blob: ba79e9c950b67c105634fb231e01a583a4feb967 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// BufferVk.cpp:
// Implements the class methods for BufferVk.
//
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "common/FixedVector.h"
#include "common/debug.h"
#include "common/mathutil.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/vk_renderer.h"
namespace rx
{
VkBufferUsageFlags GetDefaultBufferUsageFlags(vk::Renderer *renderer)
{
// We could potentially use multiple backing buffers for different usages.
// For now keep a single buffer with all relevant usage flags.
VkBufferUsageFlags defaultBufferUsageFlags =
VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_INDEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT |
VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_BUFFER_BIT |
VK_BUFFER_USAGE_UNIFORM_TEXEL_BUFFER_BIT | VK_BUFFER_USAGE_STORAGE_TEXEL_BUFFER_BIT |
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT;
if (renderer->getFeatures().supportsTransformFeedbackExtension.enabled)
{
defaultBufferUsageFlags |= VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_BUFFER_BIT_EXT |
VK_BUFFER_USAGE_TRANSFORM_FEEDBACK_COUNTER_BUFFER_BIT_EXT;
}
return defaultBufferUsageFlags;
}
namespace
{
constexpr VkMemoryPropertyFlags kDeviceLocalFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
constexpr VkMemoryPropertyFlags kDeviceLocalHostCoherentFlags =
(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT |
VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
constexpr VkMemoryPropertyFlags kHostCachedFlags =
(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT |
VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
constexpr VkMemoryPropertyFlags kHostUncachedFlags =
(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT);
constexpr VkMemoryPropertyFlags kHostCachedNonCoherentFlags =
(VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
// Vertex attribute buffers are used as storage buffers for conversion in compute, where access to
// the buffer is made in 4-byte chunks. Assume the size of the buffer is 4k+n where n is in [0, 3).
// On some hardware, reading 4 bytes from address 4k returns 0, making it impossible to read the
// last n bytes. By rounding up the buffer sizes to a multiple of 4, the problem is alleviated.
constexpr size_t kBufferSizeGranularity = 4;
static_assert(gl::isPow2(kBufferSizeGranularity), "use as alignment, must be power of two");
// Start with a fairly small buffer size. We can increase this dynamically as we convert more data.
constexpr size_t kConvertedArrayBufferInitialSize = 1024 * 8;
// Buffers that have a static usage pattern will be allocated in
// device local memory to speed up access to and from the GPU.
// Dynamic usage patterns or that are frequently mapped
// will now request host cached memory to speed up access from the CPU.
VkMemoryPropertyFlags GetPreferredMemoryType(vk::Renderer *renderer,
gl::BufferBinding target,
gl::BufferUsage usage)
{
if (target == gl::BufferBinding::PixelUnpack)
{
return kHostCachedFlags;
}
switch (usage)
{
case gl::BufferUsage::StaticCopy:
case gl::BufferUsage::StaticDraw:
case gl::BufferUsage::StaticRead:
// For static usage, request a device local memory
return renderer->getFeatures().preferDeviceLocalMemoryHostVisible.enabled
? kDeviceLocalHostCoherentFlags
: kDeviceLocalFlags;
case gl::BufferUsage::DynamicDraw:
case gl::BufferUsage::StreamDraw:
// For non-static usage where the CPU performs a write-only access, request
// a host uncached memory
return renderer->getFeatures().preferHostCachedForNonStaticBufferUsage.enabled
? kHostCachedFlags
: kHostUncachedFlags;
case gl::BufferUsage::DynamicCopy:
case gl::BufferUsage::DynamicRead:
case gl::BufferUsage::StreamCopy:
case gl::BufferUsage::StreamRead:
// For all other types of usage, request a host cached memory
return renderer->getFeatures()
.preferCachedNoncoherentForDynamicStreamBufferUsage.enabled
? kHostCachedNonCoherentFlags
: kHostCachedFlags;
default:
UNREACHABLE();
return kHostCachedFlags;
}
}
VkMemoryPropertyFlags GetStorageMemoryType(vk::Renderer *renderer,
GLbitfield storageFlags,
bool externalBuffer)
{
const bool hasMapAccess =
(storageFlags & (GL_MAP_READ_BIT | GL_MAP_WRITE_BIT | GL_MAP_PERSISTENT_BIT_EXT)) != 0;
if (renderer->getFeatures().preferDeviceLocalMemoryHostVisible.enabled)
{
const bool canUpdate = (storageFlags & GL_DYNAMIC_STORAGE_BIT_EXT) != 0;
if (canUpdate || hasMapAccess || externalBuffer)
{
// We currently allocate coherent memory for persistently mapped buffers.
// GL_EXT_buffer_storage allows non-coherent memory, but currently the implementation of
// |glMemoryBarrier(CLIENT_MAPPED_BUFFER_BARRIER_BIT_EXT)| relies on the mapping being
// coherent.
//
// If persistently mapped buffers ever use non-coherent memory, then said
// |glMemoryBarrier| call must result in |vkInvalidateMappedMemoryRanges| for all
// persistently mapped buffers.
return kDeviceLocalHostCoherentFlags;
}
return kDeviceLocalFlags;
}
return hasMapAccess ? kHostCachedFlags : kDeviceLocalFlags;
}
bool ShouldAllocateNewMemoryForUpdate(ContextVk *contextVk, size_t subDataSize, size_t bufferSize)
{
// A sub-data update with size > 50% of buffer size meets the threshold to acquire a new
// BufferHelper from the pool.
size_t halfBufferSize = bufferSize / 2;
if (subDataSize > halfBufferSize)
{
return true;
}
// If the GPU is busy, it is possible to use the CPU for updating sub-data instead, but since it
// would need to create a duplicate of the buffer, a large enough buffer copy could result in a
// performance regression.
if (contextVk->getFeatures().preferCPUForBufferSubData.enabled)
{
// If the buffer is small enough, the cost of barrier associated with the GPU copy likely
// exceeds the overhead with the CPU copy. Duplicating the buffer allows the CPU to write to
// the buffer immediately, thus avoiding the barrier that prevents parallel operation.
