Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 1 | //===- DependenceGraphBuilder.cpp ------------------------------------------==// |
| 2 | // |
| 3 | // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. |
| 4 | // See https://llvm.org/LICENSE.txt for license information. |
| 5 | // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception |
| 6 | // |
| 7 | //===----------------------------------------------------------------------===// |
| 8 | // This file implements common steps of the build algorithm for construction |
| 9 | // of dependence graphs such as DDG and PDG. |
| 10 | //===----------------------------------------------------------------------===// |
| 11 | |
| 12 | #include "llvm/Analysis/DependenceGraphBuilder.h" |
ThiƩbaud Weksteen | e40e736 | 2020-10-28 15:03:00 +0100 | [diff] [blame] | 13 | #include "llvm/ADT/DepthFirstIterator.h" |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 14 | #include "llvm/ADT/EnumeratedArray.h" |
Chris Wailes | 2f380c1 | 2022-11-09 13:04:22 -0800 | [diff] [blame] | 15 | #include "llvm/ADT/PostOrderIterator.h" |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 16 | #include "llvm/ADT/SCCIterator.h" |
| 17 | #include "llvm/ADT/Statistic.h" |
| 18 | #include "llvm/Analysis/DDG.h" |
| 19 | |
| 20 | using namespace llvm; |
| 21 | |
| 22 | #define DEBUG_TYPE "dgb" |
| 23 | |
| 24 | STATISTIC(TotalGraphs, "Number of dependence graphs created."); |
| 25 | STATISTIC(TotalDefUseEdges, "Number of def-use edges created."); |
| 26 | STATISTIC(TotalMemoryEdges, "Number of memory dependence edges created."); |
| 27 | STATISTIC(TotalFineGrainedNodes, "Number of fine-grained nodes created."); |
| 28 | STATISTIC(TotalPiBlockNodes, "Number of pi-block nodes created."); |
| 29 | STATISTIC(TotalConfusedEdges, |
| 30 | "Number of confused memory dependencies between two nodes."); |
| 31 | STATISTIC(TotalEdgeReversals, |
| 32 | "Number of times the source and sink of dependence was reversed to " |
| 33 | "expose cycles in the graph."); |
| 34 | |
| 35 | using InstructionListType = SmallVector<Instruction *, 2>; |
| 36 | |
| 37 | //===--------------------------------------------------------------------===// |
| 38 | // AbstractDependenceGraphBuilder implementation |
| 39 | //===--------------------------------------------------------------------===// |
| 40 | |
| 41 | template <class G> |
| 42 | void AbstractDependenceGraphBuilder<G>::computeInstructionOrdinals() { |
| 43 | // The BBList is expected to be in program order. |
| 44 | size_t NextOrdinal = 1; |
| 45 | for (auto *BB : BBList) |
| 46 | for (auto &I : *BB) |
| 47 | InstOrdinalMap.insert(std::make_pair(&I, NextOrdinal++)); |
| 48 | } |
| 49 | |
| 50 | template <class G> |
| 51 | void AbstractDependenceGraphBuilder<G>::createFineGrainedNodes() { |
| 52 | ++TotalGraphs; |
| 53 | assert(IMap.empty() && "Expected empty instruction map at start"); |
| 54 | for (BasicBlock *BB : BBList) |
| 55 | for (Instruction &I : *BB) { |
| 56 | auto &NewNode = createFineGrainedNode(I); |
| 57 | IMap.insert(std::make_pair(&I, &NewNode)); |
| 58 | NodeOrdinalMap.insert(std::make_pair(&NewNode, getOrdinal(I))); |
| 59 | ++TotalFineGrainedNodes; |
| 60 | } |
| 61 | } |
| 62 | |
| 63 | template <class G> |
| 64 | void AbstractDependenceGraphBuilder<G>::createAndConnectRootNode() { |
