blob: 9e999dbf18b3f01e5279b7dac98fd2a047c587a9 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// VertexArrayVk.cpp:
// Implements the class methods for VertexArrayVk.
//
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "common/debug.h"
#include "common/utilities.h"
#include "libANGLE/Context.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/renderer/vulkan/vk_renderer.h"
#include "libANGLE/renderer/vulkan/vk_resource.h"
namespace rx
{
namespace
{
constexpr int kStreamIndexBufferCachedIndexCount = 6;
constexpr int kMaxCachedStreamIndexBuffers = 4;
constexpr size_t kDefaultValueSize = sizeof(gl::VertexAttribCurrentValueData::Values);
ANGLE_INLINE bool BindingIsAligned(const angle::Format &angleFormat,
VkDeviceSize offset,
GLuint stride)
{
ASSERT(stride != 0);
GLuint mask = angleFormat.componentAlignmentMask;
if (mask != std::numeric_limits<GLuint>::max())
{
return ((offset & mask) == 0 && (stride & mask) == 0);
}
else
{
// To perform the GPU conversion for formats with components that aren't byte-aligned
// (for example, A2BGR10 or RGB10A2), one element has to be placed in 4 bytes to perform
// the compute shader. So, binding offset and stride has to be aligned to formatSize.
unsigned int formatSize = angleFormat.pixelBytes;
return (offset % formatSize == 0) && (stride % formatSize == 0);
}
}
ANGLE_INLINE bool ClientBindingAligned(const gl::VertexAttribute &attrib,
GLuint stride,
size_t alignment)
{
return reinterpret_cast<intptr_t>(attrib.pointer) % alignment == 0 && stride % alignment == 0;
}
bool ShouldCombineAttributes(vk::Renderer *renderer,
const gl::VertexAttribute &attrib,
const gl::VertexBinding &binding)
{
if (!renderer->getFeatures().enableMergeClientAttribBuffer.enabled)
{
return false;
}
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
return !vertexFormat.getVertexLoadRequiresConversion(false) && binding.getDivisor() == 0 &&
ClientBindingAligned(attrib, binding.getStride(),
vertexFormat.getVertexInputAlignment(false));
}
void WarnOnVertexFormatConversion(ContextVk *contextVk,
const vk::Format &vertexFormat,
bool compressed,
bool insertEventMarker)
{
if (!vertexFormat.getVertexLoadRequiresConversion(compressed))
{
return;
}
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_LOW,
"The Vulkan driver does not support vertex attribute format 0x%04X, emulating with 0x%04X",
vertexFormat.getIntendedFormat().glInternalFormat,
vertexFormat.getActualBufferFormat(compressed).glInternalFormat);
}
angle::Result StreamVertexData(ContextVk *contextVk,
vk::BufferHelper *dstBufferHelper,
const uint8_t *srcData,
size_t bytesToCopy,
size_t dstOffset,
size_t vertexCount,
size_t srcStride,
VertexCopyFunction vertexLoadFunction)
{
vk::Renderer *renderer = contextVk->getRenderer();
// If the source pointer is null, it should not be accessed.
if (srcData == nullptr)
{
return angle::Result::Continue;
}
uint8_t *dst = dstBufferHelper->getMappedMemory() + dstOffset;
if (vertexLoadFunction != nullptr)
{
vertexLoadFunction(srcData, srcStride, vertexCount, dst);
}
else
{
memcpy(dst, srcData, bytesToCopy);
}
ANGLE_TRY(dstBufferHelper->flush(renderer));
return angle::Result::Continue;
}
angle::Result StreamVertexDataWithDivisor(ContextVk *contextVk,
vk::BufferHelper *dstBufferHelper,
const uint8_t *srcData,
size_t bytesToAllocate,
size_t srcStride,
size_t dstStride,
VertexCopyFunction vertexLoadFunction,
uint32_t divisor,
size_t numSrcVertices)
{
vk::Renderer *renderer = contextVk->getRenderer();
uint8_t *dst = dstBufferHelper->getMappedMemory();
// Each source vertex is used `divisor` times before advancing. Clamp to avoid OOB reads.
