tree: 2c2fd4cf07f844d74fd9bfdf94c705deb07f8b2f [path history] [tgz]
  1. android/
  2. doc/
  3. fuchsia/
  4. linux/
  5. mac/
  6. null/
  7. shaders/
  8. win32/
  9. AllocatorHelperPool.cpp
  10. AllocatorHelperPool.h
  11. AllocatorHelperRing.cpp
  12. AllocatorHelperRing.h
  13. BufferVk.cpp
  14. BufferVk.h
  15. BUILD.gn
  16. cl_types.h
  17. CLCommandQueueVk.cpp
  18. CLCommandQueueVk.h
  19. CLContextVk.cpp
  20. CLContextVk.h
  21. CLDeviceVk.cpp
  22. CLDeviceVk.h
  23. CLEventVk.cpp
  24. CLEventVk.h
  25. CLKernelVk.cpp
  26. CLKernelVk.h
  27. CLMemoryVk.cpp
  28. CLMemoryVk.h
  29. CLPlatformVk.cpp
  30. CLPlatformVk.h
  31. CLProgramVk.cpp
  32. CLProgramVk.h
  33. CLSamplerVk.cpp
  34. CLSamplerVk.h
  35. clspv_utils.cpp
  36. clspv_utils.h
  37. CommandGraph.cpp
  38. CommandGraph.h
  39. CommandQueue.cpp
  40. CommandQueue.h
  41. CompilerVk.cpp
  42. CompilerVk.h
  43. ContextVk.cpp
  44. ContextVk.h
  45. DebugAnnotatorVk.cpp
  46. DebugAnnotatorVk.h
  47. DeviceVk.cpp
  48. DeviceVk.h
  49. DisplayVk.cpp
  50. DisplayVk.h
  51. DisplayVk_api.h
  52. FenceNVVk.cpp
  53. FenceNVVk.h
  54. FramebufferVk.cpp
  55. FramebufferVk.h
  56. gen_vk_format_table.py
  57. gen_vk_internal_shaders.py
  58. gen_vk_mandatory_format_support_table.py
  59. ImageVk.cpp
  60. ImageVk.h
  61. MemoryObjectVk.cpp
  62. MemoryObjectVk.h
  63. MemoryTracking.cpp
  64. MemoryTracking.h
  65. OverlayVk.cpp
  66. OverlayVk.h
  67. OWNERS
  68. PersistentCommandPool.cpp
  69. PersistentCommandPool.h
  70. ProgramExecutableVk.cpp
  71. ProgramExecutableVk.h
  72. ProgramPipelineVk.cpp
  73. ProgramPipelineVk.h
  74. ProgramVk.cpp
  75. ProgramVk.h
  76. QueryVk.cpp
  77. QueryVk.h
  78. README.md
  79. RenderbufferVk.cpp
  80. RenderbufferVk.h
  81. RenderTargetVk.cpp
  82. RenderTargetVk.h
  83. SamplerVk.cpp
  84. SamplerVk.h
  85. SecondaryCommandBuffer.cpp
  86. SecondaryCommandBuffer.h
  87. SecondaryCommandPool.cpp
  88. SecondaryCommandPool.h
  89. SemaphoreVk.cpp
  90. SemaphoreVk.h
  91. ShaderInterfaceVariableInfoMap.cpp
  92. ShaderInterfaceVariableInfoMap.h
  93. ShaderVk.cpp
  94. ShaderVk.h
  95. ShareGroupVk.cpp
  96. ShareGroupVk.h
  97. spv_utils.cpp
  98. spv_utils.h
  99. Suballocation.cpp
  100. Suballocation.h
  101. SurfaceVk.cpp
  102. SurfaceVk.h
  103. SyncVk.cpp
  104. SyncVk.h
  105. TextureVk.cpp
  106. TextureVk.h
  107. TransformFeedbackVk.cpp
  108. TransformFeedbackVk.h
  109. UtilsVk.cpp
  110. UtilsVk.h
  111. VertexArrayVk.cpp
  112. VertexArrayVk.h
  113. vk_cache_utils.cpp
  114. vk_cache_utils.h
  115. vk_caps_utils.cpp
  116. vk_caps_utils.h
  117. vk_cl_utils.cpp
  118. vk_cl_utils.h
  119. vk_command_buffer_utils.h
  120. vk_format_map.json
  121. vk_format_table_autogen.cpp
  122. vk_format_utils.cpp
  123. vk_format_utils.h
  124. vk_helpers.cpp
  125. vk_helpers.h
  126. vk_internal_shaders_autogen.cpp
  127. vk_internal_shaders_autogen.gni
  128. vk_internal_shaders_autogen.h
  129. vk_mandatory_format_support_data.json
  130. vk_mandatory_format_support_table_autogen.cpp
  131. vk_mem_alloc_wrapper.cpp
  132. vk_mem_alloc_wrapper.h
  133. vk_ref_counted_event.cpp
  134. vk_ref_counted_event.h
  135. vk_renderer.cpp
  136. vk_renderer.h
  137. vk_resource.cpp
  138. vk_resource.h
  139. vk_utils.cpp
  140. vk_utils.h
  141. vk_wrapper.h
  142. VkImageImageSiblingVk.cpp
  143. VkImageImageSiblingVk.h
  144. vulkan_backend.gni
  145. VulkanSecondaryCommandBuffer.cpp
  146. VulkanSecondaryCommandBuffer.h
src/libANGLE/renderer/vulkan/README.md