| 65 | // Create a root node that connects to every connected component of the graph. |
| 66 | // This is done to allow graph iterators to visit all the disjoint components |
| 67 | // of the graph, in a single walk. |
| 68 | // |
| 69 | // This algorithm works by going through each node of the graph and for each |
| 70 | // node N, do a DFS starting from N. A rooted edge is established between the |
| 71 | // root node and N (if N is not yet visited). All the nodes reachable from N |
| 72 | // are marked as visited and are skipped in the DFS of subsequent nodes. |
| 73 | // |
| 74 | // Note: This algorithm tries to limit the number of edges out of the root |
| 75 | // node to some extent, but there may be redundant edges created depending on |
| 76 | // the iteration order. For example for a graph {A -> B}, an edge from the |
| 77 | // root node is added to both nodes if B is visited before A. While it does |
| 78 | // not result in minimal number of edges, this approach saves compile-time |
| 79 | // while keeping the number of edges in check. |
| 80 | auto &RootNode = createRootNode(); |
| 81 | df_iterator_default_set<const NodeType *, 4> Visited; |
| 82 | for (auto *N : Graph) { |
| 83 | if (*N == RootNode) |
| 84 | continue; |
| 85 | for (auto I : depth_first_ext(N, Visited)) |
| 86 | if (I == N) |
| 87 | createRootedEdge(RootNode, *N); |
| 88 | } |
| 89 | } |
| 90 | |
| 91 | template <class G> void AbstractDependenceGraphBuilder<G>::createPiBlocks() { |
| 92 | if (!shouldCreatePiBlocks()) |
| 93 | return; |
| 94 | |
| 95 | LLVM_DEBUG(dbgs() << "==== Start of Creation of Pi-Blocks ===\n"); |
| 96 | |
| 97 | // The overall algorithm is as follows: |
| 98 | // 1. Identify SCCs and for each SCC create a pi-block node containing all |
| 99 | // the nodes in that SCC. |
| 100 | // 2. Identify incoming edges incident to the nodes inside of the SCC and |
| 101 | // reconnect them to the pi-block node. |
| 102 | // 3. Identify outgoing edges from the nodes inside of the SCC to nodes |
| 103 | // outside of it and reconnect them so that the edges are coming out of the |
| 104 | // SCC node instead. |
| 105 | |
| 106 | // Adding nodes as we iterate through the SCCs cause the SCC |
| 107 | // iterators to get invalidated. To prevent this invalidation, we first |
| 108 | // collect a list of nodes that are part of an SCC, and then iterate over |
| 109 | // those lists to create the pi-block nodes. Each element of the list is a |
| 110 | // list of nodes in an SCC. Note: trivial SCCs containing a single node are |
| 111 | // ignored. |
| 112 | SmallVector<NodeListType, 4> ListOfSCCs; |
| 113 | for (auto &SCC : make_range(scc_begin(&Graph), scc_end(&Graph))) { |
| 114 | if (SCC.size() > 1) |
| 115 | ListOfSCCs.emplace_back(SCC.begin(), SCC.end()); |
| 116 | } |
| 117 | |
| 118 | for (NodeListType &NL : ListOfSCCs) { |
| 119 | LLVM_DEBUG(dbgs() << "Creating pi-block node with " << NL.size() |
| 120 | << " nodes in it.\n"); |
| 121 | |
| 122 | // SCC iterator may put the nodes in an order that's different from the |
| 123 | // program order. To preserve original program order, we sort the list of |
| 124 | // nodes based on ordinal numbers computed earlier. |
| 125 | llvm::sort(NL, [&](NodeType *LHS, NodeType *RHS) { |
| 126 | return getOrdinal(*LHS) < getOrdinal(*RHS); |