size_t clampedSize = std::min(numSrcVertices * dstStride * divisor, bytesToAllocate);
ASSERT(clampedSize % dstStride == 0);
ASSERT(divisor > 0);
uint32_t srcVertexUseCount = 0;
for (size_t dataCopied = 0; dataCopied < clampedSize; dataCopied += dstStride)
{
vertexLoadFunction(srcData, srcStride, 1, dst);
srcVertexUseCount++;
if (srcVertexUseCount == divisor)
{
srcData += srcStride;
srcVertexUseCount = 0;
}
dst += dstStride;
}
// Satisfy robustness constraints (only if extension enabled)
if (contextVk->getExtensions().robustnessAny())
{
if (clampedSize < bytesToAllocate)
{
memset(dst, 0, bytesToAllocate - clampedSize);
}
}
ANGLE_TRY(dstBufferHelper->flush(renderer));
return angle::Result::Continue;
}
size_t GetVertexCountForRange(GLint64 srcBufferBytes,
uint32_t srcFormatSize,
uint32_t srcVertexStride)
{
ASSERT(srcVertexStride != 0);
ASSERT(srcFormatSize != 0);
if (srcBufferBytes < srcFormatSize)
{
return 0;
}
size_t numVertices =
static_cast<size_t>(srcBufferBytes + srcVertexStride - 1) / srcVertexStride;
return numVertices;
}
size_t GetVertexCount(BufferVk *srcBuffer, const gl::VertexBinding &binding, uint32_t srcFormatSize)
{
// Bytes usable for vertex data.
GLint64 bytes = srcBuffer->getSize() - binding.getOffset();
GLuint stride = binding.getStride();
if (stride == 0)
{
stride = srcFormatSize;
}
return GetVertexCountForRange(bytes, srcFormatSize, stride);
}
angle::Result CalculateMaxVertexCountForConversion(ContextVk *contextVk,
BufferVk *srcBuffer,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat,
size_t *maxNumVerticesOut)
{
// Initialize numVertices to 0
*maxNumVerticesOut = 0;
unsigned srcFormatSize = srcFormat.pixelBytes;
unsigned dstFormatSize = dstFormat.pixelBytes;
uint32_t srcStride = conversion->getCacheKey().stride;
uint32_t dstStride = dstFormatSize;
ASSERT(srcStride != 0);
ASSERT(conversion->dirty());
// Start the range with the range from the the beginning of the buffer to the end of
// buffer. Then scissor it with the dirtyRange.
size_t srcOffset = conversion->getCacheKey().offset;
GLint64 srcLength = srcBuffer->getSize() - srcOffset;
// The max number of vertices from binding to the end of the buffer
size_t maxNumVertices = GetVertexCountForRange(srcLength, srcFormatSize, srcStride);
if (maxNumVertices == 0)
{
return angle::Result::Continue;
}
// Allocate buffer for results
vk::MemoryHostVisibility hostVisible = conversion->getCacheKey().hostVisible
? vk::MemoryHostVisibility::Visible
: vk::MemoryHostVisibility::NonVisible;
ANGLE_TRY(contextVk->initBufferForVertexConversion(conversion, maxNumVertices * dstStride,
hostVisible));
// Calculate numVertices to convert
*maxNumVerticesOut = GetVertexCountForRange(srcLength, srcFormatSize, srcStride);
return angle::Result::Continue;
}
void CalculateOffsetAndVertexCountForDirtyRange(BufferVk *bufferVk,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat,
const RangeDeviceSize &dirtyRange,
uint32_t *srcOffsetOut,
uint32_t *dstOffsetOut,
uint32_t *numVerticesOut)
{
ASSERT(!dirtyRange.empty());
unsigned srcFormatSize = srcFormat.pixelBytes;
unsigned dstFormatSize = dstFormat.pixelBytes;
uint32_t srcStride = conversion->getCacheKey().stride;
uint32_t dstStride = dstFormatSize;
ASSERT(srcStride != 0);
ASSERT(conversion->dirty());
// Start the range with the range from the the beginning of the buffer to the end of
// buffer. Then scissor it with the dirtyRange.