ANGLE: Vulkan Back-end

ANGLE's Vulkan back-end implementation lives in this folder.

Vulkan is an explicit graphics API. Compared to APIs like OpenGL or D3D11 explicit APIs can offer a number of significant benefits:

  • Lower API call CPU overhead.
  • A smaller API surface with more direct hardware control.
  • Better support for multi-core programming.
  • Vulkan in particular has open-source tooling and tests.

Back-end Design

The vk::Renderer class represents an EGLDisplay. vk::Renderer owns shared global resources like the VkDevice, VkQueue, the Vulkan format tables and internal Vulkan shaders. The ContextVk class implements the back-end of a front-end OpenGL Context. ContextVk processes state changes and handles action commands like glDrawArrays and glDrawElements.

Command recording

A render pass has three states: unstarted, started and active (we call it active in short), started but inactive (we call it inactive in short). The back-end records commands into command buffers via the following ContextVk APIs:

  • beginNewRenderPass: Writes out (aka flushes) prior pending commands into a primary command buffer, then starts a new render pass. Returns a secondary command buffer inside a render pass instance.
  • getOutsideRenderPassCommandBuffer: May flush prior command buffers and close the render pass if necessary, in addition to issuing the appropriate barriers. Returns a secondary command buffer outside a render pass instance.
  • getStartedRenderPassCommands: Returns a reference to the currently open render pass' commands buffer.
  • onRenderPassFinished: Puts render pass into inactive state where you can not record more commands into secondary command buffer, except in some special cases where ANGLE does some optimization internally.
  • flushCommandsAndEndRenderPassWithoutSubmit: Marks the end of render pass. It flushes secondary command buffer into vulkan's primary command buffer, puts secondary command buffer back to unstarted state and then goes into recycler for reuse.

The back-end (mostly) records Image and Buffer barriers through additional CommandBufferAccess APIs, the result of which is passed to getOutsideRenderPassCommandBuffer. Note that the barriers are not actually recorded until getOutsideRenderPassCommandBuffer is called:

  • onBufferTransferRead and onBufferComputeShaderRead accumulate VkBuffer read barriers.
  • onBufferTransferWrite and onBufferComputeShaderWrite accumulate VkBuffer write barriers.
  • onBuffferSelfCopy is a special case for VkBuffer self copies. It behaves the same as write.
  • onImageTransferRead and onImageComputerShadeRead accumulate VkImage read barriers.
  • onImageTransferWrite and onImageComputerShadeWrite accumulate VkImage write barriers.
  • onImageRenderPassRead and onImageRenderPassWrite accumulate VkImage barriers inside a started RenderPass.

After the back-end records commands to the primary buffer and we flush (e.g. on swap) or when we call vk::Renderer::finishQueueSerial, ANGLE submits the primary command buffer to a VkQueue.

See the code for more details.

Simple command recording example

In this example we'll be recording a buffer copy command:

    // Ensure that ANGLE sets proper read and write barriers for the Buffers.
    vk::CommandBufferAccess access;
    access.onBufferTransferWrite(dstBuffer);
    access.onBufferTransferRead(srcBuffer);

    // Get a pointer to a secondary command buffer for command recording.
    vk::OutsideRenderPassCommandBuffer *commandBuffer;
    ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));

    // Record the copy command into the secondary buffer. We're done!
    commandBuffer->copyBuffer(srcBuffer->getBuffer(), dstBuffer->getBuffer(), copyCount, copies);

Additional Reading

More implementation details can be found in the doc directory: