignment, or overflow checks fail, it returns `None`. |
| /// |
| /// If the checks succeed, then the suffix which is consumed will be |
| /// initialized to zero. This can be useful when re-using buffers to ensure |
| /// that sensitive data previously stored in the buffer is not leaked. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_from_prefix_zeroed` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_from_prefix_zeroed(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> { |
| map_prefix_tuple_zeroed(Self::new_slice_from_prefix(bytes, count)) |
| } |
| |
| /// Constructs a new `Ref` of a slice type from the prefix of a byte slice, |
| /// after zeroing the bytes. |
| /// |
| /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the |
| /// last `size_of::<T>() * count` bytes from `bytes` to construct a `Ref`, |
| /// and returns the preceding bytes to the caller. It also ensures that |
| /// `sizeof::<T>() * count` does not overflow a `usize`. If any of the |
| /// length, alignment, or overflow checks fail, it returns `None`. |
| /// |
| /// If the checks succeed, then the consumed suffix will be initialized to |
| /// zero. This can be useful when re-using buffers to ensure that sensitive |
| /// data previously stored in the buffer is not leaked. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_from_suffix_zeroed` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_from_suffix_zeroed(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> { |
| map_suffix_tuple_zeroed(Self::new_slice_from_suffix(bytes, count)) |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSlice, |
| T: Unaligned, |
| { |
| /// Constructs a new `Ref` for a type with no alignment requirement. |
| /// |
| /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and |
| /// constructs a new `Ref`. If the check fails, it returns `None`. |
| #[inline(always)] |
| pub fn new_unaligned(bytes: B) -> Option<Ref<B, T>> { |
| Ref::new(bytes) |
| } |
| |
| /// Constructs a new `Ref` from the prefix of a byte slice for a type with |
| /// no alignment requirement. |
| /// |
| /// `new_unaligned_from_prefix` verifies that `bytes.len() >= |
| /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from |
| /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| /// caller. If the length check fails, it returns `None`. |
| #[inline(always)] |
| pub fn new_unaligned_from_prefix(bytes: B) -> Option<(Ref<B, T>, B)> { |
| Ref::new_from_prefix(bytes) |
| } |
| |
| /// Constructs a new `Ref` from the suffix of a byte slice for a type with |
| /// no alignment requirement. |
| /// |
| /// `new_unaligned_from_suffix` verifies that `bytes.len() >= |
| /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| /// caller. If the length check fails, it returns `None`. |
| #[inline(always)] |
| pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, Ref<B, T>)> { |
| Ref::new_from_suffix(bytes) |
| } |
| } |
| |
| impl<B, T> Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: Unaligned, |
| { |
| /// Constructs a new `Ref` of a slice type with no alignment requirement. |
| /// |
| /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of |
| /// `size_of::<T>()` and constructs a new `Ref`. If the check fails, it |
| /// returns `None`. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_unaligned(bytes: B) -> Option<Ref<B, [T]>> { |
| Ref::new_slice(bytes) |
| } |
| |
| /// Constructs a new `Ref` of a slice type with no alignment requirement |
| /// from the prefix of a byte slice. |
| /// |
| /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count`. It consumes the first `size_of::<T>() * count` bytes from |
| /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a |
| /// `usize`. If either the length, or overflow checks fail, it returns |
| /// `None`. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_unaligned_from_prefix` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_unaligned_from_prefix(bytes: B, count: usize) -> Option<(Ref<B, [T]>, B)> { |
| Ref::new_slice_from_prefix(bytes, count) |
| } |
| |
| /// Constructs a new `Ref` of a slice type with no alignment requirement |
| /// from the suffix of a byte slice. |
| /// |
| /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes` |
| /// to construct a `Ref`, and returns the remaining bytes to the caller. It |
| /// also ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| /// If either the length, or overflow checks fail, it returns `None`. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_unaligned_from_suffix` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_unaligned_from_suffix(bytes: B, count: usize) -> Option<(B, Ref<B, [T]>)> { |
| Ref::new_slice_from_suffix(bytes, count) |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSliceMut, |
| T: Unaligned, |
| { |
| /// Constructs a new `Ref` for a type with no alignment requirement, zeroing |
| /// the bytes. |
| /// |
| /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and |
| /// constructs a new `Ref`. If the check fails, it returns `None`. |
| /// |
| /// If the check succeeds, then `bytes` will be initialized to zero. This |
| /// can be useful when re-using buffers to ensure that sensitive data |
| /// previously stored in the buffer is not leaked. |
| #[inline(always)] |
| pub fn new_unaligned_zeroed(bytes: B) -> Option<Ref<B, T>> { |
| map_zeroed(Self::new_unaligned(bytes)) |
| } |
| |
| /// Constructs a new `Ref` from the prefix of a byte slice for a type with |
| /// no alignment requirement, zeroing the prefix. |
| /// |
| /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >= |
| /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from |
| /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| /// caller. If the length check fails, it returns `None`. |
| /// |
| /// If the check succeeds, then the prefix which is consumed will be |
| /// initialized to zero. This can be useful when re-using buffers to ensure |
| /// that sensitive data previously stored in the buffer is not leaked. |
| #[inline(always)] |
| pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(Ref<B, T>, B)> { |
| map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes)) |
| } |
| |
| /// Constructs a new `Ref` from the suffix of a byte slice for a type with |
| /// no alignment requirement, zeroing the suffix. |
| /// |
| /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >= |
| /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from |
| /// `bytes` to construct a `Ref`, and returns the preceding bytes to the |
| /// caller. If the length check fails, it returns `None`. |
| /// |
| /// If the check succeeds, then the suffix which is consumed will be |
| /// initialized to zero. This can be useful when re-using buffers to ensure |
| /// that sensitive data previously stored in the buffer is not leaked. |
| #[inline(always)] |
| pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, Ref<B, T>)> { |
| map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes)) |
| } |
| } |
| |
| impl<B, T> Ref<B, [T]> |
| where |
| B: ByteSliceMut, |
| T: Unaligned, |
| { |
| /// Constructs a new `Ref` for a slice type with no alignment requirement, |
| /// zeroing the bytes. |
| /// |
| /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple |
| /// of `size_of::<T>()` and constructs a new `Ref`. If the check fails, it |
| /// returns `None`. |
| /// |
| /// If the check succeeds, then `bytes` will be initialized to zero. This |
| /// can be useful when re-using buffers to ensure that sensitive data |
| /// previously stored in the buffer is not leaked. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice` panics if `T` is a zero-sized type. |
| #[inline(always)] |
| pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<Ref<B, [T]>> { |
| map_zeroed(Self::new_slice_unaligned(bytes)) |
| } |
| |
| /// Constructs a new `Ref` of a slice type with no alignment requirement |
| /// from the prefix of a byte slice, after zeroing the bytes. |
| /// |
| /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count`. It consumes the first `size_of::<T>() * count` bytes from |
| /// `bytes` to construct a `Ref`, and returns the remaining bytes to the |
| /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a |
| /// `usize`. If either the length, or overflow checks fail, it returns |
| /// `None`. |
| /// |
| /// If the checks succeed, then the prefix will be initialized to zero. This |
| /// can be useful when re-using buffers to ensure that sensitive data |
| /// previously stored in the buffer is not leaked. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_unaligned_from_prefix_zeroed` panics if `T` is a zero-sized |
| /// type. |
| #[inline(always)] |
| pub fn new_slice_unaligned_from_prefix_zeroed( |
| bytes: B, |
| count: usize, |
| ) -> Option<(Ref<B, [T]>, B)> { |
| map_prefix_tuple_zeroed(Self::new_slice_unaligned_from_prefix(bytes, count)) |
| } |
| |
| /// Constructs a new `Ref` of a slice type with no alignment requirement |
| /// from the suffix of a byte slice, after zeroing the bytes. |
| /// |
| /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() * |
| /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes` |
| /// to construct a `Ref`, and returns the remaining bytes to the caller. It |
| /// also ensures that `sizeof::<T>() * count` does not overflow a `usize`. |
| /// If either the length, or overflow checks fail, it returns `None`. |
| /// |
| /// If the checks succeed, then the suffix will be initialized to zero. This |
| /// can be useful when re-using buffers to ensure that sensitive data |
| /// previously stored in the buffer is not leaked. |
| /// |
| /// # Panics |
| /// |
| /// `new_slice_unaligned_from_suffix_zeroed` panics if `T` is a zero-sized |
| /// type. |
| #[inline(always)] |
| pub fn new_slice_unaligned_from_suffix_zeroed( |
| bytes: B, |
| count: usize, |
| ) -> Option<(B, Ref<B, [T]>)> { |
| map_suffix_tuple_zeroed(Self::new_slice_unaligned_from_suffix(bytes, count)) |
| } |
| } |
| |
| impl<'a, B, T> Ref<B, T> |
| where |
| B: 'a + ByteSlice, |
| T: FromBytes, |
| { |
| /// Converts this `Ref` into a reference. |
| /// |
| /// `into_ref` consumes the `Ref`, and returns a reference to `T`. |
| #[inline(always)] |
| pub fn into_ref(self) -> &'a T { |
| assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| |
| // SAFETY: According to the safety preconditions on |
| // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| // ensures that, given `B: 'a`, it is sound to drop `self` and still |
| // access the underlying memory using reads for `'a`. |
| unsafe { self.deref_helper() } |
| } |
| } |
| |
| impl<'a, B, T> Ref<B, T> |
| where |
| B: 'a + ByteSliceMut, |
| T: FromBytes + AsBytes, |
| { |
| /// Converts this `Ref` into a mutable reference. |
| /// |
| /// `into_mut` consumes the `Ref`, and returns a mutable reference to `T`. |
| #[inline(always)] |
| pub fn into_mut(mut self) -> &'a mut T { |
| assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| |
| // SAFETY: According to the safety preconditions on |
| // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop |
| // `self` and still access the underlying memory using both reads and |
| // writes for `'a`. |
| unsafe { self.deref_mut_helper() } |
| } |
| } |
| |
| impl<'a, B, T> Ref<B, [T]> |
| where |
| B: 'a + ByteSlice, |
| T: FromBytes, |
| { |
| /// Converts this `Ref` into a slice reference. |
| /// |
| /// `into_slice` consumes the `Ref`, and returns a reference to `[T]`. |
| #[inline(always)] |
| pub fn into_slice(self) -> &'a [T] { |
| assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| |
| // SAFETY: According to the safety preconditions on |
| // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| // ensures that, given `B: 'a`, it is sound to drop `self` and still |
| // access the underlying memory using reads for `'a`. |
| unsafe { self.deref_slice_helper() } |
| } |
| } |
| |
| impl<'a, B, T> Ref<B, [T]> |
| where |
| B: 'a + ByteSliceMut, |
| T: FromBytes + AsBytes, |
| { |
| /// Converts this `Ref` into a mutable slice reference. |
| /// |
| /// `into_mut_slice` consumes the `Ref`, and returns a mutable reference to |
| /// `[T]`. |
| #[inline(always)] |
| pub fn into_mut_slice(mut self) -> &'a mut [T] { |
| assert!(B::INTO_REF_INTO_MUT_ARE_SOUND); |
| |
| // SAFETY: According to the safety preconditions on |
| // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert |
| // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop |
| // `self` and still access the underlying memory using both reads and |
| // writes for `'a`. |
| unsafe { self.deref_mut_slice_helper() } |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes, |
| { |
| /// Creates an immutable reference to `T` with a specific lifetime. |
| /// |
| /// # Safety |
| /// |
| /// The type bounds on this method guarantee that it is safe to create an |
| /// immutable reference to `T` from `self`. However, since the lifetime `'a` |
| /// is not required to be shorter than the lifetime of the reference to |
| /// `self`, the caller must guarantee that the lifetime `'a` is valid for |
| /// this reference. In particular, the referent must exist for all of `'a`, |
| /// and no mutable references to the same memory may be constructed during |
| /// `'a`. |
| unsafe fn deref_helper<'a>(&self) -> &'a T { |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| &*self.0.as_ptr().cast::<T>() |
| } |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSliceMut, |
| T: FromBytes + AsBytes, |
| { |
| /// Creates a mutable reference to `T` with a specific lifetime. |
| /// |
| /// # Safety |
| /// |
| /// The type bounds on this method guarantee that it is safe to create a |
| /// mutable reference to `T` from `self`. However, since the lifetime `'a` |
| /// is not required to be shorter than the lifetime of the reference to |
| /// `self`, the caller must guarantee that the lifetime `'a` is valid for |
| /// this reference. In particular, the referent must exist for all of `'a`, |
| /// and no other references - mutable or immutable - to the same memory may |
| /// be constructed during `'a`. |
| unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T { |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| &mut *self.0.as_mut_ptr().cast::<T>() |
| } |
| } |
| } |
| |
| impl<B, T> Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes, |
| { |
| /// Creates an immutable reference to `[T]` with a specific lifetime. |
| /// |
| /// # Safety |
| /// |
| /// `deref_slice_helper` has the same safety requirements as `deref_helper`. |
| unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] { |
| let len = self.0.len(); |
| let elem_size = mem::size_of::<T>(); |
| debug_assert_ne!(elem_size, 0); |
| // `Ref<_, [T]>` maintains the invariant that `size_of::<T>() > 0`. |
| // Thus, neither the mod nor division operations here can panic. |
| #[allow(clippy::arithmetic_side_effects)] |
| let elems = { |
| debug_assert_eq!(len % elem_size, 0); |
| len / elem_size |
| }; |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| slice::from_raw_parts(self.0.as_ptr().cast::<T>(), elems) |
| } |
| } |
| } |
| |
| impl<B, T> Ref<B, [T]> |
| where |
| B: ByteSliceMut, |
| T: FromBytes + AsBytes, |
| { |
| /// Creates a mutable reference to `[T]` with a specific lifetime. |
| /// |
| /// # Safety |
| /// |
| /// `deref_mut_slice_helper` has the same safety requirements as |
| /// `deref_mut_helper`. |
| unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] { |
| let len = self.0.len(); |
| let elem_size = mem::size_of::<T>(); |
| debug_assert_ne!(elem_size, 0); |
| // `Ref<_, [T]>` maintains the invariant that `size_of::<T>() > 0`. |
| // Thus, neither the mod nor division operations here can panic. |
| #[allow(clippy::arithmetic_side_effects)] |
| let elems = { |
| debug_assert_eq!(len % elem_size, 0); |
| len / elem_size |
| }; |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe { |
| slice::from_raw_parts_mut(self.0.as_mut_ptr().cast::<T>(), elems) |
| } |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSlice, |
| T: ?Sized, |
| { |
| /// Gets the underlying bytes. |
| #[inline] |
| pub fn bytes(&self) -> &[u8] { |
| &self.0 |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSliceMut, |
| T: ?Sized, |
| { |
| /// Gets the underlying bytes mutably. |
| #[inline] |
| pub fn bytes_mut(&mut self) -> &mut [u8] { |
| &mut self.0 |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes, |
| { |
| /// Reads a copy of `T`. |
| #[inline] |
| pub fn read(&self) -> T { |
| // SAFETY: Because of the invariants on `Ref`, we know that `self.0` is |
| // at least `size_of::<T>()` bytes long, and that it is at least as |
| // aligned as `align_of::<T>()`. Because `T: FromBytes`, it is sound to |
| // interpret these bytes as a `T`. |
| unsafe { ptr::read(self.0.as_ptr().cast::<T>()) } |
| } |
| } |
| |
| impl<B, T> Ref<B, T> |
| where |
| B: ByteSliceMut, |
| T: AsBytes, |
| { |
| /// Writes the bytes of `t` and then forgets `t`. |
| #[inline] |
| pub fn write(&mut self, t: T) { |
| // SAFETY: Because of the invariants on `Ref`, we know that `self.0` is |
| // at least `size_of::<T>()` bytes long, and that it is at least as |
| // aligned as `align_of::<T>()`. Writing `t` to the buffer will allow |
| // all of the bytes of `t` to be accessed as a `[u8]`, but because `T: |
| // AsBytes`, we know this is sound. |
| unsafe { ptr::write(self.0.as_mut_ptr().cast::<T>(), t) } |
| } |
| } |
| |
| impl<B, T> Deref for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes, |
| { |
| type Target = T; |
| #[inline] |
| fn deref(&self) -> &T { |
| // SAFETY: This is sound because the lifetime of `self` is the same as |
| // the lifetime of the return value, meaning that a) the returned |
| // reference cannot outlive `self` and, b) no mutable methods on `self` |
| // can be called during the lifetime of the returned reference. See the |
| // documentation on `deref_helper` for what invariants we are required |
| // to uphold. |
| unsafe { self.deref_helper() } |
| } |
| } |
| |
| impl<B, T> DerefMut for Ref<B, T> |
| where |
| B: ByteSliceMut, |
| T: FromBytes + AsBytes, |
| { |
| #[inline] |
| fn deref_mut(&mut self) -> &mut T { |
| // SAFETY: This is sound because the lifetime of `self` is the same as |
| // the lifetime of the return value, meaning that a) the returned |
| // reference cannot outlive `self` and, b) no other methods on `self` |
| // can be called during the lifetime of the returned reference. See the |
| // documentation on `deref_mut_helper` for what invariants we are |
| // required to uphold. |
| unsafe { self.deref_mut_helper() } |
| } |
| } |
| |
| impl<B, T> Deref for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes, |
| { |
| type Target = [T]; |
| #[inline] |
| fn deref(&self) -> &[T] { |
| // SAFETY: This is sound because the lifetime of `self` is the same as |
| // the lifetime of the return value, meaning that a) the returned |
| // reference cannot outlive `self` and, b) no mutable methods on `self` |
| // can be called during the lifetime of the returned reference. See the |
| // documentation on `deref_slice_helper` for what invariants we are |
| // required to uphold. |
| unsafe { self.deref_slice_helper() } |
| } |
| } |
| |
| impl<B, T> DerefMut for Ref<B, [T]> |
| where |
| B: ByteSliceMut, |
| T: FromBytes + AsBytes, |
| { |
| #[inline] |
| fn deref_mut(&mut self) -> &mut [T] { |
| // SAFETY: This is sound because the lifetime of `self` is the same as |
| // the lifetime of the return value, meaning that a) the returned |
| // reference cannot outlive `self` and, b) no other methods on `self` |
| // can be called during the lifetime of the returned reference. See the |
| // documentation on `deref_mut_slice_helper` for what invariants we are |
| // required to uphold. |
| unsafe { self.deref_mut_slice_helper() } |
| } |
| } |
| |
| impl<T, B> Display for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes + Display, |
| { |
| #[inline] |
| fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| let inner: &T = self; |
| inner.fmt(fmt) |
| } |
| } |
| |
| impl<T, B> Display for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes, |
| [T]: Display, |
| { |
| #[inline] |
| fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| let inner: &[T] = self; |
| inner.fmt(fmt) |
| } |
| } |
| |
| impl<T, B> Debug for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes + Debug, |
| { |
| #[inline] |
| fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| let inner: &T = self; |
| fmt.debug_tuple("Ref").field(&inner).finish() |
| } |
| } |
| |
| impl<T, B> Debug for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes + Debug, |
| { |
| #[inline] |
| fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result { |
| let inner: &[T] = self; |
| fmt.debug_tuple("Ref").field(&inner).finish() |
| } |
| } |
| |
| impl<T, B> Eq for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes + Eq, |
| { |
| } |
| |
| impl<T, B> Eq for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes + Eq, |
| { |
| } |
| |
| impl<T, B> PartialEq for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes + PartialEq, |
| { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| self.deref().eq(other.deref()) |
| } |
| } |
| |
| impl<T, B> PartialEq for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes + PartialEq, |
| { |
| #[inline] |
| fn eq(&self, other: &Self) -> bool { |
| self.deref().eq(other.deref()) |
| } |
| } |
| |
| impl<T, B> Ord for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes + Ord, |
| { |
| #[inline] |
| fn cmp(&self, other: &Self) -> Ordering { |
| let inner: &T = self; |
| let other_inner: &T = other; |
| inner.cmp(other_inner) |
| } |
| } |
| |
| impl<T, B> Ord for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes + Ord, |
| { |
| #[inline] |
| fn cmp(&self, other: &Self) -> Ordering { |
| let inner: &[T] = self; |
| let other_inner: &[T] = other; |
| inner.cmp(other_inner) |
| } |
| } |
| |
| impl<T, B> PartialOrd for Ref<B, T> |
| where |
| B: ByteSlice, |
| T: FromBytes + PartialOrd, |
| { |
| #[inline] |
| fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| let inner: &T = self; |
| let other_inner: &T = other; |
| inner.partial_cmp(other_inner) |
| } |
| } |
| |
| impl<T, B> PartialOrd for Ref<B, [T]> |
| where |
| B: ByteSlice, |
| T: FromBytes + PartialOrd, |
| { |
| #[inline] |
| fn partial_cmp(&self, other: &Self) -> Option<Ordering> { |
| let inner: &[T] = self; |
| let other_inner: &[T] = other; |
| inner.partial_cmp(other_inner) |
| } |
| } |
| |
| mod sealed { |
| pub trait ByteSliceSealed {} |
| } |
| |
| // ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8], |
| // Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these |
| // references such as that a given reference will never changes its length |
| // between calls to deref() or deref_mut(), and that split_at() works as |
| // expected. If ByteSlice or ByteSliceMut were not sealed, consumers could |
| // implement them in a way that violated these behaviors, and would break our |
| // unsafe code. Thus, we seal them and implement it only for known-good |
| // reference types. For the same reason, they're unsafe traits. |
| |
| #[allow(clippy::missing_safety_doc)] // TODO(fxbug.dev/99068) |
| /// A mutable or immutable reference to a byte slice. |
| /// |
| /// `ByteSlice` abstracts over the mutability of a byte slice reference, and is |
| /// implemented for various special reference types such as `Ref<[u8]>` and |
| /// `RefMut<[u8]>`. |
| /// |
| /// Note that, while it would be technically possible, `ByteSlice` is not |
| /// implemented for [`Vec<u8>`], as the only way to implement the [`split_at`] |
| /// method would involve reallocation, and `split_at` must be a very cheap |
| /// operation in order for the utilities in this crate to perform as designed. |
| /// |
| /// [`split_at`]: crate::ByteSlice::split_at |
| // It may seem overkill to go to this length to ensure that this doc link never |
| // breaks. We do this because it simplifies CI - it means that generating docs |
| // always succeeds, so we don't need special logic to only generate docs under |
| // certain features. |
| #[cfg_attr(feature = "alloc", doc = "[`Vec<u8>`]: alloc::vec::Vec")] |
| #[cfg_attr( |
| not(feature = "alloc"), |
| doc = "[`Vec<u8>`]: https://doc.rust-lang.org/std/vec/struct.Vec.html" |
| )] |
| pub unsafe trait ByteSlice: |
| Deref<Target = [u8]> + Sized + self::sealed::ByteSliceSealed |
| { |
| /// Are the [`Ref::into_ref`] and [`Ref::into_mut`] methods sound when used |
| /// with `Self`? If not, evaluating this constant must panic at compile |
| /// time. |
| /// |
| /// This exists to work around #716 on versions of zerocopy prior to 0.8. |
| /// |
| /// # Safety |
| /// |
| /// This may only be set to true if the following holds: Given the |
| /// following: |
| /// - `Self: 'a` |
| /// - `bytes: Self` |
| /// - `let ptr = bytes.as_ptr()` |
| /// |
| /// ...then: |
| /// - Using `ptr` to read the memory previously addressed by `bytes` is |
| /// sound for `'a` even after `bytes` has been dropped. |
| /// - If `Self: ByteSliceMut`, using `ptr` to write the memory previously |
| /// addressed by `bytes` is sound for `'a` even after `bytes` has been |
| /// dropped. |
| #[doc(hidden)] |
| const INTO_REF_INTO_MUT_ARE_SOUND: bool; |
| |
| /// Gets a raw pointer to the first byte in the slice. |
| #[inline] |
| fn as_ptr(&self) -> *const u8 { |
| <[u8]>::as_ptr(self) |
| } |
| |
| /// Splits the slice at the midpoint. |
| /// |
| /// `x.split_at(mid)` returns `x[..mid]` and `x[mid..]`. |
| /// |
| /// # Panics |
| /// |
| /// `x.split_at(mid)` panics if `mid > x.len()`. |
| fn split_at(self, mid: usize) -> (Self, Self); |
| } |
| |
| #[allow(clippy::missing_safety_doc)] // TODO(fxbug.dev/99068) |
| /// A mutable reference to a byte slice. |
| /// |
| /// `ByteSliceMut` abstracts over various ways of storing a mutable reference to |
| /// a byte slice, and is implemented for various special reference types such as |
| /// `RefMut<[u8]>`. |
| pub unsafe trait ByteSliceMut: ByteSlice + DerefMut { |
| /// Gets a mutable raw pointer to the first byte in the slice. |
| #[inline] |
| fn as_mut_ptr(&mut self) -> *mut u8 { |
| <[u8]>::as_mut_ptr(self) |
| } |
| } |
| |
| impl<'a> sealed::ByteSliceSealed for &'a [u8] {} |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe impl<'a> ByteSlice for &'a [u8] { |
| // SAFETY: If `&'b [u8]: 'a`, then the underlying memory is treated as |
| // borrowed immutably for `'a` even if the slice itself is dropped. |
| const INTO_REF_INTO_MUT_ARE_SOUND: bool = true; |
| |
| #[inline] |
| fn split_at(self, mid: usize) -> (Self, Self) { |
| <[u8]>::split_at(self, mid) |
| } |
| } |
| |
| impl<'a> sealed::ByteSliceSealed for &'a mut [u8] {} |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe impl<'a> ByteSlice for &'a mut [u8] { |
| // SAFETY: If `&'b mut [u8]: 'a`, then the underlying memory is treated as |
| // borrowed mutably for `'a` even if the slice itself is dropped. |
| const INTO_REF_INTO_MUT_ARE_SOUND: bool = true; |
| |
| #[inline] |
| fn split_at(self, mid: usize) -> (Self, Self) { |
| <[u8]>::split_at_mut(self, mid) |
| } |
| } |
| |
| impl<'a> sealed::ByteSliceSealed for cell::Ref<'a, [u8]> {} |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe impl<'a> ByteSlice for cell::Ref<'a, [u8]> { |
| const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) { |
| panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::Ref; see https://github.com/google/zerocopy/issues/716") |
| } else { |
| // When compiling documentation, allow the evaluation of this constant |
| // to succeed. This doesn't represent a soundness hole - it just delays |
| // any error to runtime. The reason we need this is that, otherwise, |
| // `rustdoc` will fail when trying to document this item. |
| false |
| }; |
| |
| #[inline] |
| fn split_at(self, mid: usize) -> (Self, Self) { |
| cell::Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid)) |
| } |
| } |
| |
| impl<'a> sealed::ByteSliceSealed for RefMut<'a, [u8]> {} |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> { |
| const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) { |
| panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::RefMut; see https://github.com/google/zerocopy/issues/716") |
| } else { |
| // When compiling documentation, allow the evaluation of this constant |
| // to succeed. This doesn't represent a soundness hole - it just delays |
| // any error to runtime. The reason we need this is that, otherwise, |
| // `rustdoc` will fail when trying to document this item. |
| false |
| }; |
| |
| #[inline] |
| fn split_at(self, mid: usize) -> (Self, Self) { |
| RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid)) |
| } |
| } |
| |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe impl<'a> ByteSliceMut for &'a mut [u8] {} |
| |
| // TODO(#429): Add a "SAFETY" comment and remove this `allow`. |
| #[allow(clippy::undocumented_unsafe_blocks)] |
| unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {} |
| |
| #[cfg(feature = "alloc")] |
| #[cfg_attr(doc_cfg, doc(cfg(feature = "alloc")))] |
| mod alloc_support { |
| use alloc::vec::Vec; |
| |
| use super::*; |
| |
| /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the |
| /// vector. The new items are initialized with zeroes. |
| /// |
| /// # Panics |
| /// |
| /// Panics if `Vec::reserve(additional)` fails to reserve enough memory. |
| #[inline(always)] |
| pub fn extend_vec_zeroed<T: FromZeroes>(v: &mut Vec<T>, additional: usize) { |
| insert_vec_zeroed(v, v.len(), additional); |
| } |
| |
| /// Inserts `additional` new items into `Vec<T>` at `position`. |
| /// The new items are initialized with zeroes. |
| /// |
| /// # Panics |
| /// |
| /// * Panics if `position > v.len()`. |
| /// * Panics if `Vec::reserve(additional)` fails to reserve enough memory. |
| #[inline] |
| pub fn insert_vec_zeroed<T: FromZeroes>(v: &mut Vec<T>, position: usize, additional: usize) { |
| assert!(position <= v.len()); |
| v.reserve(additional); |
| // SAFETY: The `reserve` call guarantees that these cannot overflow: |
| // * `ptr.add(position)` |
| // * `position + additional` |
| // * `v.len() + additional` |
| // |
| // `v.len() - position` cannot overflow because we asserted that |
| // `position <= v.len()`. |
| unsafe { |
| // This is a potentially overlapping copy. |
| let ptr = v.as_mut_ptr(); |
| #[allow(clippy::arithmetic_side_effects)] |
| ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position); |
| ptr.add(position).write_bytes(0, additional); |
| #[allow(clippy::arithmetic_side_effects)] |
| v.set_len(v.len() + additional); |
| } |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use core::convert::TryFrom as _; |
| |
| use super::*; |
| |
| #[test] |
| fn test_extend_vec_zeroed() { |
| // Test extending when there is an existing allocation. |
| let mut v = vec![100u64, 200, 300]; |
| extend_vec_zeroed(&mut v, 3); |
| assert_eq!(v.len(), 6); |
| assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]); |
| drop(v); |
| |
| // Test extending when there is no existing allocation. |
| let mut v: Vec<u64> = Vec::new(); |
| extend_vec_zeroed(&mut v, 3); |
| assert_eq!(v.len(), 3); |
| assert_eq!(&*v, &[0, 0, 0]); |
| drop(v); |
| } |
| |
| #[test] |
| fn test_extend_vec_zeroed_zst() { |
| // Test extending when there is an existing (fake) allocation. |
| let mut v = vec![(), (), ()]; |
| extend_vec_zeroed(&mut v, 3); |
| assert_eq!(v.len(), 6); |
| assert_eq!(&*v, &[(), (), (), (), (), ()]); |
| drop(v); |
| |
| // Test extending when there is no existing (fake) allocation. |
| let mut v: Vec<()> = Vec::new(); |
| extend_vec_zeroed(&mut v, 3); |
| assert_eq!(&*v, &[(), (), ()]); |
| drop(v); |
| } |
| |
| #[test] |
| fn test_insert_vec_zeroed() { |
| // Insert at start (no existing allocation). |
| let mut v: Vec<u64> = Vec::new(); |
| insert_vec_zeroed(&mut v, 0, 2); |
| assert_eq!(v.len(), 2); |
| assert_eq!(&*v, &[0, 0]); |
| drop(v); |
| |
| // Insert at start. |
| let mut v = vec![100u64, 200, 300]; |
| insert_vec_zeroed(&mut v, 0, 2); |
| assert_eq!(v.len(), 5); |
| assert_eq!(&*v, &[0, 0, 100, 200, 300]); |
| drop(v); |
| |
| // Insert at middle. |
| let mut v = vec![100u64, 200, 300]; |
| insert_vec_zeroed(&mut v, 1, 1); |
| assert_eq!(v.len(), 4); |
| assert_eq!(&*v, &[100, 0, 200, 300]); |
| drop(v); |
| |
| // Insert at end. |
| let mut v = vec![100u64, 200, 300]; |
| insert_vec_zeroed(&mut v, 3, 1); |
| assert_eq!(v.len(), 4); |
| assert_eq!(&*v, &[100, 200, 300, 0]); |
| drop(v); |
| } |
| |
| #[test] |
| fn test_insert_vec_zeroed_zst() { |
| // Insert at start (no existing fake allocation). |
| let mut v: Vec<()> = Vec::new(); |
| insert_vec_zeroed(&mut v, 0, 2); |
| assert_eq!(v.len(), 2); |
| assert_eq!(&*v, &[(), ()]); |
| drop(v); |
| |
| // Insert at start. |
| let mut v = vec![(), (), ()]; |
| insert_vec_zeroed(&mut v, 0, 2); |
| assert_eq!(v.len(), 5); |
| assert_eq!(&*v, &[(), (), (), (), ()]); |
| drop(v); |
| |
| // Insert at middle. |
| let mut v = vec![(), (), ()]; |
| insert_vec_zeroed(&mut v, 1, 1); |
| assert_eq!(v.len(), 4); |
| assert_eq!(&*v, &[(), (), (), ()]); |
| drop(v); |
| |
| // Insert at end. |
| let mut v = vec![(), (), ()]; |
| insert_vec_zeroed(&mut v, 3, 1); |
| assert_eq!(v.len(), 4); |
| assert_eq!(&*v, &[(), (), (), ()]); |
| drop(v); |
| } |
| |
| #[test] |
| fn test_new_box_zeroed() { |
| assert_eq!(*u64::new_box_zeroed(), 0); |
| } |
| |
| #[test] |
| fn test_new_box_zeroed_array() { |
| drop(<[u32; 0x1000]>::new_box_zeroed()); |
| } |
| |
| #[test] |
| fn test_new_box_zeroed_zst() { |
| // This test exists in order to exercise unsafe code, especially |
| // when running under Miri. |
| #[allow(clippy::unit_cmp)] |
| { |
| assert_eq!(*<()>::new_box_zeroed(), ()); |
| } |
| } |
| |
| #[test] |
| fn test_new_box_slice_zeroed() { |
| let mut s: Box<[u64]> = u64::new_box_slice_zeroed(3); |
| assert_eq!(s.len(), 3); |
| assert_eq!(&*s, &[0, 0, 0]); |
| s[1] = 3; |
| assert_eq!(&*s, &[0, 3, 0]); |
| } |
| |
| #[test] |
| fn test_new_box_slice_zeroed_empty() { |
| let s: Box<[u64]> = u64::new_box_slice_zeroed(0); |
| assert_eq!(s.len(), 0); |
| } |
| |
| #[test] |
| fn test_new_box_slice_zeroed_zst() { |
| let mut s: Box<[()]> = <()>::new_box_slice_zeroed(3); |
| assert_eq!(s.len(), 3); |
| assert!(s.get(10).is_none()); |
| // This test exists in order to exercise unsafe code, especially |
| // when running under Miri. |
| #[allow(clippy::unit_cmp)] |
| { |
| assert_eq!(s[1], ()); |
| } |
| s[2] = (); |
| } |
| |
| #[test] |