size_t srcOffset = conversion->getCacheKey().offset;
size_t dstOffset = 0;
GLint64 srcLength = bufferVk->getSize() - srcOffset;
// Adjust offset to the begining of the dirty range
if (dirtyRange.low() > srcOffset)
{
size_t vertexCountToSkip = (static_cast<size_t>(dirtyRange.low()) - srcOffset) / srcStride;
size_t srcBytesToSkip = vertexCountToSkip * srcStride;
size_t dstBytesToSkip = vertexCountToSkip * dstStride;
srcOffset += srcBytesToSkip;
srcLength -= srcBytesToSkip;
dstOffset += dstBytesToSkip;
}
// Adjust dstOffset to align to 4 bytes. The GPU convert code path always write a uint32_t and
// must aligned at 4 bytes. We could possibly make it able to store at unaligned uint32_t but
// performance will be worse than just convert a few extra data.
while ((dstOffset % 4) != 0)
{
dstOffset -= dstStride;
srcOffset -= srcStride;
srcLength += srcStride;
}
// Adjust length
if (dirtyRange.high() < static_cast<VkDeviceSize>(bufferVk->getSize()))
{
srcLength = dirtyRange.high() - srcOffset;
}
// Calculate numVertices to convert
size_t numVertices = GetVertexCountForRange(srcLength, srcFormatSize, srcStride);
*numVerticesOut = static_cast<uint32_t>(numVertices);
*srcOffsetOut = static_cast<uint32_t>(srcOffset);
*dstOffsetOut = static_cast<uint32_t>(dstOffset);
}
} // anonymous namespace
VertexArrayVk::VertexArrayVk(ContextVk *contextVk, const gl::VertexArrayState &state)
: VertexArrayImpl(state),
mCurrentArrayBufferHandles{},
mCurrentArrayBufferOffsets{},
mCurrentArrayBufferRelativeOffsets{},
mCurrentArrayBuffers{},
mCurrentArrayBufferStrides{},
mCurrentArrayBufferDivisors{},
mCurrentElementArrayBuffer(nullptr),
mLineLoopHelper(contextVk->getRenderer()),
mDirtyLineLoopTranslation(true)
{
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBufferHandles.fill(emptyBuffer.getBuffer().getHandle());
mCurrentArrayBufferOffsets.fill(0);
mCurrentArrayBufferRelativeOffsets.fill(0);
mCurrentArrayBuffers.fill(&emptyBuffer);
mCurrentArrayBufferStrides.fill(0);
mCurrentArrayBufferDivisors.fill(0);
mBindingDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_BINDING_DIVISOR);
if (!contextVk->getFeatures().useVertexInputBindingStrideDynamicState.enabled)
{
mBindingDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_BINDING_STRIDE);
}
// All but DIRTY_ATTRIB_POINTER_BUFFER requires graphics pipeline update
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_ENABLED);
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_POINTER);
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_FORMAT);
mAttribDirtyBitsRequiresPipelineUpdate.set(gl::VertexArray::DIRTY_ATTRIB_BINDING);
}
VertexArrayVk::~VertexArrayVk() {}
void VertexArrayVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
for (std::unique_ptr<vk::BufferHelper> &buffer : mCachedStreamIndexBuffers)
{
buffer->release(contextVk);
}
mStreamedIndexData.release(contextVk);
mTranslatedByteIndexData.release(contextVk);
mTranslatedByteIndirectData.release(contextVk);
mLineLoopHelper.release(contextVk);
}
angle::Result VertexArrayVk::convertIndexBufferGPU(ContextVk *contextVk,
BufferVk *bufferVk,
const void *indices)
{
intptr_t offsetIntoSrcData = reinterpret_cast<intptr_t>(indices);
size_t srcDataSize = static_cast<size_t>(bufferVk->getSize()) - offsetIntoSrcData;
// Allocate buffer for results
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mTranslatedByteIndexData,
sizeof(GLushort) * srcDataSize,
vk::MemoryHostVisibility::NonVisible));
mCurrentElementArrayBuffer = mTranslatedByteIndexData.getBuffer();
vk::BufferHelper *dst = mTranslatedByteIndexData.getBuffer();
vk::BufferHelper *src = &bufferVk->getBuffer();
// Copy relevant section of the source into destination at allocated offset. Note that the
// offset returned by allocate() above is in bytes. As is the indices offset pointer.