| 127 | }); |
| 128 | |
| 129 | NodeType &PiNode = createPiBlock(NL); |
| 130 | ++TotalPiBlockNodes; |
| 131 | |
| 132 | // Build a set to speed up the lookup for edges whose targets |
| 133 | // are inside the SCC. |
| 134 | SmallPtrSet<NodeType *, 4> NodesInSCC(NL.begin(), NL.end()); |
| 135 | |
| 136 | // We have the set of nodes in the SCC. We go through the set of nodes |
| 137 | // that are outside of the SCC and look for edges that cross the two sets. |
| 138 | for (NodeType *N : Graph) { |
| 139 | |
| 140 | // Skip the SCC node and all the nodes inside of it. |
| 141 | if (*N == PiNode || NodesInSCC.count(N)) |
| 142 | continue; |
| 143 | |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 144 | enum Direction { |
| 145 | Incoming, // Incoming edges to the SCC |
| 146 | Outgoing, // Edges going ot of the SCC |
| 147 | DirectionCount // To make the enum usable as an array index. |
| 148 | }; |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 149 | |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 150 | // Use these flags to help us avoid creating redundant edges. If there |
| 151 | // are more than one edges from an outside node to inside nodes, we only |
| 152 | // keep one edge from that node to the pi-block node. Similarly, if |
| 153 | // there are more than one edges from inside nodes to an outside node, |
| 154 | // we only keep one edge from the pi-block node to the outside node. |
| 155 | // There is a flag defined for each direction (incoming vs outgoing) and |
| 156 | // for each type of edge supported, using a two-dimensional boolean |
| 157 | // array. |
| 158 | using EdgeKind = typename EdgeType::EdgeKind; |
| 159 | EnumeratedArray<bool, EdgeKind> EdgeAlreadyCreated[DirectionCount]{false, |
| 160 | false}; |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 161 | |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 162 | auto createEdgeOfKind = [this](NodeType &Src, NodeType &Dst, |
| 163 | const EdgeKind K) { |
| 164 | switch (K) { |
| 165 | case EdgeKind::RegisterDefUse: |
| 166 | createDefUseEdge(Src, Dst); |
| 167 | break; |
| 168 | case EdgeKind::MemoryDependence: |
| 169 | createMemoryEdge(Src, Dst); |
| 170 | break; |
| 171 | case EdgeKind::Rooted: |
| 172 | createRootedEdge(Src, Dst); |
| 173 | break; |
| 174 | default: |
| 175 | llvm_unreachable("Unsupported type of edge."); |
| 176 | } |
| 177 | }; |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 178 | |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 179 | auto reconnectEdges = [&](NodeType *Src, NodeType *Dst, NodeType *New, |
| 180 | const Direction Dir) { |
| 181 | if (!Src->hasEdgeTo(*Dst)) |
| 182 | return; |
| 183 | LLVM_DEBUG( |
| 184 | dbgs() << "reconnecting(" |
| 185 | << (Dir == Direction::Incoming ? "incoming)" : "outgoing)") |
| 186 | << ":\nSrc:" << *Src << "\nDst:" << *Dst << "\nNew:" << *New |
| 187 | << "\n"); |
| 188 | assert((Dir == Direction::Incoming || Dir == Direction::Outgoing) && |
| 189 | "Invalid direction."); |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 190 | |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 191 | SmallVector<EdgeType *, 10> EL; |
| 192 | Src->findEdgesTo(*Dst, EL); |
| 193 | for (EdgeType *OldEdge : EL) { |
| 194 | EdgeKind Kind = OldEdge->getKind(); |
