| /* |
| * This code implements the MD5 message-digest algorithm. |
| * The algorithm is due to Ron Rivest. This code was |
| * written by Colin Plumb in 1993, no copyright is claimed. |
| * This code is in the public domain; do with it what you wish. |
| * |
| * Equivalent code is available from RSA Data Security, Inc. |
| * This code has been tested against that, and is equivalent, |
| * except that you don't need to include two pages of legalese |
| * with every copy. |
| * |
| * To compute the message digest of a chunk of bytes, declare an |
| * MD5Context structure, pass it to MD5Init, call MD5Update as |
| * needed on buffers full of bytes, and then call MD5Final, which |
| * will fill a supplied 16-byte array with the digest. |
| */ |
| |
| /* This code was modified in 1997 by Jim Kingdon of Cyclic Software to |
| not require an integer type which is exactly 32 bits. This work |
| draws on the changes for the same purpose by Tatu Ylonen |
| <[email protected]> as part of SSH, but since I didn't actually use |
| that code, there is no copyright issue. I hereby disclaim |
| copyright in any changes I have made; this code remains in the |
| public domain. */ |
| |
| /* Note regarding cvs_* namespace: this avoids potential conflicts |
| with libraries such as some versions of Kerberos. No particular |
| need to worry about whether the system supplies an MD5 library, as |
| this file is only about 3k of object code. */ |
| |
| #include <util.h> |
| |
| #include "md5.h" |
| |
| /* Little-endian byte-swapping routines. Note that these do not |
| depend on the size of datatypes such as cvs_uint32, nor do they require |
| us to detect the endianness of the machine we are running on. It |
| is possible they should be macros for speed, but I would be |
| surprised if they were a performance bottleneck for MD5. */ |
| |
| static unsigned long |
| getu32(const unsigned char *addr) |
| { |
| return (((((unsigned long)addr[3] << 8) | addr[2]) << 8) |
| | addr[1]) << 8 | addr[0]; |
| } |
| |
| static void |
| putu32(unsigned long data, unsigned char *addr) |
| { |
| addr[0] = (unsigned char)data; |
| addr[1] = (unsigned char)(data >> 8); |
| addr[2] = (unsigned char)(data >> 16); |
| addr[3] = (unsigned char)(data >> 24); |
| } |
| |
| /* |
| * Start MD5 accumulation. Set bit count to 0 and buffer to mysterious |
| * initialization constants. |
| */ |
| void |
| yasm_md5_init(yasm_md5_context *ctx) |
| { |
| ctx->buf[0] = 0x67452301; |
| ctx->buf[1] = 0xefcdab89; |
| ctx->buf[2] = 0x98badcfe; |
| ctx->buf[3] = 0x10325476; |
| |
| ctx->bits[0] = 0; |
| ctx->bits[1] = 0; |
| } |
| |
| /* |
| * Update context to reflect the concatenation of another buffer full |
| * of bytes. |
| */ |
| void |
| yasm_md5_update(yasm_md5_context *ctx, unsigned char const *buf, |
| unsigned long len) |
| { |
| unsigned long t; |
| |
| /* Update bitcount */ |
| |
| t = ctx->bits[0]; |
| if ((ctx->bits[0] = (t + ((unsigned long)len << 3)) & 0xffffffff) < t) |
| ctx->bits[1]++; /* Carry from low to high */ |
| ctx->bits[1] += len >> 29; |
| |
| t = (t >> 3) & 0x3f; /* Bytes already in shsInfo->data */ |
| |
| /* Handle any leading odd-sized chunks */ |
| |
| if ( t ) { |
| unsigned char *p = ctx->in + t; |
| |
| t = 64-t; |
| if (len < t) { |
| memcpy(p, buf, len); |
| return; |
| } |
| memcpy(p, buf, t); |
| yasm_md5_transform (ctx->buf, ctx->in); |
| buf += t; |
| len -= t; |
| } |
| |
| /* Process data in 64-byte chunks */ |
| |
| while (len >= 64) { |
| memcpy(ctx->in, buf, 64); |
| yasm_md5_transform (ctx->buf, ctx->in); |
| buf += 64; |
| len -= 64; |
| } |
| |
| /* Handle any remaining bytes of data. */ |
| |
| memcpy(ctx->in, buf, len); |
| } |
| |
| /* |
| * Final wrapup - pad to 64-byte boundary with the bit pattern |
| * 1 0* (64-bit count of bits processed, MSB-first) |
| */ |
| void |
| yasm_md5_final(unsigned char digest[16], yasm_md5_context *ctx) |
| { |
| unsigned count; |
| unsigned char *p; |
| |
| /* Compute number of bytes mod 64 */ |
| count = (ctx->bits[0] >> 3) & 0x3F; |
| |
| /* Set the first char of padding to 0x80. This is safe since there is |
| always at least one byte free */ |
| p = ctx->in + count; |
| *p++ = 0x80; |
| |
| /* Bytes of padding needed to make 64 bytes */ |
| count = 64 - 1 - count; |
| |
| /* Pad out to 56 mod 64 */ |
| if (count < 8) { |
| /* Two lots of padding: Pad the first block to 64 bytes */ |
| memset(p, 0, count); |
| yasm_md5_transform (ctx->buf, ctx->in); |
| |
| /* Now fill the next block with 56 bytes */ |
| memset(ctx->in, 0, 56); |
| } else { |
| /* Pad block to 56 bytes */ |
| memset(p, 0, count-8); |
| } |
| |
| /* Append length in bits and transform */ |
| putu32(ctx->bits[0], ctx->in + 56); |
| putu32(ctx->bits[1], ctx->in + 60); |
| |
| yasm_md5_transform (ctx->buf, ctx->in); |
| putu32(ctx->buf[0], digest); |
| putu32(ctx->buf[1], digest + 4); |
| putu32(ctx->buf[2], digest + 8); |
| putu32(ctx->buf[3], digest + 12); |
| memset(ctx, 0, sizeof(*ctx)); /* In case it's sensitive */ |
| } |
| |
| #ifndef ASM_MD5 |
| |
| /* The four core functions - F1 is optimized somewhat */ |
| |
| /* #define F1(x, y, z) (x & y | ~x & z) */ |
| #define F1(x, y, z) (z ^ (x & (y ^ z))) |
| #define F2(x, y, z) F1(z, x, y) |
| #define F3(x, y, z) (x ^ y ^ z) |
| #define F4(x, y, z) (y ^ (x | ~z)) |
| |
| /* This is the central step in the MD5 algorithm. */ |
| #define MD5STEP(f, w, x, y, z, data, s) \ |