constexpr size_t kCpuCopyBufferSizeThreshold = 32 * 1024;
if (bufferSize < kCpuCopyBufferSizeThreshold)
{
return true;
}
// To use CPU for the sub-data update in larger buffers, the update should be sizable enough
// compared to the whole buffer size. The threshold is chosen based on perf data collected
// from Pixel devices. At 1/8 of buffer size, the CPU overhead associated with extra data
// copy weighs less than serialization caused by barriers.
size_t subDataThreshold = bufferSize / 8;
if (subDataSize > subDataThreshold)
{
return true;
}
}
return false;
}
bool ShouldUseCPUToCopyData(ContextVk *contextVk,
const vk::BufferHelper &buffer,
size_t copySize,
size_t bufferSize)
{
vk::Renderer *renderer = contextVk->getRenderer();
// If the buffer is not host-visible, or if it's busy on the GPU, can't read from it from the
// CPU
if (!buffer.isHostVisible() || !renderer->hasResourceUseFinished(buffer.getWriteResourceUse()))
{
return false;
}
// For some GPUs (e.g. ARM) we always prefer using CPU to do copy instead of using the GPU to
// avoid pipeline bubbles. If the GPU is currently busy and data copy size is less than certain
// threshold, we choose to use CPU to do the copy over GPU to achieve better parallelism.
return renderer->getFeatures().preferCPUForBufferSubData.enabled ||
(renderer->isCommandQueueBusy() &&
copySize < renderer->getMaxCopyBytesUsingCPUWhenPreservingBufferData());
}
bool RenderPassUsesBufferForReadOnly(ContextVk *contextVk, const vk::BufferHelper &buffer)
{
if (!contextVk->hasActiveRenderPass())
{
return false;
}
vk::RenderPassCommandBufferHelper &renderPassCommands =
contextVk->getStartedRenderPassCommands();
return renderPassCommands.usesBuffer(buffer) && !renderPassCommands.usesBufferForWrite(buffer);
}
// If a render pass is open which uses the buffer in read-only mode, render pass break can be
// avoided by using acquireAndUpdate. This can be costly however if the update is very small, and
// is limited to platforms where render pass break is itself costly (i.e. tiled-based renderers).
bool ShouldAvoidRenderPassBreakOnUpdate(ContextVk *contextVk,
const vk::BufferHelper &buffer,
size_t bufferSize)
{
// Only avoid breaking the render pass if the buffer is not so big such that duplicating it
// would outweight the cost of breaking the render pass. A value of 1KB is temporary chosen as
// a heuristic, and can be adjusted when such a situation is encountered.
constexpr size_t kPreferDuplicateOverRenderPassBreakMaxBufferSize = 1024;
if (!contextVk->getFeatures().preferCPUForBufferSubData.enabled ||
bufferSize > kPreferDuplicateOverRenderPassBreakMaxBufferSize)
{
return false;
}
return RenderPassUsesBufferForReadOnly(contextVk, buffer);
}
BufferUsageType GetBufferUsageType(gl::BufferUsage usage)
{
return (usage == gl::BufferUsage::DynamicDraw || usage == gl::BufferUsage::DynamicCopy ||
usage == gl::BufferUsage::DynamicRead)
? BufferUsageType::Dynamic
: BufferUsageType::Static;
}
angle::Result GetMemoryTypeIndex(ContextVk *contextVk,
VkDeviceSize size,
VkMemoryPropertyFlags memoryPropertyFlags,
uint32_t *memoryTypeIndexOut)
{
vk::Renderer *renderer = contextVk->getRenderer();
const vk::Allocator &allocator = renderer->getAllocator();
bool persistentlyMapped = renderer->getFeatures().persistentlyMappedBuffers.enabled;
VkBufferUsageFlags defaultBufferUsageFlags = GetDefaultBufferUsageFlags(renderer);
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.flags = 0;
createInfo.size = size;
createInfo.usage = defaultBufferUsageFlags;
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
// Host visible is required, all other bits are preferred, (i.e., optional)
VkMemoryPropertyFlags requiredFlags =
(memoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT);
VkMemoryPropertyFlags preferredFlags =
(memoryPropertyFlags & (~VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT));
// Check that the allocation is not too large.
uint32_t memoryTypeIndex = 0;
ANGLE_VK_TRY(contextVk, allocator.findMemoryTypeIndexForBufferInfo(
createInfo, requiredFlags, preferredFlags, persistentlyMapped,
&memoryTypeIndex));
*memoryTypeIndexOut = memoryTypeIndex;
return angle::Result::Continue;
}
bool IsSelfCopy(const BufferDataSource &dataSource, const vk::BufferHelper &destination)
{
return dataSource.data == nullptr &&
dataSource.buffer->getBufferSerial() == destination.getBufferSerial();
}
angle::Result CopyBuffers(ContextVk *contextVk,
vk::BufferHelper *srcBuffer,
vk::BufferHelper *dstBuffer,
uint32_t regionCount,
const VkBufferCopy *copyRegions)
{
ASSERT(srcBuffer->valid() && dstBuffer->valid());
// Enqueue a copy command on the GPU
vk::CommandBufferAccess access;
if (srcBuffer->getBufferSerial() == dstBuffer->getBufferSerial())
{
access.onBufferSelfCopy(srcBuffer);
}
else
{
access.onBufferTransferRead(srcBuffer);
access.onBufferTransferWrite(dstBuffer);
}
vk::OutsideRenderPassCommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
commandBuffer->copyBuffer(srcBuffer->getBuffer(), dstBuffer->getBuffer(), regionCount,
copyRegions);
return angle::Result::Continue;
}
} // namespace
// ConversionBuffer implementation.