| fn test_new_box_slice_zeroed_zst_empty() { |
| let s: Box<[()]> = <()>::new_box_slice_zeroed(0); |
| assert_eq!(s.len(), 0); |
| } |
| |
| #[test] |
| #[should_panic(expected = "mem::size_of::<Self>() * len overflows `usize`")] |
| fn test_new_box_slice_zeroed_panics_mul_overflow() { |
| let _ = u16::new_box_slice_zeroed(usize::MAX); |
| } |
| |
| #[test] |
| #[should_panic(expected = "assertion failed: size <= max_alloc")] |
| fn test_new_box_slice_zeroed_panics_isize_overflow() { |
| let max = usize::try_from(isize::MAX).unwrap(); |
| let _ = u16::new_box_slice_zeroed((max / mem::size_of::<u16>()) + 1); |
| } |
| } |
| } |
| |
| #[cfg(feature = "alloc")] |
| #[doc(inline)] |
| pub use alloc_support::*; |
| |
| #[cfg(test)] |
| mod tests { |
| #![allow(clippy::unreadable_literal)] |
| |
| use core::{cell::UnsafeCell, convert::TryInto as _, ops::Deref}; |
| |
| use static_assertions::assert_impl_all; |
| |
| use super::*; |
| use crate::util::testutil::*; |
| |
| // An unsized type. |
| // |
| // This is used to test the custom derives of our traits. The `[u8]` type |
| // gets a hand-rolled impl, so it doesn't exercise our custom derives. |
| #[derive(Debug, Eq, PartialEq, FromZeroes, FromBytes, AsBytes, Unaligned)] |
| #[repr(transparent)] |
| struct Unsized([u8]); |
| |
| impl Unsized { |
| fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized { |
| // SAFETY: This *probably* sound - since the layouts of `[u8]` and |
| // `Unsized` are the same, so are the layouts of `&mut [u8]` and |
| // `&mut Unsized`. [1] Even if it turns out that this isn't actually |
| // guaranteed by the language spec, we can just change this since |
| // it's in test code. |
| // |
| // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375 |
| unsafe { mem::transmute(slc) } |
| } |
| } |
| |
| /// Tests of when a sized `DstLayout` is extended with a sized field. |
| #[allow(clippy::decimal_literal_representation)] |
| #[test] |
| fn test_dst_layout_extend_sized_with_sized() { |
| // This macro constructs a layout corresponding to a `u8` and extends it |
| // with a zero-sized trailing field of given alignment `n`. The macro |
| // tests that the resulting layout has both size and alignment `min(n, |
| // P)` for all valid values of `repr(packed(P))`. |
| macro_rules! test_align_is_size { |
| ($n:expr) => { |
| let base = DstLayout::for_type::<u8>(); |
| let trailing_field = DstLayout::for_type::<elain::Align<$n>>(); |
| |
| let packs = |
| core::iter::once(None).chain((0..29).map(|p| NonZeroUsize::new(2usize.pow(p)))); |
| |
| for pack in packs { |
| let composite = base.extend(trailing_field, pack); |
| let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN); |
| let align = $n.min(max_align.get()); |
| assert_eq!( |
| composite, |
| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: SizeInfo::Sized { _size: align } |
| } |
| ) |
| } |
| }; |
| } |
| |
| test_align_is_size!(1); |
| test_align_is_size!(2); |
| test_align_is_size!(4); |
| test_align_is_size!(8); |
| test_align_is_size!(16); |
| test_align_is_size!(32); |
| test_align_is_size!(64); |
| test_align_is_size!(128); |
| test_align_is_size!(256); |
| test_align_is_size!(512); |
| test_align_is_size!(1024); |
| test_align_is_size!(2048); |
| test_align_is_size!(4096); |
| test_align_is_size!(8192); |
| test_align_is_size!(16384); |
| test_align_is_size!(32768); |
| test_align_is_size!(65536); |
| test_align_is_size!(131072); |
| test_align_is_size!(262144); |
| test_align_is_size!(524288); |
| test_align_is_size!(1048576); |
| test_align_is_size!(2097152); |
| test_align_is_size!(4194304); |
| test_align_is_size!(8388608); |
| test_align_is_size!(16777216); |
| test_align_is_size!(33554432); |
| test_align_is_size!(67108864); |
| test_align_is_size!(33554432); |
| test_align_is_size!(134217728); |
| test_align_is_size!(268435456); |
| } |
| |
| /// Tests of when a sized `DstLayout` is extended with a DST field. |
| #[test] |
| fn test_dst_layout_extend_sized_with_dst() { |
| // Test that for all combinations of real-world alignments and |
| // `repr_packed` values, that the extension of a sized `DstLayout`` with |
| // a DST field correctly computes the trailing offset in the composite |
| // layout. |
| |
| let aligns = (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()); |
| let packs = core::iter::once(None).chain(aligns.clone().map(Some)); |
| |
| for align in aligns { |
| for pack in packs.clone() { |
| let base = DstLayout::for_type::<u8>(); |
| let elem_size = 42; |
| let trailing_field_offset = 11; |
| |
| let trailing_field = DstLayout { |
| align, |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| _elem_size: elem_size, |
| _offset: 11, |
| }), |
| }; |
| |
| let composite = base.extend(trailing_field, pack); |
| |
| let max_align = pack.unwrap_or(DstLayout::CURRENT_MAX_ALIGN).get(); |
| |
| let align = align.get().min(max_align); |
| |
| assert_eq!( |
| composite, |
| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| _elem_size: elem_size, |
| _offset: align + trailing_field_offset, |
| }), |
| } |
| ) |
| } |
| } |
| } |
| |
| /// Tests that calling `pad_to_align` on a sized `DstLayout` adds the |
| /// expected amount of trailing padding. |
| #[test] |
| fn test_dst_layout_pad_to_align_with_sized() { |
| // For all valid alignments `align`, construct a one-byte layout aligned |
| // to `align`, call `pad_to_align`, and assert that the size of the |
| // resulting layout is equal to `align`. |
| for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| let layout = DstLayout { align, size_info: SizeInfo::Sized { _size: 1 } }; |
| |
| assert_eq!( |
| layout.pad_to_align(), |
| DstLayout { align, size_info: SizeInfo::Sized { _size: align.get() } } |
| ); |
| } |
| |
| // Test explicitly-provided combinations of unpadded and padded |
| // counterparts. |
| |
| macro_rules! test { |
| (unpadded { size: $unpadded_size:expr, align: $unpadded_align:expr } |
| => padded { size: $padded_size:expr, align: $padded_align:expr }) => { |
| let unpadded = DstLayout { |
| align: NonZeroUsize::new($unpadded_align).unwrap(), |
| size_info: SizeInfo::Sized { _size: $unpadded_size }, |
| }; |
| let padded = unpadded.pad_to_align(); |
| |
| assert_eq!( |
| padded, |
| DstLayout { |
| align: NonZeroUsize::new($padded_align).unwrap(), |
| size_info: SizeInfo::Sized { _size: $padded_size }, |
| } |
| ); |
| }; |
| } |
| |
| test!(unpadded { size: 0, align: 4 } => padded { size: 0, align: 4 }); |
| test!(unpadded { size: 1, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 2, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 3, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 4, align: 4 } => padded { size: 4, align: 4 }); |
| test!(unpadded { size: 5, align: 4 } => padded { size: 8, align: 4 }); |
| test!(unpadded { size: 6, align: 4 } => padded { size: 8, align: 4 }); |
| test!(unpadded { size: 7, align: 4 } => padded { size: 8, align: 4 }); |
| test!(unpadded { size: 8, align: 4 } => padded { size: 8, align: 4 }); |
| |
| let current_max_align = DstLayout::CURRENT_MAX_ALIGN.get(); |
| |
| test!(unpadded { size: 1, align: current_max_align } |
| => padded { size: current_max_align, align: current_max_align }); |
| |
| test!(unpadded { size: current_max_align + 1, align: current_max_align } |
| => padded { size: current_max_align * 2, align: current_max_align }); |
| } |
| |
| /// Tests that calling `pad_to_align` on a DST `DstLayout` is a no-op. |
| #[test] |
| fn test_dst_layout_pad_to_align_with_dst() { |
| for align in (0..29).map(|p| NonZeroUsize::new(2usize.pow(p)).unwrap()) { |
| for offset in 0..10 { |
| for elem_size in 0..10 { |
| let layout = DstLayout { |
| align, |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: offset, |
| _elem_size: elem_size, |
| }), |
| }; |
| assert_eq!(layout.pad_to_align(), layout); |
| } |
| } |
| } |
| } |
| |
| // This test takes a long time when running under Miri, so we skip it in |
| // that case. This is acceptable because this is a logic test that doesn't |
| // attempt to expose UB. |
| #[test] |
| #[cfg_attr(miri, ignore)] |
| fn testvalidate_cast_and_convert_metadata() { |
| impl From<usize> for SizeInfo { |
| fn from(_size: usize) -> SizeInfo { |
| SizeInfo::Sized { _size } |
| } |
| } |
| |
| impl From<(usize, usize)> for SizeInfo { |
| fn from((_offset, _elem_size): (usize, usize)) -> SizeInfo { |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) |
| } |
| } |
| |
| fn layout<S: Into<SizeInfo>>(s: S, align: usize) -> DstLayout { |
| DstLayout { size_info: s.into(), align: NonZeroUsize::new(align).unwrap() } |
| } |
| |
| /// This macro accepts arguments in the form of: |
| /// |
| /// layout(_, _, _).validate(_, _, _), Ok(Some((_, _))) |
| /// | | | | | | | | |
| /// base_size ----+ | | | | | | | |
| /// align -----------+ | | | | | | |
| /// trailing_size ------+ | | | | | |
| /// addr ---------------------------+ | | | | |
| /// bytes_len -------------------------+ | | | |
| /// cast_type ----------------------------+ | | |
| /// elems ---------------------------------------------+ | |
| /// split_at ---------------------------------------------+ |
| /// |
| /// `.validate` is shorthand for `.validate_cast_and_convert_metadata` |
| /// for brevity. |
| /// |
| /// Each argument can either be an iterator or a wildcard. Each |
| /// wildcarded variable is implicitly replaced by an iterator over a |
| /// representative sample of values for that variable. Each `test!` |
| /// invocation iterates over every combination of values provided by |
| /// each variable's iterator (ie, the cartesian product) and validates |
| /// that the results are expected. |
| /// |
| /// The final argument uses the same syntax, but it has a different |
| /// meaning: |
| /// - If it is `Ok(pat)`, then the pattern `pat` is supplied to |
| /// `assert_matches!` to validate the computed result for each |
| /// combination of input values. |
| /// - If it is `Err(msg)`, then `test!` validates that the call to |
| /// `validate_cast_and_convert_metadata` panics with the given panic |
| /// message. |
| /// |
| /// Note that the meta-variables that match these variables have the |
| /// `tt` type, and some valid expressions are not valid `tt`s (such as |
| /// `a..b`). In this case, wrap the expression in parentheses, and it |
| /// will become valid `tt`. |
| macro_rules! test { |
| ($(:$sizes:expr =>)? |
| layout($size:tt, $align:tt) |
| .validate($addr:tt, $bytes_len:tt, $cast_type:tt), $expect:pat $(,)? |
| ) => { |
| itertools::iproduct!( |
| test!(@generate_size $size), |
| test!(@generate_align $align), |
| test!(@generate_usize $addr), |
| test!(@generate_usize $bytes_len), |
| test!(@generate_cast_type $cast_type) |
| ).for_each(|(size_info, align, addr, bytes_len, cast_type)| { |
| // Temporarily disable the panic hook installed by the test |
| // harness. If we don't do this, all panic messages will be |
| // kept in an internal log. On its own, this isn't a |
| // problem, but if a non-caught panic ever happens (ie, in |
| // code later in this test not in this macro), all of the |
| // previously-buffered messages will be dumped, hiding the |
| // real culprit. |
| let previous_hook = std::panic::take_hook(); |
| // I don't understand why, but this seems to be required in |
| // addition to the previous line. |
| std::panic::set_hook(Box::new(|_| {})); |
| let actual = std::panic::catch_unwind(|| { |
| layout(size_info, align).validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| }).map_err(|d| { |
| *d.downcast::<&'static str>().expect("expected string panic message").as_ref() |
| }); |
| std::panic::set_hook(previous_hook); |
| |
| assert_matches::assert_matches!( |
| actual, $expect, |
| "layout({size_info:?}, {align}).validate_cast_and_convert_metadata({addr}, {bytes_len}, {cast_type:?})", |
| ); |
| }); |
| }; |
| (@generate_usize _) => { 0..8 }; |
| // Generate sizes for both Sized and !Sized types. |
| (@generate_size _) => { |
| test!(@generate_size (_)).chain(test!(@generate_size (_, _))) |
| }; |
| // Generate sizes for both Sized and !Sized types by chaining |
| // specified iterators for each. |
| (@generate_size ($sized_sizes:tt | $unsized_sizes:tt)) => { |
| test!(@generate_size ($sized_sizes)).chain(test!(@generate_size $unsized_sizes)) |
| }; |
| // Generate sizes for Sized types. |
| (@generate_size (_)) => { test!(@generate_size (0..8)) }; |
| (@generate_size ($sizes:expr)) => { $sizes.into_iter().map(Into::<SizeInfo>::into) }; |
| // Generate sizes for !Sized types. |
| (@generate_size ($min_sizes:tt, $elem_sizes:tt)) => { |
| itertools::iproduct!( |
| test!(@generate_min_size $min_sizes), |
| test!(@generate_elem_size $elem_sizes) |
| ).map(Into::<SizeInfo>::into) |
| }; |
| (@generate_fixed_size _) => { (0..8).into_iter().map(Into::<SizeInfo>::into) }; |
| (@generate_min_size _) => { 0..8 }; |
| (@generate_elem_size _) => { 1..8 }; |
| (@generate_align _) => { [1, 2, 4, 8, 16] }; |
| (@generate_opt_usize _) => { [None].into_iter().chain((0..8).map(Some).into_iter()) }; |
| (@generate_cast_type _) => { [_CastType::_Prefix, _CastType::_Suffix] }; |
| (@generate_cast_type $variant:ident) => { [_CastType::$variant] }; |
| // Some expressions need to be wrapped in parentheses in order to be |
| // valid `tt`s (required by the top match pattern). See the comment |
| // below for more details. This arm removes these parentheses to |
| // avoid generating an `unused_parens` warning. |
| (@$_:ident ($vals:expr)) => { $vals }; |
| (@$_:ident $vals:expr) => { $vals }; |
| } |
| |
| const EVENS: [usize; 8] = [0, 2, 4, 6, 8, 10, 12, 14]; |
| const ODDS: [usize; 8] = [1, 3, 5, 7, 9, 11, 13, 15]; |
| |
| // base_size is too big for the memory region. |
| test!(layout(((1..8) | ((1..8), (1..8))), _).validate(_, [0], _), Ok(None)); |
| test!(layout(((2..8) | ((2..8), (2..8))), _).validate(_, [1], _), Ok(None)); |
| |
| // addr is unaligned for prefix cast |
| test!(layout(_, [2]).validate(ODDS, _, _Prefix), Ok(None)); |
| test!(layout(_, [2]).validate(ODDS, _, _Prefix), Ok(None)); |
| |
| // addr is aligned, but end of buffer is unaligned for suffix cast |
| test!(layout(_, [2]).validate(EVENS, ODDS, _Suffix), Ok(None)); |
| test!(layout(_, [2]).validate(EVENS, ODDS, _Suffix), Ok(None)); |
| |
| // Unfortunately, these constants cannot easily be used in the |
| // implementation of `validate_cast_and_convert_metadata`, since |
| // `panic!` consumes a string literal, not an expression. |
| // |
| // It's important that these messages be in a separate module. If they |
| // were at the function's top level, we'd pass them to `test!` as, e.g., |
| // `Err(TRAILING)`, which would run into a subtle Rust footgun - the |
| // `TRAILING` identifier would be treated as a pattern to match rather |
| // than a value to check for equality. |
| mod msgs { |
| pub(super) const TRAILING: &str = |
| "attempted to cast to slice type with zero-sized element"; |
| pub(super) const OVERFLOW: &str = "`addr` + `bytes_len` > usize::MAX"; |
| } |
| |
| // casts with ZST trailing element types are unsupported |
| test!(layout((_, [0]), _).validate(_, _, _), Err(msgs::TRAILING),); |
| |
| // addr + bytes_len must not overflow usize |
| test!(layout(_, _).validate([usize::MAX], (1..100), _), Err(msgs::OVERFLOW)); |
| test!(layout(_, _).validate((1..100), [usize::MAX], _), Err(msgs::OVERFLOW)); |
| test!( |
| layout(_, _).validate( |
| [usize::MAX / 2 + 1, usize::MAX], |
| [usize::MAX / 2 + 1, usize::MAX], |
| _ |
| ), |
| Err(msgs::OVERFLOW) |
| ); |
| |
| // Validates that `validate_cast_and_convert_metadata` satisfies its own |
| // documented safety postconditions, and also a few other properties |
| // that aren't documented but we want to guarantee anyway. |
| fn validate_behavior( |
| (layout, addr, bytes_len, cast_type): (DstLayout, usize, usize, _CastType), |
| ) { |
| if let Some((elems, split_at)) = |
| layout.validate_cast_and_convert_metadata(addr, bytes_len, cast_type) |
| { |
| let (size_info, align) = (layout.size_info, layout.align); |
| let debug_str = format!( |
| "layout({size_info:?}, {align}).validate_cast_and_convert_metadata({addr}, {bytes_len}, {cast_type:?}) => ({elems}, {split_at})", |
| ); |
| |
| // If this is a sized type (no trailing slice), then `elems` is |
| // meaningless, but in practice we set it to 0. Callers are not |
| // allowed to rely on this, but a lot of math is nicer if |
| // they're able to, and some callers might accidentally do that. |
| let sized = matches!(layout.size_info, SizeInfo::Sized { .. }); |
| assert!(!(sized && elems != 0), "{}", debug_str); |
| |
| let resulting_size = match layout.size_info { |
| SizeInfo::Sized { _size } => _size, |
| SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: offset, |
| _elem_size: elem_size, |
| }) => { |
| let padded_size = |elems| { |
| let without_padding = offset + elems * elem_size; |
| without_padding |
| + util::core_layout::padding_needed_for(without_padding, align) |
| }; |
| |
| let resulting_size = padded_size(elems); |
| // Test that `validate_cast_and_convert_metadata` |
| // computed the largest possible value that fits in the |
| // given range. |
| assert!(padded_size(elems + 1) > bytes_len, "{}", debug_str); |
| resulting_size |
| } |
| }; |
| |
| // Test safety postconditions guaranteed by |
| // `validate_cast_and_convert_metadata`. |