| 195 | if (!EdgeAlreadyCreated[Dir][Kind]) { |
| 196 | if (Dir == Direction::Incoming) { |
| 197 | createEdgeOfKind(*Src, *New, Kind); |
| 198 | LLVM_DEBUG(dbgs() << "created edge from Src to New.\n"); |
| 199 | } else if (Dir == Direction::Outgoing) { |
| 200 | createEdgeOfKind(*New, *Dst, Kind); |
| 201 | LLVM_DEBUG(dbgs() << "created edge from New to Dst.\n"); |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 202 | } |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 203 | EdgeAlreadyCreated[Dir][Kind] = true; |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 204 | } |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 205 | Src->removeEdge(*OldEdge); |
| 206 | destroyEdge(*OldEdge); |
| 207 | LLVM_DEBUG(dbgs() << "removed old edge between Src and Dst.\n\n"); |
| 208 | } |
| 209 | }; |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 210 | |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 211 | for (NodeType *SCCNode : NL) { |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 212 | // Process incoming edges incident to the pi-block node. |
| 213 | reconnectEdges(N, SCCNode, &PiNode, Direction::Incoming); |
| 214 | |
| 215 | // Process edges that are coming out of the pi-block node. |
| 216 | reconnectEdges(SCCNode, N, &PiNode, Direction::Outgoing); |
| 217 | } |
| 218 | } |
| 219 | } |
| 220 | |
| 221 | // Ordinal maps are no longer needed. |
| 222 | InstOrdinalMap.clear(); |
| 223 | NodeOrdinalMap.clear(); |
| 224 | |
| 225 | LLVM_DEBUG(dbgs() << "==== End of Creation of Pi-Blocks ===\n"); |
| 226 | } |
| 227 | |
| 228 | template <class G> void AbstractDependenceGraphBuilder<G>::createDefUseEdges() { |
| 229 | for (NodeType *N : Graph) { |
| 230 | InstructionListType SrcIList; |
| 231 | N->collectInstructions([](const Instruction *I) { return true; }, SrcIList); |
| 232 | |
| 233 | // Use a set to mark the targets that we link to N, so we don't add |
| 234 | // duplicate def-use edges when more than one instruction in a target node |
| 235 | // use results of instructions that are contained in N. |
| 236 | SmallPtrSet<NodeType *, 4> VisitedTargets; |
| 237 | |
| 238 | for (Instruction *II : SrcIList) { |
| 239 | for (User *U : II->users()) { |
| 240 | Instruction *UI = dyn_cast<Instruction>(U); |
| 241 | if (!UI) |
| 242 | continue; |
| 243 | NodeType *DstNode = nullptr; |
| 244 | if (IMap.find(UI) != IMap.end()) |
| 245 | DstNode = IMap.find(UI)->second; |
| 246 | |
| 247 | // In the case of loops, the scope of the subgraph is all the |
| 248 | // basic blocks (and instructions within them) belonging to the loop. We |
| 249 | // simply ignore all the edges coming from (or going into) instructions |
| 250 | // or basic blocks outside of this range. |
| 251 | if (!DstNode) { |
| 252 | LLVM_DEBUG( |
| 253 | dbgs() |
| 254 | << "skipped def-use edge since the sink" << *UI |
| 255 | << " is outside the range of instructions being considered.\n"); |
| 256 | continue; |
| 257 | } |
| 258 | |
| 259 | // Self dependencies are ignored because they are redundant and |
| 260 | // uninteresting. |
| 261 | if (DstNode == N) { |
| 262 | LLVM_DEBUG(dbgs() |
| 263 | << "skipped def-use edge since the sink and the source (" |
| 264 | << N << ") are the same.\n"); |
| 265 | continue; |
| 266 | } |
| 267 | |
| 268 | if (VisitedTargets.insert(DstNode).second) { |