ConversionBuffer::ConversionBuffer(vk::Renderer *renderer,
VkBufferUsageFlags usageFlags,
size_t initialSize,
size_t alignment,
bool hostVisible)
: mEntireBufferDirty(true)
{
mData = std::make_unique<vk::BufferHelper>();
mDirtyRanges.reserve(32);
}
ConversionBuffer::~ConversionBuffer()
{
ASSERT(!mData || !mData->valid());
mDirtyRanges.clear();
}
ConversionBuffer::ConversionBuffer(ConversionBuffer &&other) = default;
// dirtyRanges may be overlap or continuous. In order to reduce the redunant conversion, we try to
// consolidate the dirty ranges. First we sort it by the range's low. Then we walk the range again
// and check it with previous range and merge them if possible. That merge will remove the
// overlapped area as well as reduce the number of ranges.
void ConversionBuffer::consolidateDirtyRanges()
{
ASSERT(!mEntireBufferDirty);
auto comp = [](const RangeDeviceSize &a, const RangeDeviceSize &b) -> bool {
return a.low() < b.low();
};
std::sort(mDirtyRanges.begin(), mDirtyRanges.end(), comp);
size_t prev = 0;
for (size_t i = 1; i < mDirtyRanges.size(); i++)
{
if (mDirtyRanges[prev].intersectsOrContinuous(mDirtyRanges[i]))
{
mDirtyRanges[prev].merge(mDirtyRanges[i]);
mDirtyRanges[i].invalidate();
}
else
{
prev = i;
}
}
}
// VertexConversionBuffer implementation.
VertexConversionBuffer::VertexConversionBuffer(vk::Renderer *renderer, const CacheKey &cacheKey)
: ConversionBuffer(renderer,
vk::kVertexBufferUsageFlags,
kConvertedArrayBufferInitialSize,
vk::kVertexBufferAlignment,
cacheKey.hostVisible),
mCacheKey(cacheKey)
{}
VertexConversionBuffer::VertexConversionBuffer(VertexConversionBuffer &&other) = default;
VertexConversionBuffer::~VertexConversionBuffer() = default;
// BufferVk implementation.
BufferVk::BufferVk(const gl::BufferState &state)
: BufferImpl(state),
mClientBuffer(nullptr),
mMemoryTypeIndex(0),
mMemoryPropertyFlags(0),
mIsStagingBufferMapped(false),
mHasValidData(false),
mIsMappedForWrite(false),
mUsageType(BufferUsageType::Static)
{
mMappedRange.invalidate();
}
BufferVk::~BufferVk() {}
void BufferVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
(void)release(contextVk);
}
void BufferVk::releaseConversionBuffers(vk::Context *context)
{
for (ConversionBuffer &buffer : mVertexConversionBuffers)
{
buffer.release(context);
}
mVertexConversionBuffers.clear();
}
angle::Result BufferVk::release(ContextVk *contextVk)
{
if (mBuffer.valid())
{
ANGLE_TRY(contextVk->releaseBufferAllocation(&mBuffer));
}
if (mStagingBuffer.valid())
{
mStagingBuffer.release(contextVk);
}
releaseConversionBuffers(contextVk);
return angle::Result::Continue;
}
angle::Result BufferVk::setExternalBufferData(const gl::Context *context,
gl::BufferBinding target,
GLeglClientBufferEXT clientBuffer,
size_t size,
VkMemoryPropertyFlags memoryPropertyFlags)
{
ContextVk *contextVk = vk::GetImpl(context);
// Release and re-create the memory and buffer.
ANGLE_TRY(release(contextVk));
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.flags = 0;
createInfo.size = size;
createInfo.usage = GetDefaultBufferUsageFlags(contextVk->getRenderer());
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
return mBuffer.initExternal(contextVk, memoryPropertyFlags, createInfo, clientBuffer);
}
angle::Result BufferVk::setDataWithUsageFlags(const gl::Context *context,
gl::BufferBinding target,
GLeglClientBufferEXT clientBuffer,
const void *data,
size_t size,
gl::BufferUsage usage,
GLbitfield flags,
gl::BufferStorage bufferStorage)
{
ContextVk *contextVk = vk::GetImpl(context);
VkMemoryPropertyFlags memoryPropertyFlags = 0;
bool persistentMapRequired = false;
const bool isExternalBuffer = clientBuffer != nullptr;
if (bufferStorage == gl::BufferStorage::Immutable)
{
// glBufferStorage API call
memoryPropertyFlags =
GetStorageMemoryType(contextVk->getRenderer(), flags, isExternalBuffer);
persistentMapRequired = (flags & GL_MAP_PERSISTENT_BIT_EXT) != 0;
}
else
{
// glBufferData API call
memoryPropertyFlags = GetPreferredMemoryType(contextVk->getRenderer(), target, usage);
}
if (isExternalBuffer)
{
ANGLE_TRY(setExternalBufferData(context, target, clientBuffer, size, memoryPropertyFlags));
if (!mBuffer.isHostVisible())
{
// If external buffer's memory does not support host visible memory property, we cannot
// support a persistent map request.
ANGLE_VK_CHECK(contextVk, !persistentMapRequired, VK_ERROR_MEMORY_MAP_FAILED);
}
mClientBuffer = clientBuffer;
return angle::Result::Continue;
}
return setDataWithMemoryType(context, target, data, size, memoryPropertyFlags, usage);
}
angle::Result BufferVk::setData(const gl::Context *context,
gl::BufferBinding target,
const void *data,
size_t size,
gl::BufferUsage usage)
{
ContextVk *contextVk = vk::GetImpl(context);
// Assume host visible/coherent memory available.
VkMemoryPropertyFlags memoryPropertyFlags =
GetPreferredMemoryType(contextVk->getRenderer(), target, usage);
return setDataWithMemoryType(context, target, data, size, memoryPropertyFlags, usage);
}
angle::Result BufferVk::setDataWithMemoryType(const gl::Context *context,
gl::BufferBinding target,
const void *data,
size_t size,
VkMemoryPropertyFlags memoryPropertyFlags,
gl::BufferUsage usage)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::Renderer *renderer = contextVk->getRenderer();
// Since the buffer is being entirely reinitialized, reset the valid-data flag. If the caller
// passed in data to fill the buffer, the flag will be updated when the data is copied to the
// buffer.
mHasValidData = false;
if (size == 0)
{
// Nothing to do.
return angle::Result::Continue;
}
if (!mVertexConversionBuffers.empty())
{
for (ConversionBuffer &buffer : mVertexConversionBuffers)
{
buffer.clearDirty();
}
}
const BufferUsageType usageType = GetBufferUsageType(usage);
const BufferUpdateType updateType =
calculateBufferUpdateTypeOnFullUpdate(renderer, size, memoryPropertyFlags, usageType, data);
if (updateType == BufferUpdateType::StorageRedefined)
{
mUsageType = usageType;
mMemoryPropertyFlags = memoryPropertyFlags;
ANGLE_TRY(GetMemoryTypeIndex(contextVk, size, memoryPropertyFlags, &mMemoryTypeIndex));
ANGLE_TRY(acquireBufferHelper(contextVk, size, mUsageType));
}
else if (size != static_cast<size_t>(mState.getSize()))
{
if (mBuffer.onBufferUserSizeChange(renderer))
{
// If we have a dedicated VkBuffer created with user size, even if the storage is
// reused, we have to recreate that VkBuffer with user size when user size changes.