| assert!(resulting_size <= bytes_len, "{}", debug_str); |
| match cast_type { |
| _CastType::_Prefix => { |
| assert_eq!(addr % align, 0, "{}", debug_str); |
| assert_eq!(resulting_size, split_at, "{}", debug_str); |
| } |
| _CastType::_Suffix => { |
| assert_eq!(split_at, bytes_len - resulting_size, "{}", debug_str); |
| assert_eq!((addr + split_at) % align, 0, "{}", debug_str); |
| } |
| } |
| } else { |
| let min_size = match layout.size_info { |
| SizeInfo::Sized { _size } => _size, |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset, .. }) => { |
| _offset + util::core_layout::padding_needed_for(_offset, layout.align) |
| } |
| }; |
| |
| // If a cast is invalid, it is either because... |
| // 1. there are insufficent bytes at the given region for type: |
| let insufficient_bytes = bytes_len < min_size; |
| // 2. performing the cast would misalign type: |
| let base = match cast_type { |
| _CastType::_Prefix => 0, |
| _CastType::_Suffix => bytes_len, |
| }; |
| let misaligned = (base + addr) % layout.align != 0; |
| |
| assert!(insufficient_bytes || misaligned); |
| } |
| } |
| |
| let sizes = 0..8; |
| let elem_sizes = 1..8; |
| let size_infos = sizes |
| .clone() |
| .map(Into::<SizeInfo>::into) |
| .chain(itertools::iproduct!(sizes, elem_sizes).map(Into::<SizeInfo>::into)); |
| let layouts = itertools::iproduct!(size_infos, [1, 2, 4, 8, 16, 32]) |
| .filter(|(size_info, align)| !matches!(size_info, SizeInfo::Sized { _size } if _size % align != 0)) |
| .map(|(size_info, align)| layout(size_info, align)); |
| itertools::iproduct!(layouts, 0..8, 0..8, [_CastType::_Prefix, _CastType::_Suffix]) |
| .for_each(validate_behavior); |
| } |
| |
| #[test] |
| #[cfg(__INTERNAL_USE_ONLY_NIGHLTY_FEATURES_IN_TESTS)] |
| fn test_validate_rust_layout() { |
| use core::ptr::NonNull; |
| |
| // This test synthesizes pointers with various metadata and uses Rust's |
| // built-in APIs to confirm that Rust makes decisions about type layout |
| // which are consistent with what we believe is guaranteed by the |
| // language. If this test fails, it doesn't just mean our code is wrong |
| // - it means we're misunderstanding the language's guarantees. |
| |
| #[derive(Debug)] |
| struct MacroArgs { |
| offset: usize, |
| align: NonZeroUsize, |
| elem_size: Option<usize>, |
| } |
| |
| /// # Safety |
| /// |
| /// `test` promises to only call `addr_of_slice_field` on a `NonNull<T>` |
| /// which points to a valid `T`. |
| /// |
| /// `with_elems` must produce a pointer which points to a valid `T`. |
| fn test<T: ?Sized, W: Fn(usize) -> NonNull<T>>( |
| args: MacroArgs, |
| with_elems: W, |
| addr_of_slice_field: Option<fn(NonNull<T>) -> NonNull<u8>>, |
| ) { |
| let dst = args.elem_size.is_some(); |
| let layout = { |
| let size_info = match args.elem_size { |
| Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: args.offset, |
| _elem_size: elem_size, |
| }), |
| None => SizeInfo::Sized { |
| // Rust only supports types whose sizes are a multiple |
| // of their alignment. If the macro created a type like |
| // this: |
| // |
| // #[repr(C, align(2))] |
| // struct Foo([u8; 1]); |
| // |
| // ...then Rust will automatically round the type's size |
| // up to 2. |
| _size: args.offset |
| + util::core_layout::padding_needed_for(args.offset, args.align), |
| }, |
| }; |
| DstLayout { size_info, align: args.align } |
| }; |
| |
| for elems in 0..128 { |
| let ptr = with_elems(elems); |
| |
| if let Some(addr_of_slice_field) = addr_of_slice_field { |
| let slc_field_ptr = addr_of_slice_field(ptr).as_ptr(); |
| // SAFETY: Both `slc_field_ptr` and `ptr` are pointers to |
| // the same valid Rust object. |
| let offset: usize = |
| unsafe { slc_field_ptr.byte_offset_from(ptr.as_ptr()).try_into().unwrap() }; |
| assert_eq!(offset, args.offset); |
| } |
| |
| // SAFETY: `ptr` points to a valid `T`. |
| let (size, align) = unsafe { |
| (mem::size_of_val_raw(ptr.as_ptr()), mem::align_of_val_raw(ptr.as_ptr())) |
| }; |
| |
| // Avoid expensive allocation when running under Miri. |
| let assert_msg = if !cfg!(miri) { |
| format!("\n{args:?}\nsize:{size}, align:{align}") |
| } else { |
| String::new() |
| }; |
| |
| let without_padding = |
| args.offset + args.elem_size.map(|elem_size| elems * elem_size).unwrap_or(0); |
| assert!(size >= without_padding, "{}", assert_msg); |
| assert_eq!(align, args.align.get(), "{}", assert_msg); |
| |
| // This encodes the most important part of the test: our |
| // understanding of how Rust determines the layout of repr(C) |
| // types. Sized repr(C) types are trivial, but DST types have |
| // some subtlety. Note that: |
| // - For sized types, `without_padding` is just the size of the |
| // type that we constructed for `Foo`. Since we may have |
| // requested a larger alignment, `Foo` may actually be larger |
| // than this, hence `padding_needed_for`. |
| // - For unsized types, `without_padding` is dynamically |
| // computed from the offset, the element size, and element |
| // count. We expect that the size of the object should be |
| // `offset + elem_size * elems` rounded up to the next |
| // alignment. |
| let expected_size = without_padding |
| + util::core_layout::padding_needed_for(without_padding, args.align); |
| assert_eq!(expected_size, size, "{}", assert_msg); |
| |
| // For zero-sized element types, |
| // `validate_cast_and_convert_metadata` just panics, so we skip |
| // testing those types. |
| if args.elem_size.map(|elem_size| elem_size > 0).unwrap_or(true) { |
| let addr = ptr.addr().get(); |
| let (got_elems, got_split_at) = layout |
| .validate_cast_and_convert_metadata(addr, size, _CastType::_Prefix) |
| .unwrap(); |
| // Avoid expensive allocation when running under Miri. |
| let assert_msg = if !cfg!(miri) { |
| format!( |
| "{}\nvalidate_cast_and_convert_metadata({addr}, {size})", |
| assert_msg |
| ) |
| } else { |
| String::new() |
| }; |
| assert_eq!(got_split_at, size, "{}", assert_msg); |
| if dst { |
| assert!(got_elems >= elems, "{}", assert_msg); |
| if got_elems != elems { |
| // If `validate_cast_and_convert_metadata` |
| // returned more elements than `elems`, that |
| // means that `elems` is not the maximum number |
| // of elements that can fit in `size` - in other |
| // words, there is enough padding at the end of |
| // the value to fit at least one more element. |
| // If we use this metadata to synthesize a |
| // pointer, despite having a different element |
| // count, we still expect it to have the same |
| // size. |
| let got_ptr = with_elems(got_elems); |
| // SAFETY: `got_ptr` is a pointer to a valid `T`. |
| let size_of_got_ptr = unsafe { mem::size_of_val_raw(got_ptr.as_ptr()) }; |
| assert_eq!(size_of_got_ptr, size, "{}", assert_msg); |
| } |
| } else { |
| // For sized casts, the returned element value is |
| // technically meaningless, and we don't guarantee any |
| // particular value. In practice, it's always zero. |
| assert_eq!(got_elems, 0, "{}", assert_msg) |
| } |
| } |
| } |
| } |
| |
| macro_rules! validate_against_rust { |
| ($offset:literal, $align:literal $(, $elem_size:literal)?) => {{ |
| #[repr(C, align($align))] |
| struct Foo([u8; $offset]$(, [[u8; $elem_size]])?); |
| |
| let args = MacroArgs { |
| offset: $offset, |
| align: $align.try_into().unwrap(), |
| elem_size: { |
| #[allow(unused)] |
| let ret = None::<usize>; |
| $(let ret = Some($elem_size);)? |
| ret |
| } |
| }; |
| |
| #[repr(C, align($align))] |
| struct FooAlign; |
| // Create an aligned buffer to use in order to synthesize |
| // pointers to `Foo`. We don't ever load values from these |
| // pointers - we just do arithmetic on them - so having a "real" |
| // block of memory as opposed to a validly-aligned-but-dangling |
| // pointer is only necessary to make Miri happy since we run it |
| // with "strict provenance" checking enabled. |
| let aligned_buf = Align::<_, FooAlign>::new([0u8; 1024]); |
| let with_elems = |elems| { |
| let slc = NonNull::slice_from_raw_parts(NonNull::from(&aligned_buf.t), elems); |
| #[allow(clippy::as_conversions)] |
| NonNull::new(slc.as_ptr() as *mut Foo).unwrap() |
| }; |
| let addr_of_slice_field = { |
| #[allow(unused)] |
| let f = None::<fn(NonNull<Foo>) -> NonNull<u8>>; |
| $( |
| // SAFETY: `test` promises to only call `f` with a `ptr` |
| // to a valid `Foo`. |
| let f: Option<fn(NonNull<Foo>) -> NonNull<u8>> = Some(|ptr: NonNull<Foo>| unsafe { |
| NonNull::new(ptr::addr_of_mut!((*ptr.as_ptr()).1)).unwrap().cast::<u8>() |
| }); |
| let _ = $elem_size; |
| )? |
| f |
| }; |
| |
| test::<Foo, _>(args, with_elems, addr_of_slice_field); |
| }}; |
| } |
| |
| // Every permutation of: |
| // - offset in [0, 4] |
| // - align in [1, 16] |
| // - elem_size in [0, 4] (plus no elem_size) |
| validate_against_rust!(0, 1); |
| validate_against_rust!(0, 1, 0); |
| validate_against_rust!(0, 1, 1); |
| validate_against_rust!(0, 1, 2); |
| validate_against_rust!(0, 1, 3); |
| validate_against_rust!(0, 1, 4); |
| validate_against_rust!(0, 2); |
| validate_against_rust!(0, 2, 0); |
| validate_against_rust!(0, 2, 1); |
| validate_against_rust!(0, 2, 2); |
| validate_against_rust!(0, 2, 3); |
| validate_against_rust!(0, 2, 4); |
| validate_against_rust!(0, 4); |
| validate_against_rust!(0, 4, 0); |
| validate_against_rust!(0, 4, 1); |
| validate_against_rust!(0, 4, 2); |
| validate_against_rust!(0, 4, 3); |
| validate_against_rust!(0, 4, 4); |
| validate_against_rust!(0, 8); |
| validate_against_rust!(0, 8, 0); |
| validate_against_rust!(0, 8, 1); |
| validate_against_rust!(0, 8, 2); |
| validate_against_rust!(0, 8, 3); |
| validate_against_rust!(0, 8, 4); |
| validate_against_rust!(0, 16); |
| validate_against_rust!(0, 16, 0); |
| validate_against_rust!(0, 16, 1); |
| validate_against_rust!(0, 16, 2); |
| validate_against_rust!(0, 16, 3); |
| validate_against_rust!(0, 16, 4); |
| validate_against_rust!(1, 1); |
| validate_against_rust!(1, 1, 0); |
| validate_against_rust!(1, 1, 1); |
| validate_against_rust!(1, 1, 2); |
| validate_against_rust!(1, 1, 3); |
| validate_against_rust!(1, 1, 4); |
| validate_against_rust!(1, 2); |
| validate_against_rust!(1, 2, 0); |
| validate_against_rust!(1, 2, 1); |
| validate_against_rust!(1, 2, 2); |
| validate_against_rust!(1, 2, 3); |
| validate_against_rust!(1, 2, 4); |
| validate_against_rust!(1, 4); |
| validate_against_rust!(1, 4, 0); |
| validate_against_rust!(1, 4, 1); |
| validate_against_rust!(1, 4, 2); |
| validate_against_rust!(1, 4, 3); |
| validate_against_rust!(1, 4, 4); |
| validate_against_rust!(1, 8); |
| validate_against_rust!(1, 8, 0); |
| validate_against_rust!(1, 8, 1); |
| validate_against_rust!(1, 8, 2); |
| validate_against_rust!(1, 8, 3); |
| validate_against_rust!(1, 8, 4); |
| validate_against_rust!(1, 16); |
| validate_against_rust!(1, 16, 0); |
| validate_against_rust!(1, 16, 1); |
| validate_against_rust!(1, 16, 2); |
| validate_against_rust!(1, 16, 3); |
| validate_against_rust!(1, 16, 4); |
| validate_against_rust!(2, 1); |
| validate_against_rust!(2, 1, 0); |
| validate_against_rust!(2, 1, 1); |
| validate_against_rust!(2, 1, 2); |
| validate_against_rust!(2, 1, 3); |
| validate_against_rust!(2, 1, 4); |
| validate_against_rust!(2, 2); |
| validate_against_rust!(2, 2, 0); |
| validate_against_rust!(2, 2, 1); |
| validate_against_rust!(2, 2, 2); |
| validate_against_rust!(2, 2, 3); |
| validate_against_rust!(2, 2, 4); |
| validate_against_rust!(2, 4); |
| validate_against_rust!(2, 4, 0); |
| validate_against_rust!(2, 4, 1); |
| validate_against_rust!(2, 4, 2); |
| validate_against_rust!(2, 4, 3); |
| validate_against_rust!(2, 4, 4); |
| validate_against_rust!(2, 8); |
| validate_against_rust!(2, 8, 0); |
| validate_against_rust!(2, 8, 1); |
| validate_against_rust!(2, 8, 2); |
| validate_against_rust!(2, 8, 3); |
| validate_against_rust!(2, 8, 4); |
| validate_against_rust!(2, 16); |
| validate_against_rust!(2, 16, 0); |
| validate_against_rust!(2, 16, 1); |
| validate_against_rust!(2, 16, 2); |
| validate_against_rust!(2, 16, 3); |
| validate_against_rust!(2, 16, 4); |
| validate_against_rust!(3, 1); |
| validate_against_rust!(3, 1, 0); |
| validate_against_rust!(3, 1, 1); |
| validate_against_rust!(3, 1, 2); |
| validate_against_rust!(3, 1, 3); |
| validate_against_rust!(3, 1, 4); |
| validate_against_rust!(3, 2); |
| validate_against_rust!(3, 2, 0); |
| validate_against_rust!(3, 2, 1); |
| validate_against_rust!(3, 2, 2); |
| validate_against_rust!(3, 2, 3); |
| validate_against_rust!(3, 2, 4); |
| validate_against_rust!(3, 4); |
| validate_against_rust!(3, 4, 0); |
| validate_against_rust!(3, 4, 1); |
| validate_against_rust!(3, 4, 2); |
| validate_against_rust!(3, 4, 3); |
| validate_against_rust!(3, 4, 4); |
| validate_against_rust!(3, 8); |
| validate_against_rust!(3, 8, 0); |
| validate_against_rust!(3, 8, 1); |
| validate_against_rust!(3, 8, 2); |
| validate_against_rust!(3, 8, 3); |
| validate_against_rust!(3, 8, 4); |
| validate_against_rust!(3, 16); |
| validate_against_rust!(3, 16, 0); |
| validate_against_rust!(3, 16, 1); |
| validate_against_rust!(3, 16, 2); |
| validate_against_rust!(3, 16, 3); |
| validate_against_rust!(3, 16, 4); |
| validate_against_rust!(4, 1); |
| validate_against_rust!(4, 1, 0); |
| validate_against_rust!(4, 1, 1); |
| validate_against_rust!(4, 1, 2); |
| validate_against_rust!(4, 1, 3); |
| validate_against_rust!(4, 1, 4); |
| validate_against_rust!(4, 2); |
| validate_against_rust!(4, 2, 0); |
| validate_against_rust!(4, 2, 1); |
| validate_against_rust!(4, 2, 2); |
| validate_against_rust!(4, 2, 3); |
| validate_against_rust!(4, 2, 4); |
| validate_against_rust!(4, 4); |
| validate_against_rust!(4, 4, 0); |
| validate_against_rust!(4, 4, 1); |
| validate_against_rust!(4, 4, 2); |
| validate_against_rust!(4, 4, 3); |
| validate_against_rust!(4, 4, 4); |
| validate_against_rust!(4, 8); |
| validate_against_rust!(4, 8, 0); |
| validate_against_rust!(4, 8, 1); |
| validate_against_rust!(4, 8, 2); |
| validate_against_rust!(4, 8, 3); |
| validate_against_rust!(4, 8, 4); |
| validate_against_rust!(4, 16); |
| validate_against_rust!(4, 16, 0); |
| validate_against_rust!(4, 16, 1); |
| validate_against_rust!(4, 16, 2); |
| validate_against_rust!(4, 16, 3); |
| validate_against_rust!(4, 16, 4); |
| } |
| |
| #[test] |
| fn test_known_layout() { |
| // Test that `$ty` and `ManuallyDrop<$ty>` have the expected layout. |
| // Test that `PhantomData<$ty>` has the same layout as `()` regardless |
| // of `$ty`. |
| macro_rules! test { |
| ($ty:ty, $expect:expr) => { |
| let expect = $expect; |
| assert_eq!(<$ty as KnownLayout>::LAYOUT, expect); |
| assert_eq!(<ManuallyDrop<$ty> as KnownLayout>::LAYOUT, expect); |
| assert_eq!(<PhantomData<$ty> as KnownLayout>::LAYOUT, <() as KnownLayout>::LAYOUT); |
| }; |
| } |
| |
| let layout = |offset, align, _trailing_slice_elem_size| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: match _trailing_slice_elem_size { |
| None => SizeInfo::Sized { _size: offset }, |
| Some(elem_size) => SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: offset, |
| _elem_size: elem_size, |
| }), |
| }, |
| }; |
| |
| test!((), layout(0, 1, None)); |
| test!(u8, layout(1, 1, None)); |
| // Use `align_of` because `u64` alignment may be smaller than 8 on some |
| // platforms. |
| test!(u64, layout(8, mem::align_of::<u64>(), None)); |
| test!(AU64, layout(8, 8, None)); |
| |
| test!(Option<&'static ()>, usize::LAYOUT); |
| |
| test!([()], layout(0, 1, Some(0))); |
| test!([u8], layout(0, 1, Some(1))); |
| test!(str, layout(0, 1, Some(1))); |
| } |
| |
| #[cfg(feature = "derive")] |
| #[test] |
| fn test_known_layout_derive() { |
| // In this and other files (`late_compile_pass.rs`, |
| // `mid_compile_pass.rs`, and `struct.rs`), we test success and failure |
| // modes of `derive(KnownLayout)` for the following combination of |
| // properties: |
| // |
| // +------------+--------------------------------------+-----------+ |
| // | | trailing field properties | | |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // |------------+----------+----------------+----------+-----------| |
| // | N | N | N | N | KL00 | |
| // | N | N | N | Y | KL01 | |
| // | N | N | Y | N | KL02 | |
| // | N | N | Y | Y | KL03 | |
| // | N | Y | N | N | KL04 | |
| // | N | Y | N | Y | KL05 | |
| // | N | Y | Y | N | KL06 | |
| // | N | Y | Y | Y | KL07 | |
| // | Y | N | N | N | KL08 | |
| // | Y | N | N | Y | KL09 | |
| // | Y | N | Y | N | KL10 | |
| // | Y | N | Y | Y | KL11 | |
| // | Y | Y | N | N | KL12 | |
| // | Y | Y | N | Y | KL13 | |
| // | Y | Y | Y | N | KL14 | |
| // | Y | Y | Y | Y | KL15 | |
| // +------------+----------+----------------+----------+-----------+ |
| |
| struct NotKnownLayout<T = ()> { |
| _t: T, |
| } |
| |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct AlignSize<const ALIGN: usize, const SIZE: usize> |
| where |
| elain::Align<ALIGN>: elain::Alignment, |
| { |
| _align: elain::Align<ALIGN>, |
| _size: [u8; SIZE], |
| } |
| |
| type AU16 = AlignSize<2, 2>; |
| type AU32 = AlignSize<4, 4>; |
| |
| fn _assert_kl<T: ?Sized + KnownLayout>(_: &T) {} |
| |
| let sized_layout = |align, size| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: SizeInfo::Sized { _size: size }, |
| }; |
| |
| let unsized_layout = |align, elem_size, offset| DstLayout { |