| 269 | createDefUseEdge(*N, *DstNode); |
| 270 | ++TotalDefUseEdges; |
| 271 | } |
| 272 | } |
| 273 | } |
| 274 | } |
| 275 | } |
| 276 | |
| 277 | template <class G> |
| 278 | void AbstractDependenceGraphBuilder<G>::createMemoryDependencyEdges() { |
| 279 | using DGIterator = typename G::iterator; |
| 280 | auto isMemoryAccess = [](const Instruction *I) { |
| 281 | return I->mayReadOrWriteMemory(); |
| 282 | }; |
| 283 | for (DGIterator SrcIt = Graph.begin(), E = Graph.end(); SrcIt != E; ++SrcIt) { |
| 284 | InstructionListType SrcIList; |
| 285 | (*SrcIt)->collectInstructions(isMemoryAccess, SrcIList); |
| 286 | if (SrcIList.empty()) |
| 287 | continue; |
| 288 | |
| 289 | for (DGIterator DstIt = SrcIt; DstIt != E; ++DstIt) { |
| 290 | if (**SrcIt == **DstIt) |
| 291 | continue; |
| 292 | InstructionListType DstIList; |
| 293 | (*DstIt)->collectInstructions(isMemoryAccess, DstIList); |
| 294 | if (DstIList.empty()) |
| 295 | continue; |
| 296 | bool ForwardEdgeCreated = false; |
| 297 | bool BackwardEdgeCreated = false; |
| 298 | for (Instruction *ISrc : SrcIList) { |
| 299 | for (Instruction *IDst : DstIList) { |
| 300 | auto D = DI.depends(ISrc, IDst, true); |
| 301 | if (!D) |
| 302 | continue; |
| 303 | |
| 304 | // If we have a dependence with its left-most non-'=' direction |
| 305 | // being '>' we need to reverse the direction of the edge, because |
| 306 | // the source of the dependence cannot occur after the sink. For |
| 307 | // confused dependencies, we will create edges in both directions to |
| 308 | // represent the possibility of a cycle. |
| 309 | |
| 310 | auto createConfusedEdges = [&](NodeType &Src, NodeType &Dst) { |
| 311 | if (!ForwardEdgeCreated) { |
| 312 | createMemoryEdge(Src, Dst); |
| 313 | ++TotalMemoryEdges; |
| 314 | } |
| 315 | if (!BackwardEdgeCreated) { |
| 316 | createMemoryEdge(Dst, Src); |
| 317 | ++TotalMemoryEdges; |
| 318 | } |
| 319 | ForwardEdgeCreated = BackwardEdgeCreated = true; |
| 320 | ++TotalConfusedEdges; |
| 321 | }; |
| 322 | |
| 323 | auto createForwardEdge = [&](NodeType &Src, NodeType &Dst) { |
| 324 | if (!ForwardEdgeCreated) { |
| 325 | createMemoryEdge(Src, Dst); |
| 326 | ++TotalMemoryEdges; |
| 327 | } |
| 328 | ForwardEdgeCreated = true; |
| 329 | }; |
| 330 | |
| 331 | auto createBackwardEdge = [&](NodeType &Src, NodeType &Dst) { |
| 332 | if (!BackwardEdgeCreated) { |
| 333 | createMemoryEdge(Dst, Src); |
| 334 | ++TotalMemoryEdges; |
| 335 | } |
| 336 | BackwardEdgeCreated = true; |
| 337 | }; |
| 338 | |
| 339 | if (D->isConfused()) |
| 340 | createConfusedEdges(**SrcIt, **DstIt); |
| 341 | else if (D->isOrdered() && !D->isLoopIndependent()) { |
| 342 | bool ReversedEdge = false; |
| 343 | for (unsigned Level = 1; Level <= D->getLevels(); ++Level) { |
| 344 | if (D->getDirection(Level) == Dependence::DVEntry::EQ) |
| 345 | continue; |
| 346 | else if (D->getDirection(Level) == Dependence::DVEntry::GT) { |
| 347 | createBackwardEdge(**SrcIt, **DstIt); |
| 348 | ReversedEdge = true; |
| 349 | ++TotalEdgeReversals; |
| 350 | break; |
| 351 | } else if (D->getDirection(Level) == Dependence::DVEntry::LT) |
| 352 | break; |
| 353 | else { |
| 354 | createConfusedEdges(**SrcIt, **DstIt); |
| 355 | break; |
| 356 | } |
| 357 | } |
| 358 | if (!ReversedEdge) |