// When this happens, we must notify other objects that observing this buffer, such as
// vertex array. The reason vertex array is observing the buffer's storage change is
// because they uses VkBuffer. Now VkBuffer have changed, vertex array needs to
// re-process it just like storage has been reallocated.
onStateChange(angle::SubjectMessage::InternalMemoryAllocationChanged);
}
}
if (data != nullptr)
{
BufferDataSource dataSource = {};
dataSource.data = data;
// Handle full-buffer updates similarly to glBufferSubData
ANGLE_TRY(setDataImpl(contextVk, size, dataSource, size, 0, updateType));
}
return angle::Result::Continue;
}
angle::Result BufferVk::setSubData(const gl::Context *context,
gl::BufferBinding target,
const void *data,
size_t size,
size_t offset)
{
ASSERT(mBuffer.valid());
BufferDataSource dataSource = {};
dataSource.data = data;
ContextVk *contextVk = vk::GetImpl(context);
return setDataImpl(contextVk, static_cast<size_t>(mState.getSize()), dataSource, size, offset,
BufferUpdateType::ContentsUpdate);
}
angle::Result BufferVk::copySubData(const gl::Context *context,
BufferImpl *source,
GLintptr sourceOffset,
GLintptr destOffset,
GLsizeiptr size)
{
ASSERT(mBuffer.valid());
ContextVk *contextVk = vk::GetImpl(context);
BufferVk *sourceVk = GetAs<BufferVk>(source);
BufferDataSource dataSource = {};
dataSource.buffer = &sourceVk->getBuffer();
dataSource.bufferOffset = static_cast<VkDeviceSize>(sourceOffset);
ASSERT(dataSource.buffer->valid());
return setDataImpl(contextVk, static_cast<size_t>(mState.getSize()), dataSource, size,
destOffset, BufferUpdateType::ContentsUpdate);
}
angle::Result BufferVk::allocStagingBuffer(ContextVk *contextVk,
vk::MemoryCoherency coherency,
VkDeviceSize size,
uint8_t **mapPtr)
{
ASSERT(!mIsStagingBufferMapped);
if (mStagingBuffer.valid())
{
if (size <= mStagingBuffer.getSize() && IsCached(coherency) == mStagingBuffer.isCached() &&
contextVk->getRenderer()->hasResourceUseFinished(mStagingBuffer.getResourceUse()))
{
// If size is big enough and it is idle, then just reuse the existing staging buffer
*mapPtr = mStagingBuffer.getMappedMemory();
mIsStagingBufferMapped = true;
return angle::Result::Continue;
}
mStagingBuffer.release(contextVk);
}
ANGLE_TRY(
contextVk->initBufferForBufferCopy(&mStagingBuffer, static_cast<size_t>(size), coherency));
*mapPtr = mStagingBuffer.getMappedMemory();
mIsStagingBufferMapped = true;
return angle::Result::Continue;
}
angle::Result BufferVk::flushStagingBuffer(ContextVk *contextVk,
VkDeviceSize offset,
VkDeviceSize size)
{
vk::Renderer *renderer = contextVk->getRenderer();
ASSERT(mIsStagingBufferMapped);
ASSERT(mStagingBuffer.valid());
if (!mStagingBuffer.isCoherent())
{
ANGLE_TRY(mStagingBuffer.flush(renderer));
}
VkBufferCopy copyRegion = {mStagingBuffer.getOffset(), mBuffer.getOffset() + offset, size};
ANGLE_TRY(CopyBuffers(contextVk, &mStagingBuffer, &mBuffer, 1, &copyRegion));
return angle::Result::Continue;
}
angle::Result BufferVk::handleDeviceLocalBufferMap(ContextVk *contextVk,
VkDeviceSize offset,
VkDeviceSize size,
uint8_t **mapPtr)
{
vk::Renderer *renderer = contextVk->getRenderer();
ANGLE_TRY(
allocStagingBuffer(contextVk, vk::MemoryCoherency::CachedPreferCoherent, size, mapPtr));
ANGLE_TRY(mStagingBuffer.flush(renderer));
// Copy data from device local buffer to host visible staging buffer.
VkBufferCopy copyRegion = {mBuffer.getOffset() + offset, mStagingBuffer.getOffset(), size};
ANGLE_TRY(CopyBuffers(contextVk, &mBuffer, &mStagingBuffer, 1, &copyRegion));
ANGLE_TRY(mStagingBuffer.waitForIdle(contextVk, "GPU stall due to mapping device local buffer",
RenderPassClosureReason::DeviceLocalBufferMap));
// Since coherent is prefer, we may end up getting non-coherent. Always call invalidate here (it
// will check memory flag before it actually calls into driver).
ANGLE_TRY(mStagingBuffer.invalidate(renderer));
return angle::Result::Continue;
}
angle::Result BufferVk::mapHostVisibleBuffer(ContextVk *contextVk,
VkDeviceSize offset,
GLbitfield access,
uint8_t **mapPtr)
{
ANGLE_TRY(mBuffer.mapWithOffset(contextVk, mapPtr, static_cast<size_t>(offset)));
// Invalidate non-coherent for READ case.