| align: NonZeroUsize::new(align).unwrap(), |
| size_info: SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: offset, |
| _elem_size: elem_size, |
| }), |
| }; |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | N | N | N | Y | KL01 | |
| #[derive(KnownLayout)] |
| struct KL01(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| |
| let expected = DstLayout::for_type::<KL01>(); |
| |
| assert_eq!(<KL01 as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL01 as KnownLayout>::LAYOUT, sized_layout(4, 8)); |
| |
| // ...with `align(N)`: |
| #[derive(KnownLayout)] |
| #[repr(align(64))] |
| struct KL01Align(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| |
| let expected = DstLayout::for_type::<KL01Align>(); |
| |
| assert_eq!(<KL01Align as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL01Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
| |
| // ...with `packed`: |
| #[derive(KnownLayout)] |
| #[repr(packed)] |
| struct KL01Packed(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| |
| let expected = DstLayout::for_type::<KL01Packed>(); |
| |
| assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL01Packed as KnownLayout>::LAYOUT, sized_layout(1, 6)); |
| |
| // ...with `packed(N)`: |
| #[derive(KnownLayout)] |
| #[repr(packed(2))] |
| struct KL01PackedN(NotKnownLayout<AU32>, NotKnownLayout<AU16>); |
| |
| assert_impl_all!(KL01PackedN: KnownLayout); |
| |
| let expected = DstLayout::for_type::<KL01PackedN>(); |
| |
| assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL01PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | N | N | Y | Y | KL03 | |
| #[derive(KnownLayout)] |
| struct KL03(NotKnownLayout, u8); |
| |
| let expected = DstLayout::for_type::<KL03>(); |
| |
| assert_eq!(<KL03 as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL03 as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
| |
| // ... with `align(N)` |
| #[derive(KnownLayout)] |
| #[repr(align(64))] |
| struct KL03Align(NotKnownLayout<AU32>, u8); |
| |
| let expected = DstLayout::for_type::<KL03Align>(); |
| |
| assert_eq!(<KL03Align as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL03Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
| |
| // ... with `packed`: |
| #[derive(KnownLayout)] |
| #[repr(packed)] |
| struct KL03Packed(NotKnownLayout<AU32>, u8); |
| |
| let expected = DstLayout::for_type::<KL03Packed>(); |
| |
| assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL03Packed as KnownLayout>::LAYOUT, sized_layout(1, 5)); |
| |
| // ... with `packed(N)` |
| #[derive(KnownLayout)] |
| #[repr(packed(2))] |
| struct KL03PackedN(NotKnownLayout<AU32>, u8); |
| |
| assert_impl_all!(KL03PackedN: KnownLayout); |
| |
| let expected = DstLayout::for_type::<KL03PackedN>(); |
| |
| assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL03PackedN as KnownLayout>::LAYOUT, sized_layout(2, 6)); |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | N | Y | N | Y | KL05 | |
| #[derive(KnownLayout)] |
| struct KL05<T>(u8, T); |
| |
| fn _test_kl05<T>(t: T) -> impl KnownLayout { |
| KL05(0u8, t) |
| } |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | N | Y | Y | Y | KL07 | |
| #[derive(KnownLayout)] |
| struct KL07<T: KnownLayout>(u8, T); |
| |
| fn _test_kl07<T: KnownLayout>(t: T) -> impl KnownLayout { |
| let _ = KL07(0u8, t); |
| } |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | Y | N | Y | N | KL10 | |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KL10(NotKnownLayout<AU32>, [u8]); |
| |
| let expected = DstLayout::new_zst(None) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
| .extend(<[u8] as KnownLayout>::LAYOUT, None) |
| .pad_to_align(); |
| |
| assert_eq!(<KL10 as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL10 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 4)); |
| |
| // ...with `align(N)`: |
| #[derive(KnownLayout)] |
| #[repr(C, align(64))] |
| struct KL10Align(NotKnownLayout<AU32>, [u8]); |
| |
| let repr_align = NonZeroUsize::new(64); |
| |
| let expected = DstLayout::new_zst(repr_align) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), None) |
| .extend(<[u8] as KnownLayout>::LAYOUT, None) |
| .pad_to_align(); |
| |
| assert_eq!(<KL10Align as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL10Align as KnownLayout>::LAYOUT, unsized_layout(64, 1, 4)); |
| |
| // ...with `packed`: |
| #[derive(KnownLayout)] |
| #[repr(C, packed)] |
| struct KL10Packed(NotKnownLayout<AU32>, [u8]); |
| |
| let repr_packed = NonZeroUsize::new(1); |
| |
| let expected = DstLayout::new_zst(None) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
| .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
| .pad_to_align(); |
| |
| assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL10Packed as KnownLayout>::LAYOUT, unsized_layout(1, 1, 4)); |
| |
| // ...with `packed(N)`: |
| #[derive(KnownLayout)] |
| #[repr(C, packed(2))] |
| struct KL10PackedN(NotKnownLayout<AU32>, [u8]); |
| |
| let repr_packed = NonZeroUsize::new(2); |
| |
| let expected = DstLayout::new_zst(None) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU32>>(), repr_packed) |
| .extend(<[u8] as KnownLayout>::LAYOUT, repr_packed) |
| .pad_to_align(); |
| |
| assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL10PackedN as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | Y | N | Y | Y | KL11 | |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KL11(NotKnownLayout<AU64>, u8); |
| |
| let expected = DstLayout::new_zst(None) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
| .extend(<u8 as KnownLayout>::LAYOUT, None) |
| .pad_to_align(); |
| |
| assert_eq!(<KL11 as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL11 as KnownLayout>::LAYOUT, sized_layout(8, 16)); |
| |
| // ...with `align(N)`: |
| #[derive(KnownLayout)] |
| #[repr(C, align(64))] |
| struct KL11Align(NotKnownLayout<AU64>, u8); |
| |
| let repr_align = NonZeroUsize::new(64); |
| |
| let expected = DstLayout::new_zst(repr_align) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), None) |
| .extend(<u8 as KnownLayout>::LAYOUT, None) |
| .pad_to_align(); |
| |
| assert_eq!(<KL11Align as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL11Align as KnownLayout>::LAYOUT, sized_layout(64, 64)); |
| |
| // ...with `packed`: |
| #[derive(KnownLayout)] |
| #[repr(C, packed)] |
| struct KL11Packed(NotKnownLayout<AU64>, u8); |
| |
| let repr_packed = NonZeroUsize::new(1); |
| |
| let expected = DstLayout::new_zst(None) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
| .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
| .pad_to_align(); |
| |
| assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL11Packed as KnownLayout>::LAYOUT, sized_layout(1, 9)); |
| |
| // ...with `packed(N)`: |
| #[derive(KnownLayout)] |
| #[repr(C, packed(2))] |
| struct KL11PackedN(NotKnownLayout<AU64>, u8); |
| |
| let repr_packed = NonZeroUsize::new(2); |
| |
| let expected = DstLayout::new_zst(None) |
| .extend(DstLayout::for_type::<NotKnownLayout<AU64>>(), repr_packed) |
| .extend(<u8 as KnownLayout>::LAYOUT, repr_packed) |
| .pad_to_align(); |
| |
| assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, expected); |
| assert_eq!(<KL11PackedN as KnownLayout>::LAYOUT, sized_layout(2, 10)); |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | Y | Y | Y | N | KL14 | |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KL14<T: ?Sized + KnownLayout>(u8, T); |
| |
| fn _test_kl14<T: ?Sized + KnownLayout>(kl: &KL14<T>) { |
| _assert_kl(kl) |
| } |
| |
| // | `repr(C)`? | generic? | `KnownLayout`? | `Sized`? | Type Name | |
| // | Y | Y | Y | Y | KL15 | |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KL15<T: KnownLayout>(u8, T); |
| |
| fn _test_kl15<T: KnownLayout>(t: T) -> impl KnownLayout { |
| let _ = KL15(0u8, t); |
| } |
| |
| // Test a variety of combinations of field types: |
| // - () |
| // - u8 |
| // - AU16 |
| // - [()] |
| // - [u8] |
| // - [AU16] |
| |
| #[allow(clippy::upper_case_acronyms)] |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KLTU<T, U: ?Sized>(T, U); |
| |
| assert_eq!(<KLTU<(), ()> as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
| |
| assert_eq!(<KLTU<(), u8> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
| |
| assert_eq!(<KLTU<(), AU16> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
| |
| assert_eq!(<KLTU<(), [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 0)); |
| |
| assert_eq!(<KLTU<(), [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
| |
| assert_eq!(<KLTU<(), [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 0)); |
| |
| assert_eq!(<KLTU<u8, ()> as KnownLayout>::LAYOUT, sized_layout(1, 1)); |
| |
| assert_eq!(<KLTU<u8, u8> as KnownLayout>::LAYOUT, sized_layout(1, 2)); |
| |
| assert_eq!(<KLTU<u8, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
| |
| assert_eq!(<KLTU<u8, [()]> as KnownLayout>::LAYOUT, unsized_layout(1, 0, 1)); |
| |
| assert_eq!(<KLTU<u8, [u8]> as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
| |
| assert_eq!(<KLTU<u8, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
| |
| assert_eq!(<KLTU<AU16, ()> as KnownLayout>::LAYOUT, sized_layout(2, 2)); |
| |
| assert_eq!(<KLTU<AU16, u8> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
| |
| assert_eq!(<KLTU<AU16, AU16> as KnownLayout>::LAYOUT, sized_layout(2, 4)); |
| |
| assert_eq!(<KLTU<AU16, [()]> as KnownLayout>::LAYOUT, unsized_layout(2, 0, 2)); |
| |
| assert_eq!(<KLTU<AU16, [u8]> as KnownLayout>::LAYOUT, unsized_layout(2, 1, 2)); |
| |
| assert_eq!(<KLTU<AU16, [AU16]> as KnownLayout>::LAYOUT, unsized_layout(2, 2, 2)); |
| |
| // Test a variety of field counts. |
| |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KLF0; |
| |
| assert_eq!(<KLF0 as KnownLayout>::LAYOUT, sized_layout(1, 0)); |
| |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KLF1([u8]); |
| |
| assert_eq!(<KLF1 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 0)); |
| |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KLF2(NotKnownLayout<u8>, [u8]); |
| |
| assert_eq!(<KLF2 as KnownLayout>::LAYOUT, unsized_layout(1, 1, 1)); |
| |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KLF3(NotKnownLayout<u8>, NotKnownLayout<AU16>, [u8]); |
| |
| assert_eq!(<KLF3 as KnownLayout>::LAYOUT, unsized_layout(2, 1, 4)); |
| |
| #[derive(KnownLayout)] |
| #[repr(C)] |
| struct KLF4(NotKnownLayout<u8>, NotKnownLayout<AU16>, NotKnownLayout<AU32>, [u8]); |
| |
| assert_eq!(<KLF4 as KnownLayout>::LAYOUT, unsized_layout(4, 1, 8)); |
| } |
| |
| #[test] |
| fn test_object_safety() { |
| fn _takes_from_zeroes(_: &dyn FromZeroes) {} |
| fn _takes_from_bytes(_: &dyn FromBytes) {} |
| fn _takes_unaligned(_: &dyn Unaligned) {} |
| } |
| |
| #[test] |
| fn test_from_zeroes_only() { |
| // Test types that implement `FromZeroes` but not `FromBytes`. |
| |
| assert!(!bool::new_zeroed()); |
| assert_eq!(char::new_zeroed(), '\0'); |
| |
| #[cfg(feature = "alloc")] |
| { |
| assert_eq!(bool::new_box_zeroed(), Box::new(false)); |
| assert_eq!(char::new_box_zeroed(), Box::new('\0')); |
| |
| assert_eq!(bool::new_box_slice_zeroed(3).as_ref(), [false, false, false]); |
| assert_eq!(char::new_box_slice_zeroed(3).as_ref(), ['\0', '\0', '\0']); |
| |
| assert_eq!(bool::new_vec_zeroed(3).as_ref(), [false, false, false]); |
| assert_eq!(char::new_vec_zeroed(3).as_ref(), ['\0', '\0', '\0']); |
| } |
| |
| let mut string = "hello".to_string(); |
| let s: &mut str = string.as_mut(); |
| assert_eq!(s, "hello"); |
| s.zero(); |
| assert_eq!(s, "\0\0\0\0\0"); |
| } |
| |
| #[test] |
| fn test_read_write() { |
| const VAL: u64 = 0x12345678; |
| #[cfg(target_endian = "big")] |
| const VAL_BYTES: [u8; 8] = VAL.to_be_bytes(); |
| #[cfg(target_endian = "little")] |
| const VAL_BYTES: [u8; 8] = VAL.to_le_bytes(); |
| |
| // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`. |
| |
| assert_eq!(u64::read_from(&VAL_BYTES[..]), Some(VAL)); |
| // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all |
| // zeroes. |
| let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
| assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Some(VAL)); |
| assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Some(0)); |
| // The first 8 bytes are all zeroes and the second 8 bytes are from |
| // `VAL_BYTES` |
| let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
| assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Some(0)); |
| assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Some(VAL)); |
| |
| // Test `AsBytes::{write_to, write_to_prefix, write_to_suffix}`. |
| |
| let mut bytes = [0u8; 8]; |
| assert_eq!(VAL.write_to(&mut bytes[..]), Some(())); |
| assert_eq!(bytes, VAL_BYTES); |
| let mut bytes = [0u8; 16]; |
| assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Some(())); |
| let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]); |
| assert_eq!(bytes, want); |
| let mut bytes = [0u8; 16]; |
| assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Some(())); |
| let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]); |
| assert_eq!(bytes, want); |
| } |
| |
| #[test] |
| fn test_transmute() { |
| // Test that memory is transmuted as expected. |
| let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| let x: [[u8; 2]; 4] = transmute!(array_of_u8s); |
| assert_eq!(x, array_of_arrays); |
| let x: [u8; 8] = transmute!(array_of_arrays); |
| assert_eq!(x, array_of_u8s); |
| |
| // Test that the source expression's value is forgotten rather than |
| // dropped. |
| #[derive(AsBytes)] |
| #[repr(transparent)] |
| struct PanicOnDrop(()); |
| impl Drop for PanicOnDrop { |
| fn drop(&mut self) { |
| panic!("PanicOnDrop::drop"); |
| } |
| } |
| #[allow(clippy::let_unit_value)] |
| let _: () = transmute!(PanicOnDrop(())); |
| |
| // Test that `transmute!` is legal in a const context. |
| const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| const X: [[u8; 2]; 4] = transmute!(ARRAY_OF_U8S); |
| assert_eq!(X, ARRAY_OF_ARRAYS); |
| } |
| |
| #[test] |
| fn test_transmute_ref() { |
| // Test that memory is transmuted as expected. |
| let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| let x: &[[u8; 2]; 4] = transmute_ref!(&array_of_u8s); |
| assert_eq!(*x, array_of_arrays); |
| let x: &[u8; 8] = transmute_ref!(&array_of_arrays); |
| assert_eq!(*x, array_of_u8s); |
| |
| // Test that `transmute_ref!` is legal in a const context. |
| const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| #[allow(clippy::redundant_static_lifetimes)] |
| const X: &'static [[u8; 2]; 4] = transmute_ref!(&ARRAY_OF_U8S); |
| assert_eq!(*X, ARRAY_OF_ARRAYS); |
| |
| // Test that it's legal to transmute a reference while shrinking the |
| // lifetime (note that `X` has the lifetime `'static`). |
| let x: &[u8; 8] = transmute_ref!(X); |
| assert_eq!(*x, ARRAY_OF_U8S); |
| |
| // Test that `transmute_ref!` supports decreasing alignment. |
| let u = AU64(0); |
| let array = [0, 0, 0, 0, 0, 0, 0, 0]; |
| let x: &[u8; 8] = transmute_ref!(&u); |
| assert_eq!(*x, array); |
| |
| // Test that a mutable reference can be turned into an immutable one. |
| let mut x = 0u8; |
| #[allow(clippy::useless_transmute)] |
| let y: &u8 = transmute_ref!(&mut x); |
| assert_eq!(*y, 0); |
| } |
| |
| #[test] |
| fn test_transmute_mut() { |
| // Test that memory is transmuted as expected. |
| let mut array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7]; |
| let mut array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]]; |
| let x: &mut [[u8; 2]; 4] = transmute_mut!(&mut array_of_u8s); |
| assert_eq!(*x, array_of_arrays); |
| let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays); |
| assert_eq!(*x, array_of_u8s); |
| |
| { |
| // Test that it's legal to transmute a reference while shrinking the |
| // lifetime. |
| let x: &mut [u8; 8] = transmute_mut!(&mut array_of_arrays); |
| assert_eq!(*x, array_of_u8s); |
| } |
| // Test that `transmute_mut!` supports decreasing alignment. |
| let mut u = AU64(0); |
| let array = [0, 0, 0, 0, 0, 0, 0, 0]; |
| let x: &[u8; 8] = transmute_mut!(&mut u); |
| assert_eq!(*x, array); |
| |
| // Test that a mutable reference can be turned into an immutable one. |
| let mut x = 0u8; |
| #[allow(clippy::useless_transmute)] |
| let y: &u8 = transmute_mut!(&mut x); |
| assert_eq!(*y, 0); |
| } |
| |
| #[test] |
| fn test_macros_evaluate_args_once() { |
| let mut ctr = 0; |
| let _: usize = transmute!({ |
| ctr += 1; |
| 0usize |
| }); |
| assert_eq!(ctr, 1); |
| |
| let mut ctr = 0; |
| let _: &usize = transmute_ref!({ |
| ctr += 1; |
| &0usize |
| }); |
| assert_eq!(ctr, 1); |
| } |
| |
| #[test] |
| fn test_include_value() { |
| const AS_U32: u32 = include_value!("../testdata/include_value/data"); |
| assert_eq!(AS_U32, u32::from_ne_bytes([b'a', b'b', b'c', b'd'])); |
| const AS_I32: i32 = include_value!("../testdata/include_value/data"); |
| assert_eq!(AS_I32, i32::from_ne_bytes([b'a', b'b', b'c', b'd'])); |
| } |
| |
| #[test] |
| fn test_address() { |
| // Test that the `Deref` and `DerefMut` implementations return a |
| // reference which points to the right region of memory. |
| |
| let buf = [0]; |
| let r = Ref::<_, u8>::new(&buf[..]).unwrap(); |
| let buf_ptr = buf.as_ptr(); |
| let deref_ptr: *const u8 = r.deref(); |
| assert_eq!(buf_ptr, deref_ptr); |
| |
| let buf = [0]; |
| let r = Ref::<_, [u8]>::new_slice(&buf[..]).unwrap(); |
| let buf_ptr = buf.as_ptr(); |
| let deref_ptr = r.deref().as_ptr(); |