| ( w += f(x, y, z) + data, w &= 0xffffffff, w = w<<s | w>>(32-s), w += x ) |
| |
| /* |
| * The core of the MD5 algorithm, this alters an existing MD5 hash to |
| * reflect the addition of 16 longwords of new data. MD5Update blocks |
| * the data and converts bytes into longwords for this routine. |
| */ |
| void |
| yasm_md5_transform(unsigned long buf[4], const unsigned char inraw[64]) |
| { |
| register unsigned long a, b, c, d; |
| unsigned long in[16]; |
| int i; |
| |
| for (i = 0; i < 16; ++i) |
| in[i] = getu32 (inraw + 4 * i); |
| |
| a = buf[0]; |
| b = buf[1]; |
| c = buf[2]; |
| d = buf[3]; |
| |
| MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7); |
| MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); |
| MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); |
| MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); |
| MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7); |
| MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); |
| MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); |
| MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); |
| MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7); |
| MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); |
| MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); |
| MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); |
| MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7); |
| MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); |
| MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); |
| MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); |
| |
| MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5); |
| MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9); |
| MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); |
| MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); |
| MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5); |
| MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9); |
| MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); |
| MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); |
| MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5); |
| MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9); |
| MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); |
| MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); |
| MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5); |
| MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9); |
| MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); |
| MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); |
| |
| MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4); |
| MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); |
| MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); |
| MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); |
| MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4); |
| MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); |
| MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); |
| MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); |
| MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4); |
| MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); |
| MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); |
| MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); |
| MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4); |
| MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); |
| MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); |
| MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); |
| |
| MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6); |
| MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); |
| MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); |
| MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); |
| MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6); |
| MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); |
| MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); |
| MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); |
| MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6); |
| MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); |
| MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); |
| MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); |
| MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6); |
| MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); |
| MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); |
| MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); |
| |
| buf[0] += a; |
| buf[1] += b; |
| buf[2] += c; |
| buf[3] += d; |
| } |
| #endif |
| |
| #ifdef TEST |
| /* Simple test program. Can use it to manually run the tests from |
| RFC1321 for example. */ |
| #include <stdio.h> |
| |
| int |
| main (int argc, char **argv) |
| { |
| yasm_md5_context context; |
| unsigned char checksum[16]; |
| int i; |
| int j; |
| |
| if (argc < 2) |
| { |
| fprintf (stderr, "usage: %s string-to-hash\n", argv[0]); |
| exit (1); |
| } |
| for (j = 1; j < argc; ++j) |
| { |
| printf ("MD5 (\"%s\") = ", argv[j]); |
| yasm_md5_init (&context); |
| yasm_md5_update (&context, argv[j], strlen (argv[j])); |
| yasm_md5_final (checksum, &context); |
| for (i = 0; i < 16; i++) |
| { |
| printf ("%02x", (unsigned int) checksum[i]); |
| } |
| printf ("\n"); |
| } |
| return 0; |
| } |
| #endif /* TEST */ |