if (!mBuffer.isCoherent() && (access & GL_MAP_READ_BIT) != 0)
{
ANGLE_TRY(mBuffer.invalidate(contextVk->getRenderer()));
}
return angle::Result::Continue;
}
angle::Result BufferVk::map(const gl::Context *context, GLenum access, void **mapPtr)
{
ASSERT(mBuffer.valid());
ASSERT(access == GL_WRITE_ONLY_OES);
return mapImpl(vk::GetImpl(context), GL_MAP_WRITE_BIT, mapPtr);
}
angle::Result BufferVk::mapRange(const gl::Context *context,
size_t offset,
size_t length,
GLbitfield access,
void **mapPtr)
{
return mapRangeImpl(vk::GetImpl(context), offset, length, access, mapPtr);
}
angle::Result BufferVk::mapImpl(ContextVk *contextVk, GLbitfield access, void **mapPtr)
{
return mapRangeImpl(contextVk, 0, static_cast<VkDeviceSize>(mState.getSize()), access, mapPtr);
}
angle::Result BufferVk::ghostMappedBuffer(ContextVk *contextVk,
VkDeviceSize offset,
VkDeviceSize length,
GLbitfield access,
void **mapPtr)
{
// We shouldn't get here if it is external memory
ASSERT(!isExternalBuffer());
++contextVk->getPerfCounters().buffersGhosted;
// If we are creating a new buffer because the GPU is using it as read-only, then we
// also need to copy the contents of the previous buffer into the new buffer, in
// case the caller only updates a portion of the new buffer.
vk::BufferHelper src = std::move(mBuffer);
ANGLE_TRY(acquireBufferHelper(contextVk, static_cast<size_t>(mState.getSize()),
BufferUsageType::Dynamic));
// Before returning the new buffer, map the previous buffer and copy its entire
// contents into the new buffer.
uint8_t *srcMapPtr = nullptr;
uint8_t *dstMapPtr = nullptr;
ANGLE_TRY(src.map(contextVk, &srcMapPtr));
ANGLE_TRY(mBuffer.map(contextVk, &dstMapPtr));
ASSERT(src.isCoherent());
ASSERT(mBuffer.isCoherent());
// No need to copy over [offset, offset + length), just around it
if ((access & GL_MAP_INVALIDATE_RANGE_BIT) != 0)
{
if (offset != 0)
{
memcpy(dstMapPtr, srcMapPtr, static_cast<size_t>(offset));
}
size_t totalSize = static_cast<size_t>(mState.getSize());
size_t remainingStart = static_cast<size_t>(offset + length);
size_t remainingSize = totalSize - remainingStart;
if (remainingSize != 0)
{
memcpy(dstMapPtr + remainingStart, srcMapPtr + remainingStart, remainingSize);
}
}
else
{
memcpy(dstMapPtr, srcMapPtr, static_cast<size_t>(mState.getSize()));
}
ANGLE_TRY(contextVk->releaseBufferAllocation(&src));
// Return the already mapped pointer with the offset adjustment to avoid the call to unmap().
*mapPtr = dstMapPtr + offset;
return angle::Result::Continue;
}
angle::Result BufferVk::mapRangeImpl(ContextVk *contextVk,
VkDeviceSize offset,
VkDeviceSize length,
GLbitfield access,
void **mapPtr)
{
vk::Renderer *renderer = contextVk->getRenderer();
ASSERT(mBuffer.valid());
// Record map call parameters in case this call is from angle internal (the access/offset/length
// will be inconsistent from mState).
mIsMappedForWrite = (access & GL_MAP_WRITE_BIT) != 0;
mMappedRange = RangeDeviceSize(offset, offset + length);
uint8_t **mapPtrBytes = reinterpret_cast<uint8_t **>(mapPtr);
bool hostVisible = mBuffer.isHostVisible();
// MAP_UNSYNCHRONIZED_BIT, so immediately map.
if ((access & GL_MAP_UNSYNCHRONIZED_BIT) != 0)
{
if (hostVisible)
{
return mapHostVisibleBuffer(contextVk, offset, access, mapPtrBytes);
}
return handleDeviceLocalBufferMap(contextVk, offset, length, mapPtrBytes);
}
// Read case
if ((access & GL_MAP_WRITE_BIT) == 0)
{
// If app is not going to write, all we need is to ensure GPU write is finished.
// Concurrent reads from CPU and GPU is allowed.
if (!renderer->hasResourceUseFinished(mBuffer.getWriteResourceUse()))
{
// If there are unflushed write commands for the resource, flush them.
if (contextVk->hasUnsubmittedUse(mBuffer.getWriteResourceUse()))
{
ANGLE_TRY(contextVk->flushAndSubmitCommands(
nullptr, nullptr, RenderPassClosureReason::BufferWriteThenMap));
}
ANGLE_TRY(renderer->finishResourceUse(contextVk, mBuffer.getWriteResourceUse()));
}
if (hostVisible)
{
return mapHostVisibleBuffer(contextVk, offset, access, mapPtrBytes);
}
return handleDeviceLocalBufferMap(contextVk, offset, length, mapPtrBytes);
}
// Write case
if (!hostVisible)
{
return handleDeviceLocalBufferMap(contextVk, offset, length, mapPtrBytes);
}
// Write case, buffer not in use.
if (isExternalBuffer() || !isCurrentlyInUse(contextVk->getRenderer()))
{
return mapHostVisibleBuffer(contextVk, offset, access, mapPtrBytes);
}
// Write case, buffer in use.
//
// Here, we try to map the buffer, but it's busy. Instead of waiting for the GPU to
// finish, we just allocate a new buffer if:
// 1.) Caller has told us it doesn't care about previous contents, or
// 2.) The GPU won't write to the buffer.
bool rangeInvalidate = (access & GL_MAP_INVALIDATE_RANGE_BIT) != 0;
bool entireBufferInvalidated =
((access & GL_MAP_INVALIDATE_BUFFER_BIT) != 0) ||
(rangeInvalidate && offset == 0 && static_cast<VkDeviceSize>(mState.getSize()) == length);
if (entireBufferInvalidated)
{
ANGLE_TRY(acquireBufferHelper(contextVk, static_cast<size_t>(mState.getSize()),
BufferUsageType::Dynamic));
return mapHostVisibleBuffer(contextVk, offset, access, mapPtrBytes);
}
bool smallMapRange = (length < static_cast<VkDeviceSize>(mState.getSize()) / 2);
if (smallMapRange && rangeInvalidate)
{
ANGLE_TRY(allocStagingBuffer(contextVk, vk::MemoryCoherency::CachedNonCoherent,
static_cast<size_t>(length), mapPtrBytes));
return angle::Result::Continue;
}
if (renderer->hasResourceUseFinished(mBuffer.getWriteResourceUse()))
{
// This will keep the new buffer mapped and update mapPtr, so return immediately.
return ghostMappedBuffer(contextVk, offset, length, access, mapPtr);
}
// Write case (worst case, buffer in use for write)
ANGLE_TRY(mBuffer.waitForIdle(contextVk, "GPU stall due to mapping buffer in use by the GPU",
RenderPassClosureReason::BufferInUseWhenSynchronizedMap));
return mapHostVisibleBuffer(contextVk, offset, access, mapPtrBytes);
}
angle::Result BufferVk::unmap(const gl::Context *context, GLboolean *result)
{
ANGLE_TRY(unmapImpl(vk::GetImpl(context)));
// This should be false if the contents have been corrupted through external means. Vulkan
// doesn't provide such information.
*result = true;
return angle::Result::Continue;
}
angle::Result BufferVk::unmapImpl(ContextVk *contextVk)
{
ASSERT(mBuffer.valid());
if (mIsStagingBufferMapped)
{
ASSERT(mStagingBuffer.valid());
// The buffer is device local or optimization of small range map.
if (mIsMappedForWrite)
{
ANGLE_TRY(flushStagingBuffer(contextVk, mMappedRange.low(), mMappedRange.length()));
}
mIsStagingBufferMapped = false;
}
else
{
ASSERT(mBuffer.isHostVisible());
vk::Renderer *renderer = contextVk->getRenderer();
if (!mBuffer.isCoherent())
{
ANGLE_TRY(mBuffer.flush(renderer));
}
mBuffer.unmap(renderer);
}
if (mIsMappedForWrite)
{
if (mMappedRange == RangeDeviceSize(0, static_cast<VkDeviceSize>(getSize())))
{
dataUpdated();
}
else
{
dataRangeUpdated(mMappedRange);
}
}
// Reset the mapping parameters
mIsMappedForWrite = false;
mMappedRange.invalidate();
return angle::Result::Continue;
}
angle::Result BufferVk::getSubData(const gl::Context *context,
GLintptr offset,
GLsizeiptr size,
void *outData)
{
ASSERT(offset + size <= getSize());
ASSERT(mBuffer.valid());
ContextVk *contextVk = vk::GetImpl(context);
void *mapPtr;
ANGLE_TRY(mapRangeImpl(contextVk, offset, size, GL_MAP_READ_BIT, &mapPtr));
memcpy(outData, mapPtr, size);
return unmapImpl(contextVk);
}
angle::Result BufferVk::getIndexRange(const gl::Context *context,
gl::DrawElementsType type,
size_t offset,
size_t count,
bool primitiveRestartEnabled,
gl::IndexRange *outRange)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::Renderer *renderer = contextVk->getRenderer();
// This is a workaround for the mock ICD not implementing buffer memory state.
// Could be removed if https://github.com/KhronosGroup/Vulkan-Tools/issues/84 is fixed.
if (renderer->isMockICDEnabled())
{
outRange->start = 0;
outRange->end = 0;
return angle::Result::Continue;
}
ANGLE_TRACE_EVENT0("gpu.angle", "BufferVk::getIndexRange");
void *mapPtr;
ANGLE_TRY(mapRangeImpl(contextVk, offset, getSize(), GL_MAP_READ_BIT, &mapPtr));
*outRange = gl::ComputeIndexRange(type, mapPtr, count, primitiveRestartEnabled);
ANGLE_TRY(unmapImpl(contextVk));
return angle::Result::Continue;
}
angle::Result BufferVk::updateBuffer(ContextVk *contextVk,
size_t bufferSize,
const BufferDataSource &dataSource,
size_t updateSize,
size_t updateOffset)
{
// To copy on the CPU, destination must be host-visible. The source should also be either a CPU
// pointer or other a host-visible buffer that is not being written to by the GPU.
const bool shouldCopyOnCPU =
mBuffer.isHostVisible() &&
(dataSource.data != nullptr ||
ShouldUseCPUToCopyData(contextVk, *dataSource.buffer, updateSize, bufferSize));
if (shouldCopyOnCPU)
{
ANGLE_TRY(directUpdate(contextVk, dataSource, updateSize, updateOffset));
}
else
{
ANGLE_TRY(stagedUpdate(contextVk, dataSource, updateSize, updateOffset));
}
return angle::Result::Continue;
}
angle::Result BufferVk::directUpdate(ContextVk *contextVk,
const BufferDataSource &dataSource,
size_t size,
size_t offset)
{
vk::Renderer *renderer = contextVk->getRenderer();
uint8_t *srcPointerMapped = nullptr;
const uint8_t *srcPointer = nullptr;
uint8_t *dstPointer = nullptr;
// Map the destination buffer.
ASSERT(mBuffer.isHostVisible());
ANGLE_TRY(mBuffer.mapWithOffset(contextVk, &dstPointer, offset));
ASSERT(dstPointer);
// If source data is coming from a buffer, map it. If this is a self-copy, avoid double-mapping
// the buffer.
if (dataSource.data != nullptr)
{
srcPointer = static_cast<const uint8_t *>(dataSource.data);
}
else
{
ANGLE_TRY(dataSource.buffer->mapWithOffset(contextVk, &srcPointerMapped,
static_cast<size_t>(dataSource.bufferOffset)));
srcPointer = srcPointerMapped;
}
memcpy(dstPointer, srcPointer, size);
// External memory may end up with noncoherent
if (!mBuffer.isCoherent())
{
ANGLE_TRY(mBuffer.flush(renderer, offset, size));
}
// Unmap the destination and source buffers if applicable.
//
// If the buffer has dynamic usage then the intent is frequent client side updates to the
// buffer. Don't CPU unmap the buffer, we will take care of unmapping when releasing the buffer
// to either the renderer or mBufferFreeList.
if (GetBufferUsageType(mState.getUsage()) == BufferUsageType::Static)
{
mBuffer.unmap(renderer);
}
if (srcPointerMapped != nullptr)
{
dataSource.buffer->unmap(renderer);
}
return angle::Result::Continue;
}
angle::Result BufferVk::stagedUpdate(ContextVk *contextVk,
const BufferDataSource &dataSource,
size_t size,
size_t offset)
{
// If data is coming from a CPU pointer, stage it in a temporary staging buffer.