| assert_eq!(buf_ptr, deref_ptr); |
| } |
| |
| // Verify that values written to a `Ref` are properly shared between the |
| // typed and untyped representations, that reads via `deref` and `read` |
| // behave the same, and that writes via `deref_mut` and `write` behave the |
| // same. |
| fn test_new_helper(mut r: Ref<&mut [u8], AU64>) { |
| // assert that the value starts at 0 |
| assert_eq!(*r, AU64(0)); |
| assert_eq!(r.read(), AU64(0)); |
| |
| // Assert that values written to the typed value are reflected in the |
| // byte slice. |
| const VAL1: AU64 = AU64(0xFF00FF00FF00FF00); |
| *r = VAL1; |
| assert_eq!(r.bytes(), &VAL1.to_bytes()); |
| *r = AU64(0); |
| r.write(VAL1); |
| assert_eq!(r.bytes(), &VAL1.to_bytes()); |
| |
| // Assert that values written to the byte slice are reflected in the |
| // typed value. |
| const VAL2: AU64 = AU64(!VAL1.0); // different from `VAL1` |
| r.bytes_mut().copy_from_slice(&VAL2.to_bytes()[..]); |
| assert_eq!(*r, VAL2); |
| assert_eq!(r.read(), VAL2); |
| } |
| |
| // Verify that values written to a `Ref` are properly shared between the |
| // typed and untyped representations; pass a value with `typed_len` `AU64`s |
| // backed by an array of `typed_len * 8` bytes. |
| fn test_new_helper_slice(mut r: Ref<&mut [u8], [AU64]>, typed_len: usize) { |
| // Assert that the value starts out zeroed. |
| assert_eq!(&*r, vec![AU64(0); typed_len].as_slice()); |
| |
| // Check the backing storage is the exact same slice. |
| let untyped_len = typed_len * 8; |
| assert_eq!(r.bytes().len(), untyped_len); |
| assert_eq!(r.bytes().as_ptr(), r.as_ptr().cast::<u8>()); |
| |
| // Assert that values written to the typed value are reflected in the |
| // byte slice. |
| const VAL1: AU64 = AU64(0xFF00FF00FF00FF00); |
| for typed in &mut *r { |
| *typed = VAL1; |
| } |
| assert_eq!(r.bytes(), VAL1.0.to_ne_bytes().repeat(typed_len).as_slice()); |
| |
| // Assert that values written to the byte slice are reflected in the |
| // typed value. |
| const VAL2: AU64 = AU64(!VAL1.0); // different from VAL1 |
| r.bytes_mut().copy_from_slice(&VAL2.0.to_ne_bytes().repeat(typed_len)); |
| assert!(r.iter().copied().all(|x| x == VAL2)); |
| } |
| |
| // Verify that values written to a `Ref` are properly shared between the |
| // typed and untyped representations, that reads via `deref` and `read` |
| // behave the same, and that writes via `deref_mut` and `write` behave the |
| // same. |
| fn test_new_helper_unaligned(mut r: Ref<&mut [u8], [u8; 8]>) { |
| // assert that the value starts at 0 |
| assert_eq!(*r, [0; 8]); |
| assert_eq!(r.read(), [0; 8]); |
| |
| // Assert that values written to the typed value are reflected in the |
| // byte slice. |
| const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00]; |
| *r = VAL1; |
| assert_eq!(r.bytes(), &VAL1); |
| *r = [0; 8]; |
| r.write(VAL1); |
| assert_eq!(r.bytes(), &VAL1); |
| |
| // Assert that values written to the byte slice are reflected in the |
| // typed value. |
| const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1 |
| r.bytes_mut().copy_from_slice(&VAL2[..]); |
| assert_eq!(*r, VAL2); |
| assert_eq!(r.read(), VAL2); |
| } |
| |
| // Verify that values written to a `Ref` are properly shared between the |
| // typed and untyped representations; pass a value with `len` `u8`s backed |
| // by an array of `len` bytes. |
| fn test_new_helper_slice_unaligned(mut r: Ref<&mut [u8], [u8]>, len: usize) { |
| // Assert that the value starts out zeroed. |
| assert_eq!(&*r, vec![0u8; len].as_slice()); |
| |
| // Check the backing storage is the exact same slice. |
| assert_eq!(r.bytes().len(), len); |
| assert_eq!(r.bytes().as_ptr(), r.as_ptr()); |
| |
| // Assert that values written to the typed value are reflected in the |
| // byte slice. |
| let mut expected_bytes = [0xFF, 0x00].iter().copied().cycle().take(len).collect::<Vec<_>>(); |
| r.copy_from_slice(&expected_bytes); |
| assert_eq!(r.bytes(), expected_bytes.as_slice()); |
| |
| // Assert that values written to the byte slice are reflected in the |
| // typed value. |
| for byte in &mut expected_bytes { |
| *byte = !*byte; // different from `expected_len` |
| } |
| r.bytes_mut().copy_from_slice(&expected_bytes); |
| assert_eq!(&*r, expected_bytes.as_slice()); |
| } |
| |
| #[test] |
| fn test_new_aligned_sized() { |
| // Test that a properly-aligned, properly-sized buffer works for new, |
| // new_from_prefix, and new_from_suffix, and that new_from_prefix and |
| // new_from_suffix return empty slices. Test that a properly-aligned |
| // buffer whose length is a multiple of the element size works for |
| // new_slice. Test that xxx_zeroed behaves the same, and zeroes the |
| // memory. |
| |
| // A buffer with an alignment of 8. |
| let mut buf = Align::<[u8; 8], AU64>::default(); |
| // `buf.t` should be aligned to 8, so this should always succeed. |
| test_new_helper(Ref::<_, AU64>::new(&mut buf.t[..]).unwrap()); |
| let ascending: [u8; 8] = (0..8).collect::<Vec<_>>().try_into().unwrap(); |
| buf.t = ascending; |
| test_new_helper(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).unwrap()); |
| { |
| // In a block so that `r` and `suffix` don't live too long. |
| buf.set_default(); |
| let (r, suffix) = Ref::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap(); |
| assert!(suffix.is_empty()); |
| test_new_helper(r); |
| } |
| { |
| buf.t = ascending; |
| let (r, suffix) = Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap(); |
| assert!(suffix.is_empty()); |
| test_new_helper(r); |
| } |
| { |
| buf.set_default(); |
| let (prefix, r) = Ref::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap(); |
| assert!(prefix.is_empty()); |
| test_new_helper(r); |
| } |
| { |
| buf.t = ascending; |
| let (prefix, r) = Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap(); |
| assert!(prefix.is_empty()); |
| test_new_helper(r); |
| } |
| |
| // A buffer with alignment 8 and length 24. We choose this length very |
| // intentionally: if we instead used length 16, then the prefix and |
| // suffix lengths would be identical. In the past, we used length 16, |
| // which resulted in this test failing to discover the bug uncovered in |
| // #506. |
| let mut buf = Align::<[u8; 24], AU64>::default(); |
| // `buf.t` should be aligned to 8 and have a length which is a multiple |
| // of `size_of::<AU64>()`, so this should always succeed. |
| test_new_helper_slice(Ref::<_, [AU64]>::new_slice(&mut buf.t[..]).unwrap(), 3); |
| let ascending: [u8; 24] = (0..24).collect::<Vec<_>>().try_into().unwrap(); |
| // 16 ascending bytes followed by 8 zeros. |
| let mut ascending_prefix = ascending; |
| ascending_prefix[16..].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]); |
| // 8 zeros followed by 16 ascending bytes. |
| let mut ascending_suffix = ascending; |
| ascending_suffix[..8].copy_from_slice(&[0, 0, 0, 0, 0, 0, 0, 0]); |
| test_new_helper_slice(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).unwrap(), 3); |
| |
| { |
| buf.t = ascending_suffix; |
| let (r, suffix) = Ref::<_, [AU64]>::new_slice_from_prefix(&mut buf.t[..], 1).unwrap(); |
| assert_eq!(suffix, &ascending[8..]); |
| test_new_helper_slice(r, 1); |
| } |
| { |
| buf.t = ascending_suffix; |
| let (r, suffix) = |
| Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 1).unwrap(); |
| assert_eq!(suffix, &ascending[8..]); |
| test_new_helper_slice(r, 1); |
| } |
| { |
| buf.t = ascending_prefix; |
| let (prefix, r) = Ref::<_, [AU64]>::new_slice_from_suffix(&mut buf.t[..], 1).unwrap(); |
| assert_eq!(prefix, &ascending[..16]); |
| test_new_helper_slice(r, 1); |
| } |
| { |
| buf.t = ascending_prefix; |
| let (prefix, r) = |
| Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 1).unwrap(); |
| assert_eq!(prefix, &ascending[..16]); |
| test_new_helper_slice(r, 1); |
| } |
| } |
| |
| #[test] |
| fn test_new_unaligned_sized() { |
| // Test that an unaligned, properly-sized buffer works for |
| // `new_unaligned`, `new_unaligned_from_prefix`, and |
| // `new_unaligned_from_suffix`, and that `new_unaligned_from_prefix` |
| // `new_unaligned_from_suffix` return empty slices. Test that an |
| // unaligned buffer whose length is a multiple of the element size works |
| // for `new_slice`. Test that `xxx_zeroed` behaves the same, and zeroes |
| // the memory. |
| |
| let mut buf = [0u8; 8]; |
| test_new_helper_unaligned(Ref::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap()); |
| buf = [0xFFu8; 8]; |
| test_new_helper_unaligned(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap()); |
| { |
| // In a block so that `r` and `suffix` don't live too long. |
| buf = [0u8; 8]; |
| let (r, suffix) = Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap(); |
| assert!(suffix.is_empty()); |
| test_new_helper_unaligned(r); |
| } |
| { |
| buf = [0xFFu8; 8]; |
| let (r, suffix) = |
| Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]).unwrap(); |
| assert!(suffix.is_empty()); |
| test_new_helper_unaligned(r); |
| } |
| { |
| buf = [0u8; 8]; |
| let (prefix, r) = Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap(); |
| assert!(prefix.is_empty()); |
| test_new_helper_unaligned(r); |
| } |
| { |
| buf = [0xFFu8; 8]; |
| let (prefix, r) = |
| Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]).unwrap(); |
| assert!(prefix.is_empty()); |
| test_new_helper_unaligned(r); |
| } |
| |
| let mut buf = [0u8; 16]; |
| // `buf.t` should be aligned to 8 and have a length which is a multiple |
| // of `size_of::AU64>()`, so this should always succeed. |
| test_new_helper_slice_unaligned( |
| Ref::<_, [u8]>::new_slice_unaligned(&mut buf[..]).unwrap(), |
| 16, |
| ); |
| buf = [0xFFu8; 16]; |
| test_new_helper_slice_unaligned( |
| Ref::<_, [u8]>::new_slice_unaligned_zeroed(&mut buf[..]).unwrap(), |
| 16, |
| ); |
| |
| { |
| buf = [0u8; 16]; |
| let (r, suffix) = |
| Ref::<_, [u8]>::new_slice_unaligned_from_prefix(&mut buf[..], 8).unwrap(); |
| assert_eq!(suffix, [0; 8]); |
| test_new_helper_slice_unaligned(r, 8); |
| } |
| { |
| buf = [0xFFu8; 16]; |
| let (r, suffix) = |
| Ref::<_, [u8]>::new_slice_unaligned_from_prefix_zeroed(&mut buf[..], 8).unwrap(); |
| assert_eq!(suffix, [0xFF; 8]); |
| test_new_helper_slice_unaligned(r, 8); |
| } |
| { |
| buf = [0u8; 16]; |
| let (prefix, r) = |
| Ref::<_, [u8]>::new_slice_unaligned_from_suffix(&mut buf[..], 8).unwrap(); |
| assert_eq!(prefix, [0; 8]); |
| test_new_helper_slice_unaligned(r, 8); |
| } |
| { |
| buf = [0xFFu8; 16]; |
| let (prefix, r) = |
| Ref::<_, [u8]>::new_slice_unaligned_from_suffix_zeroed(&mut buf[..], 8).unwrap(); |
| assert_eq!(prefix, [0xFF; 8]); |
| test_new_helper_slice_unaligned(r, 8); |
| } |
| } |
| |
| #[test] |
| fn test_new_oversized() { |
| // Test that a properly-aligned, overly-sized buffer works for |
| // `new_from_prefix` and `new_from_suffix`, and that they return the |
| // remainder and prefix of the slice respectively. Test that |
| // `xxx_zeroed` behaves the same, and zeroes the memory. |
| |
| let mut buf = Align::<[u8; 16], AU64>::default(); |
| { |
| // In a block so that `r` and `suffix` don't live too long. `buf.t` |
| // should be aligned to 8, so this should always succeed. |
| let (r, suffix) = Ref::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap(); |
| assert_eq!(suffix.len(), 8); |
| test_new_helper(r); |
| } |
| { |
| buf.t = [0xFFu8; 16]; |
| // `buf.t` should be aligned to 8, so this should always succeed. |
| let (r, suffix) = Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap(); |
| // Assert that the suffix wasn't zeroed. |
| assert_eq!(suffix, &[0xFFu8; 8]); |
| test_new_helper(r); |
| } |
| { |
| buf.set_default(); |
| // `buf.t` should be aligned to 8, so this should always succeed. |
| let (prefix, r) = Ref::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap(); |
| assert_eq!(prefix.len(), 8); |
| test_new_helper(r); |
| } |
| { |
| buf.t = [0xFFu8; 16]; |
| // `buf.t` should be aligned to 8, so this should always succeed. |
| let (prefix, r) = Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap(); |
| // Assert that the prefix wasn't zeroed. |
| assert_eq!(prefix, &[0xFFu8; 8]); |
| test_new_helper(r); |
| } |
| } |
| |
| #[test] |
| fn test_new_unaligned_oversized() { |
| // Test than an unaligned, overly-sized buffer works for |
| // `new_unaligned_from_prefix` and `new_unaligned_from_suffix`, and that |
| // they return the remainder and prefix of the slice respectively. Test |
| // that `xxx_zeroed` behaves the same, and zeroes the memory. |
| |
| let mut buf = [0u8; 16]; |
| { |
| // In a block so that `r` and `suffix` don't live too long. |
| let (r, suffix) = Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap(); |
| assert_eq!(suffix.len(), 8); |
| test_new_helper_unaligned(r); |
| } |
| { |
| buf = [0xFFu8; 16]; |
| let (r, suffix) = |
| Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..]).unwrap(); |
| // Assert that the suffix wasn't zeroed. |
| assert_eq!(suffix, &[0xFF; 8]); |
| test_new_helper_unaligned(r); |
| } |
| { |
| buf = [0u8; 16]; |
| let (prefix, r) = Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap(); |
| assert_eq!(prefix.len(), 8); |
| test_new_helper_unaligned(r); |
| } |
| { |
| buf = [0xFFu8; 16]; |
| let (prefix, r) = |
| Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..]).unwrap(); |
| // Assert that the prefix wasn't zeroed. |
| assert_eq!(prefix, &[0xFF; 8]); |
| test_new_helper_unaligned(r); |
| } |
| } |
| |
| #[test] |
| fn test_ref_from_mut_from() { |
| // Test `FromBytes::{ref_from, mut_from}{,_prefix,_suffix}` success cases |
| // Exhaustive coverage for these methods is covered by the `Ref` tests above, |
| // which these helper methods defer to. |
| |
| let mut buf = |
| Align::<[u8; 16], AU64>::new([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]); |
| |
| assert_eq!( |
| AU64::ref_from(&buf.t[8..]).unwrap().0.to_ne_bytes(), |
| [8, 9, 10, 11, 12, 13, 14, 15] |
| ); |
| let suffix = AU64::mut_from(&mut buf.t[8..]).unwrap(); |
| suffix.0 = 0x0101010101010101; |
| // The `[u8:9]` is a non-half size of the full buffer, which would catch |
| // `from_prefix` having the same implementation as `from_suffix` (issues #506, #511). |
| assert_eq!(<[u8; 9]>::ref_from_suffix(&buf.t[..]).unwrap(), &[7u8, 1, 1, 1, 1, 1, 1, 1, 1]); |
| let suffix = AU64::mut_from_suffix(&mut buf.t[1..]).unwrap(); |
| suffix.0 = 0x0202020202020202; |
| <[u8; 10]>::mut_from_suffix(&mut buf.t[..]).unwrap()[0] = 42; |
| assert_eq!(<[u8; 9]>::ref_from_prefix(&buf.t[..]).unwrap(), &[0, 1, 2, 3, 4, 5, 42, 7, 2]); |
| <[u8; 2]>::mut_from_prefix(&mut buf.t[..]).unwrap()[1] = 30; |
| assert_eq!(buf.t, [0, 30, 2, 3, 4, 5, 42, 7, 2, 2, 2, 2, 2, 2, 2, 2]); |
| } |
| |
| #[test] |
| fn test_ref_from_mut_from_error() { |
| // Test `FromBytes::{ref_from, mut_from}{,_prefix,_suffix}` error cases. |
| |
| // Fail because the buffer is too large. |
| let mut buf = Align::<[u8; 16], AU64>::default(); |
| // `buf.t` should be aligned to 8, so only the length check should fail. |
| assert!(AU64::ref_from(&buf.t[..]).is_none()); |
| assert!(AU64::mut_from(&mut buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::ref_from(&buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::mut_from(&mut buf.t[..]).is_none()); |
| |
| // Fail because the buffer is too small. |
| let mut buf = Align::<[u8; 4], AU64>::default(); |
| assert!(AU64::ref_from(&buf.t[..]).is_none()); |
| assert!(AU64::mut_from(&mut buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::ref_from(&buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::mut_from(&mut buf.t[..]).is_none()); |
| assert!(AU64::ref_from_prefix(&buf.t[..]).is_none()); |
| assert!(AU64::mut_from_prefix(&mut buf.t[..]).is_none()); |
| assert!(AU64::ref_from_suffix(&buf.t[..]).is_none()); |
| assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::ref_from_prefix(&buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::mut_from_prefix(&mut buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::ref_from_suffix(&buf.t[..]).is_none()); |
| assert!(<[u8; 8]>::mut_from_suffix(&mut buf.t[..]).is_none()); |
| |
| // Fail because the alignment is insufficient. |
| let mut buf = Align::<[u8; 13], AU64>::default(); |
| assert!(AU64::ref_from(&buf.t[1..]).is_none()); |
| assert!(AU64::mut_from(&mut buf.t[1..]).is_none()); |
| assert!(AU64::ref_from(&buf.t[1..]).is_none()); |
| assert!(AU64::mut_from(&mut buf.t[1..]).is_none()); |
| assert!(AU64::ref_from_prefix(&buf.t[1..]).is_none()); |
| assert!(AU64::mut_from_prefix(&mut buf.t[1..]).is_none()); |
| assert!(AU64::ref_from_suffix(&buf.t[..]).is_none()); |
| assert!(AU64::mut_from_suffix(&mut buf.t[..]).is_none()); |
| } |
| |
| #[test] |
| #[allow(clippy::cognitive_complexity)] |
| fn test_new_error() { |
| // Fail because the buffer is too large. |
| |
| // A buffer with an alignment of 8. |
| let mut buf = Align::<[u8; 16], AU64>::default(); |
| // `buf.t` should be aligned to 8, so only the length check should fail. |
| assert!(Ref::<_, AU64>::new(&buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none()); |
| |
| // Fail because the buffer is too small. |
| |
| // A buffer with an alignment of 8. |
| let mut buf = Align::<[u8; 4], AU64>::default(); |
| // `buf.t` should be aligned to 8, so only the length check should fail. |
| assert!(Ref::<_, AU64>::new(&buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_prefix(&buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_suffix(&buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.t[..]).is_none()); |
| assert!(Ref::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.t[..]).is_none()); |
| |
| // Fail because the length is not a multiple of the element size. |
| |
| let mut buf = Align::<[u8; 12], AU64>::default(); |
| // `buf.t` has length 12, but element size is 8. |
| assert!(Ref::<_, [AU64]>::new_slice(&buf.t[..]).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned(&buf.t[..]).is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.t[..]).is_none()); |
| |
| // Fail because the buffer is too short. |
| let mut buf = Align::<[u8; 12], AU64>::default(); |
| // `buf.t` has length 12, but the element size is 8 (and we're expecting |
| // two of them). |
| assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], 2).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 2).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], 2).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 2).is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], 2).is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(&mut buf.t[..], 2) |
| .is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], 2).is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(&mut buf.t[..], 2) |
| .is_none()); |
| |
| // Fail because the alignment is insufficient. |
| |
| // A buffer with an alignment of 8. An odd buffer size is chosen so that |
| // the last byte of the buffer has odd alignment. |
| let mut buf = Align::<[u8; 13], AU64>::default(); |
| // Slicing from 1, we get a buffer with size 12 (so the length check |
| // should succeed) but an alignment of only 1, which is insufficient. |
| assert!(Ref::<_, AU64>::new(&buf.t[1..]).is_none()); |
| assert!(Ref::<_, AU64>::new_zeroed(&mut buf.t[1..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_prefix(&buf.t[1..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[1..]).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice(&buf.t[1..]).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_zeroed(&mut buf.t[1..]).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[1..], 1).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[1..], 1).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[1..], 1).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[1..], 1).is_none()); |
| // Slicing is unnecessary here because `new_from_suffix[_zeroed]` use |
| // the suffix of the slice, which has odd alignment. |
| assert!(Ref::<_, AU64>::new_from_suffix(&buf.t[..]).is_none()); |
| assert!(Ref::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none()); |
| |
| // Fail due to arithmetic overflow. |
| |
| let mut buf = Align::<[u8; 16], AU64>::default(); |
| let unreasonable_len = usize::MAX / mem::size_of::<AU64>() + 1; |
| assert!(Ref::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], unreasonable_len).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], unreasonable_len) |
| .is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], unreasonable_len).is_none()); |
| assert!(Ref::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], unreasonable_len) |
| .is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], unreasonable_len) |
| .is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed( |
| &mut buf.t[..], |
| unreasonable_len |
| ) |
| .is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], unreasonable_len) |
| .is_none()); |
| assert!(Ref::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed( |
| &mut buf.t[..], |
| unreasonable_len |
| ) |
| .is_none()); |
| } |
| |
| // Tests for ensuring that, if a ZST is passed into a slice-like function, |
| // we always panic. Since these tests need to be separate per-function, and |
| // they tend to take up a lot of space, we generate them using a macro in a |
| // submodule instead. The submodule ensures that we can just re-use the name |
| // of the function under test for the name of the test itself. |
| mod test_zst_panics { |
| macro_rules! zst_test { |
| ($name:ident($($tt:tt)*), $constructor_in_panic_msg:tt) => { |
| #[test] |
| #[should_panic = concat!("Ref::", $constructor_in_panic_msg, " called on a zero-sized type")] |
| fn $name() { |
| let mut buffer = [0u8]; |
| let r = $crate::Ref::<_, [()]>::$name(&mut buffer[..], $($tt)*); |
| unreachable!("should have panicked, got {:?}", r); |
| } |
| } |
| } |
| zst_test!(new_slice(), "new_slice"); |
| zst_test!(new_slice_zeroed(), "new_slice"); |
| zst_test!(new_slice_from_prefix(1), "new_slice"); |
| zst_test!(new_slice_from_prefix_zeroed(1), "new_slice"); |
| zst_test!(new_slice_from_suffix(1), "new_slice"); |
| zst_test!(new_slice_from_suffix_zeroed(1), "new_slice"); |
| zst_test!(new_slice_unaligned(), "new_slice_unaligned"); |
| zst_test!(new_slice_unaligned_zeroed(), "new_slice_unaligned"); |
| zst_test!(new_slice_unaligned_from_prefix(1), "new_slice_unaligned"); |
| zst_test!(new_slice_unaligned_from_prefix_zeroed(1), "new_slice_unaligned"); |
| zst_test!(new_slice_unaligned_from_suffix(1), "new_slice_unaligned"); |
| zst_test!(new_slice_unaligned_from_suffix_zeroed(1), "new_slice_unaligned"); |
| } |
| |
| #[test] |
| fn test_as_bytes_methods() { |
| /// Run a series of tests by calling `AsBytes` methods on `t`. |
| /// |
| /// `bytes` is the expected byte sequence returned from `t.as_bytes()` |
| /// before `t` has been modified. `post_mutation` is the expected |
| /// sequence returned from `t.as_bytes()` after `t.as_bytes_mut()[0]` |
| /// has had its bits flipped (by applying `^= 0xFF`). |
| /// |
| /// `N` is the size of `t` in bytes. |
| fn test<T: FromBytes + AsBytes + Debug + Eq + ?Sized, const N: usize>( |
| t: &mut T, |
| bytes: &[u8], |
| post_mutation: &T, |
| ) { |
| // Test that we can access the underlying bytes, and that we get the |
| // right bytes and the right number of bytes. |
| assert_eq!(t.as_bytes(), bytes); |
| |
| // Test that changes to the underlying byte slices are reflected in |
| // the original object. |
| t.as_bytes_mut()[0] ^= 0xFF; |
| assert_eq!(t, post_mutation); |
| t.as_bytes_mut()[0] ^= 0xFF; |
| |
| // `write_to` rejects slices that are too small or too large. |
| assert_eq!(t.write_to(&mut vec![0; N - 1][..]), None); |
| assert_eq!(t.write_to(&mut vec![0; N + 1][..]), None); |
| |
| // `write_to` works as expected. |
| let mut bytes = [0; N]; |
| assert_eq!(t.write_to(&mut bytes[..]), Some(())); |
| assert_eq!(bytes, t.as_bytes()); |
| |
| // `write_to_prefix` rejects slices that are too small. |
| assert_eq!(t.write_to_prefix(&mut vec![0; N - 1][..]), None); |
| |
| // `write_to_prefix` works with exact-sized slices. |
| let mut bytes = [0; N]; |
| assert_eq!(t.write_to_prefix(&mut bytes[..]), Some(())); |
| assert_eq!(bytes, t.as_bytes()); |
| |
| // `write_to_prefix` works with too-large slices, and any bytes past |
| // the prefix aren't modified. |
| let mut too_many_bytes = vec![0; N + 1]; |
| too_many_bytes[N] = 123; |
| assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Some(())); |
| assert_eq!(&too_many_bytes[..N], t.as_bytes()); |
| assert_eq!(too_many_bytes[N], 123); |
| |
| // `write_to_suffix` rejects slices that are too small. |
| assert_eq!(t.write_to_suffix(&mut vec![0; N - 1][..]), None); |
| |
| // `write_to_suffix` works with exact-sized slices. |
| let mut bytes = [0; N]; |
| assert_eq!(t.write_to_suffix(&mut bytes[..]), Some(())); |
| assert_eq!(bytes, t.as_bytes()); |
| |
| // `write_to_suffix` works with too-large slices, and any bytes |
| // before the suffix aren't modified. |
| let mut too_many_bytes = vec![0; N + 1]; |
| too_many_bytes[0] = 123; |
| assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Some(())); |
| assert_eq!(&too_many_bytes[1..], t.as_bytes()); |
| assert_eq!(too_many_bytes[0], 123); |
| } |
| |
| #[derive(Debug, Eq, PartialEq, FromZeroes, FromBytes, AsBytes)] |
| #[repr(C)] |
| struct Foo { |
| a: u32, |
| b: Wrapping<u32>, |
| c: Option<NonZeroU32>, |
| } |
| |
| let expected_bytes: Vec<u8> = if cfg!(target_endian = "little") { |
| vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0] |
| } else { |
| vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0] |
| }; |
| let post_mutation_expected_a = |
| if cfg!(target_endian = "little") { 0x00_00_00_FE } else { 0xFF_00_00_01 }; |
| test::<_, 12>( |
| &mut Foo { a: 1, b: Wrapping(2), c: None }, |
| expected_bytes.as_bytes(), |
| &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None }, |
| ); |
| test::<_, 3>( |
| Unsized::from_mut_slice(&mut [1, 2, 3]), |
| &[1, 2, 3], |
| Unsized::from_mut_slice(&mut [0xFE, 2, 3]), |
| ); |
| } |
| |
| #[test] |
| fn test_array() { |
| #[derive(FromZeroes, FromBytes, AsBytes)] |
| #[repr(C)] |
| struct Foo { |
| a: [u16; 33], |
| } |
| |
| let foo = Foo { a: [0xFFFF; 33] }; |
| let expected = [0xFFu8; 66]; |
| assert_eq!(foo.as_bytes(), &expected[..]); |
| } |
| |
| #[test] |
| fn test_display_debug() { |
| let buf = Align::<[u8; 8], u64>::default(); |
| let r = Ref::<_, u64>::new(&buf.t[..]).unwrap(); |
| assert_eq!(format!("{}", r), "0"); |
| assert_eq!(format!("{:?}", r), "Ref(0)"); |
| |
| let buf = Align::<[u8; 8], u64>::default(); |
| let r = Ref::<_, [u64]>::new_slice(&buf.t[..]).unwrap(); |
| assert_eq!(format!("{:?}", r), "Ref([0])"); |
| } |
| |
| #[test] |
| fn test_eq() { |
| let buf1 = 0_u64; |
| let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap(); |
| let buf2 = 0_u64; |
| let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap(); |
| assert_eq!(r1, r2); |
| } |
| |
| #[test] |
| fn test_ne() { |
| let buf1 = 0_u64; |
| let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap(); |
| let buf2 = 1_u64; |
| let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap(); |
| assert_ne!(r1, r2); |
| } |
| |
| #[test] |
| fn test_ord() { |
| let buf1 = 0_u64; |
| let r1 = Ref::<_, u64>::new(buf1.as_bytes()).unwrap(); |
| let buf2 = 1_u64; |
| let r2 = Ref::<_, u64>::new(buf2.as_bytes()).unwrap(); |
| assert!(r1 < r2); |
| } |
| |
| #[test] |
| fn test_new_zeroed() { |
| assert!(!bool::new_zeroed()); |
| assert_eq!(u64::new_zeroed(), 0); |
| // This test exists in order to exercise unsafe code, especially when |
| // running under Miri. |
| #[allow(clippy::unit_cmp)] |
| { |
| assert_eq!(<()>::new_zeroed(), ()); |
| } |
| } |
| |
| #[test] |
| fn test_transparent_packed_generic_struct() { |
| #[derive(AsBytes, FromZeroes, FromBytes, Unaligned)] |
| #[repr(transparent)] |
| struct Foo<T> { |
| _t: T, |
| _phantom: PhantomData<()>, |
| } |
| |
| assert_impl_all!(Foo<u32>: FromZeroes, FromBytes, AsBytes); |
| assert_impl_all!(Foo<u8>: Unaligned); |
| |
| #[derive(AsBytes, FromZeroes, FromBytes, Unaligned)] |
| #[repr(packed)] |
| struct Bar<T, U> { |
| _t: T, |
| _u: U, |
| } |
| |
| assert_impl_all!(Bar<u8, AU64>: FromZeroes, FromBytes, AsBytes, Unaligned); |
| } |
| |
| #[test] |
| fn test_impls() { |
| use core::borrow::Borrow; |
| |
| // A type that can supply test cases for testing |
| // `TryFromBytes::is_bit_valid`. All types passed to `assert_impls!` |
| // must implement this trait; that macro uses it to generate runtime |
| // tests for `TryFromBytes` impls. |
| // |
| // All `T: FromBytes` types are provided with a blanket impl. Other |
| // types must implement `TryFromBytesTestable` directly (ie using |
| // `impl_try_from_bytes_testable!`). |
| trait TryFromBytesTestable { |
| fn with_passing_test_cases<F: Fn(&Self)>(f: F); |
| fn with_failing_test_cases<F: Fn(&[u8])>(f: F); |
| } |
| |
| impl<T: FromBytes> TryFromBytesTestable for T { |
| fn with_passing_test_cases<F: Fn(&Self)>(f: F) { |
| // Test with a zeroed value. |
| f(&Self::new_zeroed()); |
| |
| let ffs = { |
| let mut t = Self::new_zeroed(); |
| let ptr: *mut T = &mut t; |
| // SAFETY: `T: FromBytes` |
| unsafe { ptr::write_bytes(ptr.cast::<u8>(), 0xFF, mem::size_of::<T>()) }; |
| t |
| }; |
| |
| // Test with a value initialized with 0xFF. |
| f(&ffs); |
| } |
| |
| fn with_failing_test_cases<F: Fn(&[u8])>(_f: F) {} |
| } |
| |
| // Implements `TryFromBytesTestable`. |
| macro_rules! impl_try_from_bytes_testable { |
| // Base case for recursion (when the list of types has run out). |
| (=> @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => {}; |
| // Implements for type(s) with no type parameters. |
| ($ty:ty $(,$tys:ty)* => @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => { |
| impl TryFromBytesTestable for $ty { |
| impl_try_from_bytes_testable!( |
| @methods @success $($success_case),* |
| $(, @failure $($failure_case),*)? |
| ); |
| } |
| impl_try_from_bytes_testable!($($tys),* => @success $($success_case),* $(, @failure $($failure_case),*)?); |
| }; |
| // Implements for multiple types with no type parameters. |
| ($($($ty:ty),* => @success $($success_case:expr), * $(, @failure $($failure_case:expr),*)?;)*) => { |
| $( |
| impl_try_from_bytes_testable!($($ty),* => @success $($success_case),* $(, @failure $($failure_case),*)*); |
| )* |
| }; |
| // Implements only the methods; caller must invoke this from inside |
| // an impl block. |
| (@methods @success $($success_case:expr),* $(, @failure $($failure_case:expr),*)?) => { |
| fn with_passing_test_cases<F: Fn(&Self)>(_f: F) { |
| $( |
| _f($success_case.borrow()); |
| )* |
| } |
| |
| fn with_failing_test_cases<F: Fn(&[u8])>(_f: F) { |
| $($( |
| // `unused_qualifications` is spuriously triggered on |
| // `Option::<Self>::None`. |
| #[allow(unused_qualifications)] |
| let case = $failure_case.as_bytes(); |
| _f(case.as_bytes()); |
| )*)? |
| } |
| }; |
| } |
| |
| // Note that these impls are only for types which are not `FromBytes`. |
| // `FromBytes` types are covered by a preceding blanket impl. |
| impl_try_from_bytes_testable!( |
| bool => @success true, false, |
| @failure 2u8, 3u8, 0xFFu8; |
| char => @success '\u{0}', '\u{D7FF}', '\u{E000}', '\u{10FFFF}', |
| @failure 0xD800u32, 0xDFFFu32, 0x110000u32; |
| str => @success "", "hello", "❤️🧡💛💚💙💜", |
| @failure [0, 159, 146, 150]; |
| [u8] => @success [], [0, 1, 2]; |
| NonZeroU8, NonZeroI8, NonZeroU16, NonZeroI16, NonZeroU32, |
| NonZeroI32, NonZeroU64, NonZeroI64, NonZeroU128, NonZeroI128, |
| NonZeroUsize, NonZeroIsize |
| => @success Self::new(1).unwrap(), |
| // Doing this instead of `0` ensures that we always satisfy |
| // the size and alignment requirements of `Self` (whereas |
| // `0` may be any integer type with a different size or |
| // alignment than some `NonZeroXxx` types). |
| @failure Option::<Self>::None; |
| [bool] |
| => @success [true, false], [false, true], |
| @failure [2u8], [3u8], [0xFFu8], [0u8, 1u8, 2u8]; |
| ); |
| |
| // Asserts that `$ty` implements any `$trait` and doesn't implement any |
| // `!$trait`. Note that all `$trait`s must come before any `!$trait`s. |
| // |
| // For `T: TryFromBytes`, uses `TryFromBytesTestable` to test success |
| // and failure cases for `TryFromBytes::is_bit_valid`. |
| macro_rules! assert_impls { |
| ($ty:ty: TryFromBytes) => { |
| <$ty as TryFromBytesTestable>::with_passing_test_cases(|val| { |
| let c = Ptr::from(val); |
| // SAFETY: |
| // - Since `val` is a normal reference, `c` is guranteed to |
| // be aligned, to point to a single allocation, and to |
| // have a size which doesn't overflow `isize`. |
| // - Since `val` is a valid `$ty`, `c`'s referent satisfies |
| // the bit validity constraints of `is_bit_valid`, which |
| // are a superset of the bit validity constraints of |
| // `$ty`. |
| let res = unsafe { <$ty as TryFromBytes>::is_bit_valid(c) }; |
| assert!(res, "{}::is_bit_valid({:?}): got false, expected true", stringify!($ty), val); |
| |
| // TODO(#5): In addition to testing `is_bit_valid`, test the |
| // methods built on top of it. This would both allow us to |
| // test their implementations and actually convert the bytes |
| // to `$ty`, giving Miri a chance to catch if this is |
| // unsound (ie, if our `is_bit_valid` impl is buggy). |
| // |
| // The following code was tried, but it doesn't work because |
| // a) some types are not `AsBytes` and, b) some types are |
| // not `Sized`. |
| // |
| // let r = <$ty as TryFromBytes>::try_from_ref(val.as_bytes()).unwrap(); |
| // assert_eq!(r, &val); |
| // let r = <$ty as TryFromBytes>::try_from_mut(val.as_bytes_mut()).unwrap(); |
| // assert_eq!(r, &mut val); |
| // let v = <$ty as TryFromBytes>::try_read_from(val.as_bytes()).unwrap(); |
| // assert_eq!(v, val); |
| }); |
| #[allow(clippy::as_conversions)] |
| <$ty as TryFromBytesTestable>::with_failing_test_cases(|c| { |
| let res = <$ty as TryFromBytes>::try_from_ref(c); |
| assert!(res.is_none(), "{}::is_bit_valid({:?}): got true, expected false", stringify!($ty), c); |
| }); |
| |
| #[allow(dead_code)] |
| const _: () = { static_assertions::assert_impl_all!($ty: TryFromBytes); }; |
| }; |
| ($ty:ty: $trait:ident) => { |
| #[allow(dead_code)] |
| const _: () = { static_assertions::assert_impl_all!($ty: $trait); }; |
| }; |
| ($ty:ty: !$trait:ident) => { |
| #[allow(dead_code)] |
| const _: () = { static_assertions::assert_not_impl_any!($ty: $trait); }; |
| }; |
| ($ty:ty: $($trait:ident),* $(,)? $(!$negative_trait:ident),*) => { |
| $( |
| assert_impls!($ty: $trait); |
| )* |
| |
| $( |
| assert_impls!($ty: !$negative_trait); |
| )* |
| }; |
| } |
| |