UtilsVk::ConvertIndexParameters params = {};
params.srcOffset = static_cast<uint32_t>(offsetIntoSrcData);
params.dstOffset = 0;
params.maxIndex = static_cast<uint32_t>(bufferVk->getSize());
ANGLE_TRY(contextVk->getUtils().convertIndexBuffer(contextVk, dst, src, params));
mTranslatedByteIndexData.clearDirty();
return angle::Result::Continue;
}
angle::Result VertexArrayVk::convertIndexBufferIndirectGPU(ContextVk *contextVk,
vk::BufferHelper *srcIndirectBuf,
VkDeviceSize srcIndirectBufOffset,
vk::BufferHelper **indirectBufferVkOut)
{
size_t srcDataSize = static_cast<size_t>(mCurrentElementArrayBuffer->getSize());
ASSERT(mCurrentElementArrayBuffer ==
&vk::GetImpl(getState().getElementArrayBuffer())->getBuffer());
vk::BufferHelper *srcIndexBuf = mCurrentElementArrayBuffer;
// Allocate buffer for results
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mTranslatedByteIndexData,
sizeof(GLushort) * srcDataSize,
vk::MemoryHostVisibility::NonVisible));
vk::BufferHelper *dstIndexBuf = mTranslatedByteIndexData.getBuffer();
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mTranslatedByteIndirectData,
sizeof(VkDrawIndexedIndirectCommand),
vk::MemoryHostVisibility::NonVisible));
vk::BufferHelper *dstIndirectBuf = mTranslatedByteIndirectData.getBuffer();
// Save new element array buffer
mCurrentElementArrayBuffer = dstIndexBuf;
// Tell caller what new indirect buffer is
*indirectBufferVkOut = dstIndirectBuf;
// Copy relevant section of the source into destination at allocated offset. Note that the
// offset returned by allocate() above is in bytes. As is the indices offset pointer.
UtilsVk::ConvertIndexIndirectParameters params = {};
params.srcIndirectBufOffset = static_cast<uint32_t>(srcIndirectBufOffset);
params.srcIndexBufOffset = 0;
params.dstIndexBufOffset = 0;
params.maxIndex = static_cast<uint32_t>(srcDataSize);
params.dstIndirectBufOffset = 0;
ANGLE_TRY(contextVk->getUtils().convertIndexIndirectBuffer(
contextVk, srcIndirectBuf, srcIndexBuf, dstIndirectBuf, dstIndexBuf, params));
mTranslatedByteIndexData.clearDirty();
mTranslatedByteIndirectData.clearDirty();
return angle::Result::Continue;
}
angle::Result VertexArrayVk::handleLineLoopIndexIndirect(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
vk::BufferHelper *srcIndexBuffer,
vk::BufferHelper *srcIndirectBuffer,
VkDeviceSize indirectBufferOffset,
vk::BufferHelper **indexBufferOut,
vk::BufferHelper **indirectBufferOut)
{
return mLineLoopHelper.streamIndicesIndirect(contextVk, glIndexType, srcIndexBuffer,
srcIndirectBuffer, indirectBufferOffset,
indexBufferOut, indirectBufferOut);
}
angle::Result VertexArrayVk::handleLineLoopIndirectDraw(const gl::Context *context,
vk::BufferHelper *indirectBufferVk,
VkDeviceSize indirectBufferOffset,
vk::BufferHelper **indexBufferOut,
vk::BufferHelper **indirectBufferOut)
{
size_t maxVertexCount = 0;
ContextVk *contextVk = vk::GetImpl(context);
const gl::AttributesMask activeAttribs =
context->getStateCache().getActiveBufferedAttribsMask();
const auto &attribs = mState.getVertexAttributes();
const auto &bindings = mState.getVertexBindings();
for (size_t attribIndex : activeAttribs)
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
ASSERT(attrib.enabled);
VkDeviceSize bufSize = getCurrentArrayBuffers()[attribIndex]->getSize();
const gl::VertexBinding &binding = bindings[attrib.bindingIndex];
size_t stride = binding.getStride();
size_t vertexCount = static_cast<size_t>(bufSize / stride);
if (vertexCount > maxVertexCount)
{
maxVertexCount = vertexCount;
}
}
ANGLE_TRY(mLineLoopHelper.streamArrayIndirect(contextVk, maxVertexCount + 1, indirectBufferVk,
indirectBufferOffset, indexBufferOut,
indirectBufferOut));
return angle::Result::Continue;
}
angle::Result VertexArrayVk::convertIndexBufferCPU(ContextVk *contextVk,
gl::DrawElementsType indexType,
size_t indexCount,
const void *sourcePointer,
BufferBindingDirty *bindingDirty)
{
ASSERT(!mState.getElementArrayBuffer() || indexType == gl::DrawElementsType::UnsignedByte);
vk::Renderer *renderer = contextVk->getRenderer();
size_t elementSize = contextVk->getVkIndexTypeSize(indexType);
const size_t amount = elementSize * indexCount;
// Applications often time draw a quad with two triangles. This is try to catch all the
// common used element array buffer with pre-created BufferHelper objects to improve
// performance.
if (indexCount == kStreamIndexBufferCachedIndexCount &&
indexType == gl::DrawElementsType::UnsignedShort)
{
for (std::unique_ptr<vk::BufferHelper> &buffer : mCachedStreamIndexBuffers)
{
void *ptr = buffer->getMappedMemory();
if (memcmp(sourcePointer, ptr, amount) == 0)
{
// Found a matching cached buffer, use the cached internal index buffer.
*bindingDirty = mCurrentElementArrayBuffer == buffer.get()
? BufferBindingDirty::No
: BufferBindingDirty::Yes;
mCurrentElementArrayBuffer = buffer.get();
return angle::Result::Continue;
}
}
// If we still have capacity, cache this index buffer for future use.
if (mCachedStreamIndexBuffers.size() < kMaxCachedStreamIndexBuffers)
{
std::unique_ptr<vk::BufferHelper> buffer = std::make_unique<vk::BufferHelper>();
ANGLE_TRY(contextVk->initBufferAllocation(
buffer.get(),
renderer->getVertexConversionBufferMemoryTypeIndex(
vk::MemoryHostVisibility::Visible),
amount, renderer->getVertexConversionBufferAlignment(), BufferUsageType::Static));
memcpy(buffer->getMappedMemory(), sourcePointer, amount);
ANGLE_TRY(buffer->flush(renderer));
mCachedStreamIndexBuffers.push_back(std::move(buffer));
*bindingDirty = BufferBindingDirty::Yes;
mCurrentElementArrayBuffer = mCachedStreamIndexBuffers.back().get();
return angle::Result::Continue;
}
}
ANGLE_TRY(contextVk->initBufferForVertexConversion(&mStreamedIndexData, amount,
vk::MemoryHostVisibility::Visible));
mCurrentElementArrayBuffer = mStreamedIndexData.getBuffer();
GLubyte *dst = mCurrentElementArrayBuffer->getMappedMemory();
*bindingDirty = BufferBindingDirty::Yes;
if (contextVk->shouldConvertUint8VkIndexType(indexType))
{
// Unsigned bytes don't have direct support in Vulkan so we have to expand the
// memory to a GLushort.
const GLubyte *in = static_cast<const GLubyte *>(sourcePointer);
GLushort *expandedDst = reinterpret_cast<GLushort *>(dst);
bool primitiveRestart = contextVk->getState().isPrimitiveRestartEnabled();
constexpr GLubyte kUnsignedByteRestartValue = 0xFF;
constexpr GLushort kUnsignedShortRestartValue = 0xFFFF;
if (primitiveRestart)
{
for (size_t index = 0; index < indexCount; index++)
{
GLushort value = static_cast<GLushort>(in[index]);
if (in[index] == kUnsignedByteRestartValue)
{
// Convert from 8-bit restart value to 16-bit restart value
value = kUnsignedShortRestartValue;
}
expandedDst[index] = value;
}
}
else
{
// Fast path for common case.
for (size_t index = 0; index < indexCount; index++)
{
expandedDst[index] = static_cast<GLushort>(in[index]);
}
}
}
else
{
// The primitive restart value is the same for OpenGL and Vulkan,
// so there's no need to perform any conversion.
memcpy(dst, sourcePointer, amount);
}
mStreamedIndexData.clearDirty();
return mCurrentElementArrayBuffer->flush(contextVk->getRenderer());
}
// We assume the buffer is completely full of the same kind of data and convert
// and/or align it as we copy it to a buffer. The assumption could be wrong
// but the alternative of copying it piecemeal on each draw would have a lot more
// overhead.