// Otherwise, do a GPU copy directly from the given buffer.
if (dataSource.data != nullptr)
{
uint8_t *mapPointer = nullptr;
ANGLE_TRY(allocStagingBuffer(contextVk, vk::MemoryCoherency::CachedNonCoherent, size,
&mapPointer));
memcpy(mapPointer, dataSource.data, size);
ANGLE_TRY(flushStagingBuffer(contextVk, offset, size));
mIsStagingBufferMapped = false;
}
else
{
// Check for self-dependency.
vk::CommandBufferAccess access;
if (dataSource.buffer->getBufferSerial() == mBuffer.getBufferSerial())
{
access.onBufferSelfCopy(&mBuffer);
}
else
{
access.onBufferTransferRead(dataSource.buffer);
access.onBufferTransferWrite(&mBuffer);
}
vk::OutsideRenderPassCommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
// Enqueue a copy command on the GPU.
const VkBufferCopy copyRegion = {dataSource.bufferOffset + dataSource.buffer->getOffset(),
static_cast<VkDeviceSize>(offset) + mBuffer.getOffset(),
static_cast<VkDeviceSize>(size)};
commandBuffer->copyBuffer(dataSource.buffer->getBuffer(), mBuffer.getBuffer(), 1,
&copyRegion);
}
return angle::Result::Continue;
}
angle::Result BufferVk::acquireAndUpdate(ContextVk *contextVk,
size_t bufferSize,
const BufferDataSource &dataSource,
size_t updateSize,
size_t updateOffset,
BufferUpdateType updateType)
{
// We shouldn't get here if this is external memory
ASSERT(!isExternalBuffer());
// If StorageRedefined, we cannot use mState.getSize() to allocate a new buffer.
ASSERT(updateType != BufferUpdateType::StorageRedefined);
ASSERT(mBuffer.valid());
ASSERT(mBuffer.getSize() >= bufferSize);
// Here we acquire a new BufferHelper and directUpdate() the new buffer.
// If the subData size was less than the buffer's size we additionally enqueue
// a GPU copy of the remaining regions from the old mBuffer to the new one.
vk::BufferHelper prevBuffer;
size_t offsetAfterSubdata = (updateOffset + updateSize);
bool updateRegionBeforeSubData = mHasValidData && (updateOffset > 0);
bool updateRegionAfterSubData = mHasValidData && (offsetAfterSubdata < bufferSize);
uint8_t *prevMapPtrBeforeSubData = nullptr;
uint8_t *prevMapPtrAfterSubData = nullptr;
if (updateRegionBeforeSubData || updateRegionAfterSubData)
{
prevBuffer = std::move(mBuffer);
// The total bytes that we need to copy from old buffer to new buffer
size_t copySize = bufferSize - updateSize;
// If the buffer is host visible and the GPU is not writing to it, we use the CPU to do the
// copy. We need to save the source buffer pointer before we acquire a new buffer.
if (ShouldUseCPUToCopyData(contextVk, prevBuffer, copySize, bufferSize))
{
uint8_t *mapPointer = nullptr;
// prevBuffer buffer will be recycled (or released and unmapped) by acquireBufferHelper
ANGLE_TRY(prevBuffer.map(contextVk, &mapPointer));
ASSERT(mapPointer);
prevMapPtrBeforeSubData = mapPointer;
prevMapPtrAfterSubData = mapPointer + offsetAfterSubdata;
}
}
ANGLE_TRY(acquireBufferHelper(contextVk, bufferSize, BufferUsageType::Dynamic));
ANGLE_TRY(updateBuffer(contextVk, bufferSize, dataSource, updateSize, updateOffset));
constexpr int kMaxCopyRegions = 2;
angle::FixedVector<VkBufferCopy, kMaxCopyRegions> copyRegions;
if (updateRegionBeforeSubData)
{
if (prevMapPtrBeforeSubData)
{
BufferDataSource beforeSrc = {};
beforeSrc.data = prevMapPtrBeforeSubData;
ANGLE_TRY(directUpdate(contextVk, beforeSrc, updateOffset, 0));
}
else
{
copyRegions.push_back({prevBuffer.getOffset(), mBuffer.getOffset(), updateOffset});
}
}
if (updateRegionAfterSubData)
{
size_t copySize = bufferSize - offsetAfterSubdata;
if (prevMapPtrAfterSubData)
{
BufferDataSource afterSrc = {};
afterSrc.data = prevMapPtrAfterSubData;
ANGLE_TRY(directUpdate(contextVk, afterSrc, copySize, offsetAfterSubdata));
}
else
{
copyRegions.push_back({prevBuffer.getOffset() + offsetAfterSubdata,
mBuffer.getOffset() + offsetAfterSubdata, copySize});
}
}
if (!copyRegions.empty())
{
ANGLE_TRY(CopyBuffers(contextVk, &prevBuffer, &mBuffer,
static_cast<uint32_t>(copyRegions.size()), copyRegions.data()));
}
if (prevBuffer.valid())
{
ANGLE_TRY(contextVk->releaseBufferAllocation(&prevBuffer));
}
return angle::Result::Continue;
}
angle::Result BufferVk::setDataImpl(ContextVk *contextVk,
size_t bufferSize,
const BufferDataSource &dataSource,
size_t updateSize,
size_t updateOffset,
BufferUpdateType updateType)
{
// if the buffer is currently in use
// if it isn't an external buffer and not a self-copy and sub data size meets threshold
// acquire a new BufferHelper from the pool
// else stage the update
// else update the buffer directly
if (isCurrentlyInUse(contextVk->getRenderer()))
{
// The acquire-and-update path creates a new buffer, which is sometimes more efficient than
// trying to update the existing one. Firstly, this is not done in the following
// situations:
//
// - For external buffers, the underlying storage cannot be reallocated.
// - If storage has just been redefined, this path is not taken because a new buffer has
// already been created by the caller. Besides, this path uses mState.getSize(), which the
// frontend updates only after this call in situations where the storage may be redefined.
// This could happen if the buffer memory is DEVICE_LOCAL and
// renderer->getFeatures().allocateNonZeroMemory.enabled is true. In this case a
// copyToBuffer is immediately issued after allocation and isCurrentlyInUse will be true.