| 359 | createForwardEdge(**SrcIt, **DstIt); |
| 360 | } else |
| 361 | createForwardEdge(**SrcIt, **DstIt); |
| 362 | |
| 363 | // Avoid creating duplicate edges. |
| 364 | if (ForwardEdgeCreated && BackwardEdgeCreated) |
| 365 | break; |
| 366 | } |
| 367 | |
| 368 | // If we've created edges in both directions, there is no more |
| 369 | // unique edge that we can create between these two nodes, so we |
| 370 | // can exit early. |
| 371 | if (ForwardEdgeCreated && BackwardEdgeCreated) |
| 372 | break; |
| 373 | } |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
ThiƩbaud Weksteen | e40e736 | 2020-10-28 15:03:00 +0100 | [diff] [blame] | 378 | template <class G> void AbstractDependenceGraphBuilder<G>::simplify() { |
| 379 | if (!shouldSimplify()) |
| 380 | return; |
| 381 | LLVM_DEBUG(dbgs() << "==== Start of Graph Simplification ===\n"); |
| 382 | |
| 383 | // This algorithm works by first collecting a set of candidate nodes that have |
| 384 | // an out-degree of one (in terms of def-use edges), and then ignoring those |
| 385 | // whose targets have an in-degree more than one. Each node in the resulting |
| 386 | // set can then be merged with its corresponding target and put back into the |
| 387 | // worklist until no further merge candidates are available. |
| 388 | SmallPtrSet<NodeType *, 32> CandidateSourceNodes; |
| 389 | |
| 390 | // A mapping between nodes and their in-degree. To save space, this map |
| 391 | // only contains nodes that are targets of nodes in the CandidateSourceNodes. |
| 392 | DenseMap<NodeType *, unsigned> TargetInDegreeMap; |
| 393 | |
| 394 | for (NodeType *N : Graph) { |
| 395 | if (N->getEdges().size() != 1) |
| 396 | continue; |
| 397 | EdgeType &Edge = N->back(); |
| 398 | if (!Edge.isDefUse()) |
| 399 | continue; |
| 400 | CandidateSourceNodes.insert(N); |
| 401 | |
| 402 | // Insert an element into the in-degree map and initialize to zero. The |
| 403 | // count will get updated in the next step. |
| 404 | TargetInDegreeMap.insert({&Edge.getTargetNode(), 0}); |
| 405 | } |
| 406 | |
| 407 | LLVM_DEBUG({ |
| 408 | dbgs() << "Size of candidate src node list:" << CandidateSourceNodes.size() |
| 409 | << "\nNode with single outgoing def-use edge:\n"; |
| 410 | for (NodeType *N : CandidateSourceNodes) { |
| 411 | dbgs() << N << "\n"; |
| 412 | } |
| 413 | }); |
| 414 | |
| 415 | for (NodeType *N : Graph) { |
| 416 | for (EdgeType *E : *N) { |
| 417 | NodeType *Tgt = &E->getTargetNode(); |
| 418 | auto TgtIT = TargetInDegreeMap.find(Tgt); |
| 419 | if (TgtIT != TargetInDegreeMap.end()) |
| 420 | ++(TgtIT->second); |
| 421 | } |
| 422 | } |
| 423 | |
| 424 | LLVM_DEBUG({ |
| 425 | dbgs() << "Size of target in-degree map:" << TargetInDegreeMap.size() |
| 426 | << "\nContent of in-degree map:\n"; |
| 427 | for (auto &I : TargetInDegreeMap) { |
| 428 | dbgs() << I.first << " --> " << I.second << "\n"; |
| 429 | } |
| 430 | }); |
| 431 | |
| 432 | SmallVector<NodeType *, 32> Worklist(CandidateSourceNodes.begin(), |
| 433 | CandidateSourceNodes.end()); |
| 434 | while (!Worklist.empty()) { |
| 435 | NodeType &Src = *Worklist.pop_back_val(); |
| 436 | // As nodes get merged, we need to skip any node that has been removed from |
| 437 | // the candidate set (see below). |
| 438 | if (!CandidateSourceNodes.erase(&Src)) |
| 439 | continue; |