| // NOTE: The negative impl assertions here are not necessarily |
| // prescriptive. They merely serve as change detectors to make sure |
| // we're aware of what trait impls are getting added with a given |
| // change. Of course, some impls would be invalid (e.g., `bool: |
| // FromBytes`), and so this change detection is very important. |
| |
| assert_impls!((): KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(u8: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(i8: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(u16: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(i16: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(u32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(i32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(u64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(i64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(u128: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(i128: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(usize: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(isize: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(f32: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(f64: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| |
| assert_impls!(bool: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes); |
| assert_impls!(char: KnownLayout, TryFromBytes, FromZeroes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(str: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes); |
| |
| assert_impls!(NonZeroU8: KnownLayout, TryFromBytes, AsBytes, Unaligned, !FromZeroes, !FromBytes); |
| assert_impls!(NonZeroI8: KnownLayout, TryFromBytes, AsBytes, Unaligned, !FromZeroes, !FromBytes); |
| assert_impls!(NonZeroU16: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroI16: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroU32: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroI32: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroU64: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroI64: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroU128: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroI128: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroUsize: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| assert_impls!(NonZeroIsize: KnownLayout, TryFromBytes, AsBytes, !FromBytes, !Unaligned); |
| |
| assert_impls!(Option<NonZeroU8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(Option<NonZeroI8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(Option<NonZeroU16>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroI16>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroU32>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroI32>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroU64>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroI64>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroU128>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroI128>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroUsize>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| assert_impls!(Option<NonZeroIsize>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); |
| |
| // Implements none of the ZC traits. |
| struct NotZerocopy; |
| |
| #[rustfmt::skip] |
| type FnManyArgs = fn( |
| NotZerocopy, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, |
| ) -> (NotZerocopy, NotZerocopy); |
| |
| // Allowed, because we're not actually using this type for FFI. |
| #[allow(improper_ctypes_definitions)] |
| #[rustfmt::skip] |
| type ECFnManyArgs = extern "C" fn( |
| NotZerocopy, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, u8, |
| ) -> (NotZerocopy, NotZerocopy); |
| |
| #[cfg(feature = "alloc")] |
| assert_impls!(Option<Box<UnsafeCell<NotZerocopy>>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<Box<[UnsafeCell<NotZerocopy>]>>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<&'static UnsafeCell<NotZerocopy>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<&'static [UnsafeCell<NotZerocopy>]>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<&'static mut UnsafeCell<NotZerocopy>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<&'static mut [UnsafeCell<NotZerocopy>]>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<NonNull<UnsafeCell<NotZerocopy>>>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<NonNull<[UnsafeCell<NotZerocopy>]>>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<fn()>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<FnManyArgs>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<extern "C" fn()>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(Option<ECFnManyArgs>: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| |
| assert_impls!(PhantomData<NotZerocopy>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(PhantomData<[u8]>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| |
| assert_impls!(ManuallyDrop<u8>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| assert_impls!(ManuallyDrop<[u8]>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| assert_impls!(ManuallyDrop<NotZerocopy>: !TryFromBytes, !KnownLayout, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(ManuallyDrop<[NotZerocopy]>: !TryFromBytes, !KnownLayout, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| |
| assert_impls!(MaybeUninit<u8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, Unaligned, !AsBytes); |
| assert_impls!(MaybeUninit<NotZerocopy>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| |
| assert_impls!(Wrapping<u8>: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!(Wrapping<NotZerocopy>: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| |
| assert_impls!(Unalign<u8>: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| assert_impls!(Unalign<NotZerocopy>: Unaligned, !KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes); |
| |
| assert_impls!([u8]: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, Unaligned); |
| assert_impls!([bool]: KnownLayout, TryFromBytes, FromZeroes, AsBytes, Unaligned, !FromBytes); |
| assert_impls!([NotZerocopy]: !KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!([u8; 0]: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| assert_impls!([NotZerocopy; 0]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!([u8; 1]: KnownLayout, FromZeroes, FromBytes, AsBytes, Unaligned, !TryFromBytes); |
| assert_impls!([NotZerocopy; 1]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| |
| assert_impls!(*const NotZerocopy: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(*mut NotZerocopy: KnownLayout, FromZeroes, !TryFromBytes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(*const [NotZerocopy]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(*mut [NotZerocopy]: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(*const dyn Debug: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| assert_impls!(*mut dyn Debug: KnownLayout, !TryFromBytes, !FromZeroes, !FromBytes, !AsBytes, !Unaligned); |
| |
| #[cfg(feature = "simd")] |
| { |
| #[allow(unused_macros)] |
| macro_rules! test_simd_arch_mod { |
| ($arch:ident, $($typ:ident),*) => { |
| { |
| use core::arch::$arch::{$($typ),*}; |
| use crate::*; |
| $( assert_impls!($typ: KnownLayout, TryFromBytes, FromZeroes, FromBytes, AsBytes, !Unaligned); )* |
| } |
| }; |
| } |
| #[cfg(target_arch = "x86")] |
| test_simd_arch_mod!(x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i); |
| |
| #[cfg(all(feature = "simd-nightly", target_arch = "x86"))] |
| test_simd_arch_mod!(x86, __m512bh, __m512, __m512d, __m512i); |
| |
| #[cfg(target_arch = "x86_64")] |
| test_simd_arch_mod!(x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i); |
| |
| #[cfg(all(feature = "simd-nightly", target_arch = "x86_64"))] |
| test_simd_arch_mod!(x86_64, __m512bh, __m512, __m512d, __m512i); |
| |
| #[cfg(target_arch = "wasm32")] |
| test_simd_arch_mod!(wasm32, v128); |
| |
| #[cfg(all(feature = "simd-nightly", target_arch = "powerpc"))] |
| test_simd_arch_mod!( |
| powerpc, |
| vector_bool_long, |
| vector_double, |
| vector_signed_long, |
| vector_unsigned_long |
| ); |
| |
| #[cfg(all(feature = "simd-nightly", target_arch = "powerpc64"))] |
| test_simd_arch_mod!( |
| powerpc64, |
| vector_bool_long, |
| vector_double, |
| vector_signed_long, |
| vector_unsigned_long |
| ); |
| #[cfg(target_arch = "aarch64")] |
| #[rustfmt::skip] |
| test_simd_arch_mod!( |
| aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t, |
| int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t, |
| int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t, |
| poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t, |
| poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t, |
| uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t, |
| uint64x1_t, uint64x2_t |
| ); |
| #[cfg(all(feature = "simd-nightly", target_arch = "arm"))] |
| #[rustfmt::skip] |
| test_simd_arch_mod!(arm, int8x4_t, uint8x4_t); |
| } |
| } |
| } |
| |
| #[cfg(kani)] |
| mod proofs { |
| use super::*; |
| |
| impl kani::Arbitrary for DstLayout { |
| fn any() -> Self { |
| let align: NonZeroUsize = kani::any(); |
| let size_info: SizeInfo = kani::any(); |
| |
| kani::assume(align.is_power_of_two()); |
| kani::assume(align < DstLayout::THEORETICAL_MAX_ALIGN); |
| |
| // For testing purposes, we most care about instantiations of |
| // `DstLayout` that can correspond to actual Rust types. We use |
| // `Layout` to verify that our `DstLayout` satisfies the validity |
| // conditions of Rust layouts. |
| kani::assume( |
| match size_info { |
| SizeInfo::Sized { _size } => Layout::from_size_align(_size, align.get()), |
| SizeInfo::SliceDst(TrailingSliceLayout { _offset, _elem_size }) => { |
| // `SliceDst`` cannot encode an exact size, but we know |
| // it is at least `_offset` bytes. |
| Layout::from_size_align(_offset, align.get()) |
| } |
| } |
| .is_ok(), |
| ); |
| |
| Self { align: align, size_info: size_info } |
| } |
| } |
| |
| impl kani::Arbitrary for SizeInfo { |
| fn any() -> Self { |
| let is_sized: bool = kani::any(); |
| |
| match is_sized { |
| true => { |
| let size: usize = kani::any(); |
| |
| kani::assume(size <= isize::MAX as _); |
| |
| SizeInfo::Sized { _size: size } |
| } |
| false => SizeInfo::SliceDst(kani::any()), |
| } |
| } |
| } |
| |
| impl kani::Arbitrary for TrailingSliceLayout { |
| fn any() -> Self { |
| let elem_size: usize = kani::any(); |
| let offset: usize = kani::any(); |
| |
| kani::assume(elem_size < isize::MAX as _); |
| kani::assume(offset < isize::MAX as _); |
| |
| TrailingSliceLayout { _elem_size: elem_size, _offset: offset } |
| } |
| } |
| |
| #[kani::proof] |
| fn prove_dst_layout_extend() { |
| use crate::util::{core_layout::padding_needed_for, max, min}; |
| |
| let base: DstLayout = kani::any(); |
| let field: DstLayout = kani::any(); |
| let packed: Option<NonZeroUsize> = kani::any(); |
| |
| if let Some(max_align) = packed { |
| kani::assume(max_align.is_power_of_two()); |
| kani::assume(base.align <= max_align); |
| } |
| |
| // The base can only be extended if it's sized. |
| kani::assume(matches!(base.size_info, SizeInfo::Sized { .. })); |
| let base_size = if let SizeInfo::Sized { _size: size } = base.size_info { |
| size |
| } else { |
| unreachable!(); |
| }; |
| |
| // Under the above conditions, `DstLayout::extend` will not panic. |
| let composite = base.extend(field, packed); |
| |
| // The field's alignment is clamped by `max_align` (i.e., the |
| // `packed` attribute, if any) [1]. |
| // |
| // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| // |
| // The alignments of each field, for the purpose of positioning |
| // fields, is the smaller of the specified alignment and the |
| // alignment of the field's type. |
| let field_align = min(field.align, packed.unwrap_or(DstLayout::THEORETICAL_MAX_ALIGN)); |
| |
| // The struct's alignment is the maximum of its previous alignment and |
| // `field_align`. |
| assert_eq!(composite.align, max(base.align, field_align)); |
| |
| // Compute the minimum amount of inter-field padding needed to |
| // satisfy the field's alignment, and offset of the trailing field. |
| // [1] |
| // |
| // [1] Per https://doc.rust-lang.org/reference/type-layout.html#the-alignment-modifiers: |
| // |
| // Inter-field padding is guaranteed to be the minimum required in |
| // order to satisfy each field's (possibly altered) alignment. |
| let padding = padding_needed_for(base_size, field_align); |
| let offset = base_size + padding; |
| |
| // For testing purposes, we'll also construct `alloc::Layout` |
| // stand-ins for `DstLayout`, and show that `extend` behaves |
| // comparably on both types. |
| let base_analog = Layout::from_size_align(base_size, base.align.get()).unwrap(); |
| |
| match field.size_info { |
| SizeInfo::Sized { _size: field_size } => { |
| if let SizeInfo::Sized { _size: composite_size } = composite.size_info { |
| // If the trailing field is sized, the resulting layout |
| // will be sized. Its size will be the sum of the |
| // preceeding layout, the size of the new field, and the |
| // size of inter-field padding between the two. |
| assert_eq!(composite_size, offset + field_size); |
| |
| let field_analog = |
| Layout::from_size_align(field_size, field_align.get()).unwrap(); |
| |
| if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
| { |
| assert_eq!(actual_offset, offset); |
| assert_eq!(actual_composite.size(), composite_size); |
| assert_eq!(actual_composite.align(), composite.align.get()); |
| } else { |
| // An error here reflects that composite of `base` |
| // and `field` cannot correspond to a real Rust type |
| // fragment, because such a fragment would violate |
| // the basic invariants of a valid Rust layout. At |
| // the time of writing, `DstLayout` is a little more |
| // permissive than `Layout`, so we don't assert |
| // anything in this branch (e.g., unreachability). |
| } |
| } else { |
| panic!("The composite of two sized layouts must be sized.") |
| } |
| } |
| SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: field_offset, |
| _elem_size: field_elem_size, |
| }) => { |
| if let SizeInfo::SliceDst(TrailingSliceLayout { |
| _offset: composite_offset, |
| _elem_size: composite_elem_size, |
| }) = composite.size_info |
| { |
| // The offset of the trailing slice component is the sum |
| // of the offset of the trailing field and the trailing |
| // slice offset within that field. |
| assert_eq!(composite_offset, offset + field_offset); |
| // The elem size is unchanged. |
| assert_eq!(composite_elem_size, field_elem_size); |
| |
| let field_analog = |
| Layout::from_size_align(field_offset, field_align.get()).unwrap(); |
| |
| if let Ok((actual_composite, actual_offset)) = base_analog.extend(field_analog) |
| { |
| assert_eq!(actual_offset, offset); |
| assert_eq!(actual_composite.size(), composite_offset); |
| assert_eq!(actual_composite.align(), composite.align.get()); |
| } else { |
| // An error here reflects that composite of `base` |
| // and `field` cannot correspond to a real Rust type |
| // fragment, because such a fragment would violate |
| // the basic invariants of a valid Rust layout. At |
| // the time of writing, `DstLayout` is a little more |
| // permissive than `Layout`, so we don't assert |
| // anything in this branch (e.g., unreachability). |
| } |
| } else { |
| panic!("The extension of a layout with a DST must result in a DST.") |
| } |
| } |
| } |
| } |
| |
| #[kani::proof] |
| #[kani::should_panic] |
| fn prove_dst_layout_extend_dst_panics() { |
| let base: DstLayout = kani::any(); |
| let field: DstLayout = kani::any(); |
| let packed: Option<NonZeroUsize> = kani::any(); |
| |
| if let Some(max_align) = packed { |
| kani::assume(max_align.is_power_of_two()); |
| kani::assume(base.align <= max_align); |
| } |
| |
| kani::assume(matches!(base.size_info, SizeInfo::SliceDst(..))); |
| |
| let _ = base.extend(field, packed); |
| } |
| |
| #[kani::proof] |
| fn prove_dst_layout_pad_to_align() { |
| use crate::util::core_layout::padding_needed_for; |
| |
| let layout: DstLayout = kani::any(); |
| |
| let padded: DstLayout = layout.pad_to_align(); |
| |
| // Calling `pad_to_align` does not alter the `DstLayout`'s alignment. |
| assert_eq!(padded.align, layout.align); |
| |
| if let SizeInfo::Sized { _size: unpadded_size } = layout.size_info { |
| if let SizeInfo::Sized { _size: padded_size } = padded.size_info { |
| // If the layout is sized, it will remain sized after padding is |
| // added. Its sum will be its unpadded size and the size of the |
| // trailing padding needed to satisfy its alignment |
| // requirements. |
| let padding = padding_needed_for(unpadded_size, layout.align); |
| assert_eq!(padded_size, unpadded_size + padding); |
| |
| // Prove that calling `DstLayout::pad_to_align` behaves |
| // identically to `Layout::pad_to_align`. |
| let layout_analog = |
| Layout::from_size_align(unpadded_size, layout.align.get()).unwrap(); |
| let padded_analog = layout_analog.pad_to_align(); |
| assert_eq!(padded_analog.align(), layout.align.get()); |
| assert_eq!(padded_analog.size(), padded_size); |
| } else { |
| panic!("The padding of a sized layout must result in a sized layout.") |
| } |
| } else { |
| // If the layout is a DST, padding cannot be statically added. |
| assert_eq!(padded.size_info, layout.size_info); |
| } |
| } |
| } |