// - If this is a self copy through glCopyBufferSubData, |dataSource| will contain a
// reference to |mBuffer|, in which case source information is lost after acquiring a new
// buffer.
//
// Additionally, this path is taken only if either of the following conditions are true:
//
// - If BufferVk does not have any valid data. This means that there is no data to be
// copied from the old buffer to the new one after acquiring it. This could happen when
// the application calls glBufferData with the same size and we reuse the existing buffer
// storage.
// - If the buffer is used read-only in the current render pass. In this case, acquiring a
// new buffer is preferred to avoid breaking the render pass.
// - The update modifies a significant portion of the buffer
// - The preferCPUForBufferSubData feature is enabled.
//
const bool canAcquireAndUpdate = !isExternalBuffer() &&
updateType != BufferUpdateType::StorageRedefined &&
!IsSelfCopy(dataSource, mBuffer);
if (canAcquireAndUpdate &&
(!mHasValidData || ShouldAvoidRenderPassBreakOnUpdate(contextVk, mBuffer, bufferSize) ||
ShouldAllocateNewMemoryForUpdate(contextVk, updateSize, bufferSize)))
{
ANGLE_TRY(acquireAndUpdate(contextVk, bufferSize, dataSource, updateSize, updateOffset,
updateType));
}
else
{
if (canAcquireAndUpdate && RenderPassUsesBufferForReadOnly(contextVk, mBuffer))
{
ANGLE_VK_PERF_WARNING(contextVk, GL_DEBUG_SEVERITY_LOW,
"Breaking the render pass on small upload to large buffer");
}
ANGLE_TRY(stagedUpdate(contextVk, dataSource, updateSize, updateOffset));
}
}
else
{
ANGLE_TRY(updateBuffer(contextVk, bufferSize, dataSource, updateSize, updateOffset));
}
// Update conversions.
if (updateOffset == 0 && updateSize == bufferSize)
{
dataUpdated();
}
else
{
dataRangeUpdated(RangeDeviceSize(updateOffset, updateOffset + updateSize));
}
return angle::Result::Continue;
}
VertexConversionBuffer *BufferVk::getVertexConversionBuffer(
vk::Renderer *renderer,
const VertexConversionBuffer::CacheKey &cacheKey)
{
for (VertexConversionBuffer &buffer : mVertexConversionBuffers)
{
if (buffer.match(cacheKey))
{
ASSERT(buffer.valid());
return &buffer;
}
}
mVertexConversionBuffers.emplace_back(renderer, cacheKey);
return &mVertexConversionBuffers.back();
}
void BufferVk::dataRangeUpdated(const RangeDeviceSize &range)
{
for (VertexConversionBuffer &buffer : mVertexConversionBuffers)
{
buffer.addDirtyBufferRange(range);
}
// Now we have valid data
mHasValidData = true;
}
void BufferVk::dataUpdated()
{
for (VertexConversionBuffer &buffer : mVertexConversionBuffers)
{
buffer.setEntireBufferDirty();
}
// Now we have valid data
mHasValidData = true;
}
void BufferVk::onDataChanged()
{
dataUpdated();
}
angle::Result BufferVk::acquireBufferHelper(ContextVk *contextVk,
size_t sizeInBytes,
BufferUsageType usageType)
{
vk::Renderer *renderer = contextVk->getRenderer();
size_t size = roundUpPow2(sizeInBytes, kBufferSizeGranularity);
size_t alignment = renderer->getDefaultBufferAlignment();
if (mBuffer.valid())
{
ANGLE_TRY(contextVk->releaseBufferAllocation(&mBuffer));
}
// Allocate the buffer directly
ANGLE_TRY(
contextVk->initBufferAllocation(&mBuffer, mMemoryTypeIndex, size, alignment, usageType));
// Tell the observers (front end) that a new buffer was created, so the necessary
// dirty bits can be set. This allows the buffer views pointing to the old buffer to
// be recreated and point to the new buffer, along with updating the descriptor sets
// to use the new buffer.
onStateChange(angle::SubjectMessage::InternalMemoryAllocationChanged);
return angle::Result::Continue;
}
bool BufferVk::isCurrentlyInUse(vk::Renderer *renderer) const
{
return !renderer->hasResourceUseFinished(mBuffer.getResourceUse());
}
// When a buffer is being completely changed, calculate whether it's better to allocate a new buffer
// or overwrite the existing one.
BufferUpdateType BufferVk::calculateBufferUpdateTypeOnFullUpdate(
vk::Renderer *renderer,
size_t size,
VkMemoryPropertyFlags memoryPropertyFlags,
BufferUsageType usageType,
const void *data) const
{
// 0-sized updates should be no-op'd before this call.
ASSERT(size > 0);
// If there is no existing buffer, this cannot be a content update.
if (!mBuffer.valid())
{
return BufferUpdateType::StorageRedefined;
}
const bool inUseAndRespecifiedWithoutData = data == nullptr && isCurrentlyInUse(renderer);
bool redefineStorage = shouldRedefineStorage(renderer, usageType, memoryPropertyFlags, size);
// Create a new buffer if the buffer is busy and it's being redefined without data.
// Additionally, a new buffer is created if any of the parameters change (memory type, usage,
// size).
return redefineStorage || inUseAndRespecifiedWithoutData ? BufferUpdateType::StorageRedefined
: BufferUpdateType::ContentsUpdate;
}
bool BufferVk::shouldRedefineStorage(vk::Renderer *renderer,
BufferUsageType usageType,
VkMemoryPropertyFlags memoryPropertyFlags,
size_t size) const
{
if (mUsageType != usageType)
{
return true;
}
if (mMemoryPropertyFlags != memoryPropertyFlags)
{
return true;
}
if (size > mBuffer.getSize())
{
return true;
}
else
{
size_t paddedBufferSize =
(renderer->getFeatures().padBuffersToMaxVertexAttribStride.enabled)
? (size + static_cast<size_t>(renderer->getMaxVertexAttribStride()))
: size;
size_t sizeInBytes = roundUpPow2(paddedBufferSize, kBufferSizeGranularity);
size_t alignedSize = roundUp(sizeInBytes, renderer->getDefaultBufferAlignment());
if (alignedSize > mBuffer.getSize())
{
return true;
}
}
return false;
}
} // namespace rx