| 440 | |
| 441 | assert(Src.getEdges().size() == 1 && |
| 442 | "Expected a single edge from the candidate src node."); |
| 443 | NodeType &Tgt = Src.back().getTargetNode(); |
| 444 | assert(TargetInDegreeMap.find(&Tgt) != TargetInDegreeMap.end() && |
| 445 | "Expected target to be in the in-degree map."); |
| 446 | |
| 447 | if (TargetInDegreeMap[&Tgt] != 1) |
| 448 | continue; |
| 449 | |
| 450 | if (!areNodesMergeable(Src, Tgt)) |
| 451 | continue; |
| 452 | |
| 453 | // Do not merge if there is also an edge from target to src (immediate |
| 454 | // cycle). |
| 455 | if (Tgt.hasEdgeTo(Src)) |
| 456 | continue; |
| 457 | |
| 458 | LLVM_DEBUG(dbgs() << "Merging:" << Src << "\nWith:" << Tgt << "\n"); |
| 459 | |
| 460 | mergeNodes(Src, Tgt); |
| 461 | |
| 462 | // If the target node is in the candidate set itself, we need to put the |
| 463 | // src node back into the worklist again so it gives the target a chance |
| 464 | // to get merged into it. For example if we have: |
| 465 | // {(a)->(b), (b)->(c), (c)->(d), ...} and the worklist is initially {b, a}, |
| 466 | // then after merging (a) and (b) together, we need to put (a,b) back in |
| 467 | // the worklist so that (c) can get merged in as well resulting in |
| 468 | // {(a,b,c) -> d} |
| 469 | // We also need to remove the old target (b), from the worklist. We first |
| 470 | // remove it from the candidate set here, and skip any item from the |
| 471 | // worklist that is not in the set. |
| 472 | if (CandidateSourceNodes.erase(&Tgt)) { |
| 473 | Worklist.push_back(&Src); |
| 474 | CandidateSourceNodes.insert(&Src); |
| 475 | LLVM_DEBUG(dbgs() << "Putting " << &Src << " back in the worklist.\n"); |
| 476 | } |
| 477 | } |
| 478 | LLVM_DEBUG(dbgs() << "=== End of Graph Simplification ===\n"); |
| 479 | } |
| 480 | |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 481 | template <class G> |
| 482 | void AbstractDependenceGraphBuilder<G>::sortNodesTopologically() { |
| 483 | |
| 484 | // If we don't create pi-blocks, then we may not have a DAG. |
| 485 | if (!shouldCreatePiBlocks()) |
| 486 | return; |
| 487 | |
| 488 | SmallVector<NodeType *, 64> NodesInPO; |
| 489 | using NodeKind = typename NodeType::NodeKind; |
| 490 | for (NodeType *N : post_order(&Graph)) { |
| 491 | if (N->getKind() == NodeKind::PiBlock) { |
| 492 | // Put members of the pi-block right after the pi-block itself, for |
| 493 | // convenience. |
| 494 | const NodeListType &PiBlockMembers = getNodesInPiBlock(*N); |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 495 | llvm::append_range(NodesInPO, PiBlockMembers); |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 496 | } |
| 497 | NodesInPO.push_back(N); |
| 498 | } |
| 499 | |
| 500 | size_t OldSize = Graph.Nodes.size(); |
| 501 | Graph.Nodes.clear(); |
Chris Wailes | e3116c4 | 2021-07-13 14:40:48 -0700 | [diff] [blame] | 502 | append_range(Graph.Nodes, reverse(NodesInPO)); |
Jeff Vander Stoep | 247d86b | 2020-08-11 14:27:44 +0200 | [diff] [blame] | 503 | if (Graph.Nodes.size() != OldSize) |
| 504 | assert(false && |
| 505 | "Expected the number of nodes to stay the same after the sort"); |
| 506 | } |
| 507 | |
| 508 | template class llvm::AbstractDependenceGraphBuilder<DataDependenceGraph>; |
| 509 | template class llvm::DependenceGraphInfo<DDGNode>; |