angle::Result VertexArrayVk::convertVertexBufferGPU(ContextVk *contextVk,
BufferVk *srcBuffer,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat)
{
uint32_t srcStride = conversion->getCacheKey().stride;
ASSERT(srcStride % (srcFormat.pixelBytes / srcFormat.channelCount) == 0);
size_t maxNumVertices;
ANGLE_TRY(CalculateMaxVertexCountForConversion(contextVk, srcBuffer, conversion, srcFormat,
dstFormat, &maxNumVertices));
if (maxNumVertices == 0)
{
return angle::Result::Continue;
}
vk::BufferHelper *srcBufferHelper = &srcBuffer->getBuffer();
vk::BufferHelper *dstBuffer = conversion->getBuffer();
UtilsVk::OffsetAndVertexCounts additionalOffsetVertexCounts;
UtilsVk::ConvertVertexParameters params;
params.srcFormat = &srcFormat;
params.dstFormat = &dstFormat;
params.srcStride = srcStride;
params.vertexCount = 0;
if (conversion->isEntireBufferDirty())
{
params.vertexCount = static_cast<uint32_t>(maxNumVertices);
params.srcOffset = static_cast<uint32_t>(conversion->getCacheKey().offset);
params.dstOffset = 0;
}
else
{
// dirtyRanges may overlap with each other. Try to do a quick merge to reduce the number of
// dispatch calls as well as avoid redundant conversion in the overlapped area.
conversion->consolidateDirtyRanges();
const std::vector<RangeDeviceSize> &dirtyRanges = conversion->getDirtyBufferRanges();
additionalOffsetVertexCounts.reserve(dirtyRanges.size());
for (const RangeDeviceSize &dirtyRange : dirtyRanges)
{
if (dirtyRange.empty())
{
// consolidateDirtyRanges may end up with invalid range if it gets merged.
continue;
}
uint32_t srcOffset, dstOffset, numVertices;
CalculateOffsetAndVertexCountForDirtyRange(srcBuffer, conversion, srcFormat, dstFormat,
dirtyRange, &srcOffset, &dstOffset,
&numVertices);
if (params.vertexCount == 0)
{
params.vertexCount = numVertices;
params.srcOffset = srcOffset;
params.dstOffset = dstOffset;
}
else
{
additionalOffsetVertexCounts.emplace_back();
additionalOffsetVertexCounts.back().srcOffset = srcOffset;
additionalOffsetVertexCounts.back().dstOffset = dstOffset;
additionalOffsetVertexCounts.back().vertexCount = numVertices;
}
}
}
ANGLE_TRY(contextVk->getUtils().convertVertexBuffer(contextVk, dstBuffer, srcBufferHelper,
params, additionalOffsetVertexCounts));
conversion->clearDirty();
return angle::Result::Continue;
}
angle::Result VertexArrayVk::convertVertexBufferCPU(ContextVk *contextVk,
BufferVk *srcBuffer,
VertexConversionBuffer *conversion,
const angle::Format &srcFormat,
const angle::Format &dstFormat,
const VertexCopyFunction vertexLoadFunction)
{
ANGLE_TRACE_EVENT0("gpu.angle", "VertexArrayVk::convertVertexBufferCpu");
size_t maxNumVertices;
ANGLE_TRY(CalculateMaxVertexCountForConversion(contextVk, srcBuffer, conversion, srcFormat,
dstFormat, &maxNumVertices));
if (maxNumVertices == 0)
{
return angle::Result::Continue;
}
uint8_t *src = nullptr;
ANGLE_TRY(srcBuffer->mapImpl(contextVk, GL_MAP_READ_BIT, reinterpret_cast<void **>(&src)));
uint32_t srcStride = conversion->getCacheKey().stride;
if (conversion->isEntireBufferDirty())
{
size_t srcOffset = conversion->getCacheKey().offset;
size_t dstOffset = 0;
const uint8_t *srcBytes = src + srcOffset;
size_t bytesToCopy = maxNumVertices * dstFormat.pixelBytes;
ANGLE_TRY(StreamVertexData(contextVk, conversion->getBuffer(), srcBytes, bytesToCopy,
dstOffset, maxNumVertices, srcStride, vertexLoadFunction));
}
else
{
// dirtyRanges may overlap with each other. Try to do a quick merge to avoid redundant
// conversion in the overlapped area.
conversion->consolidateDirtyRanges();
const std::vector<RangeDeviceSize> &dirtyRanges = conversion->getDirtyBufferRanges();
for (const RangeDeviceSize &dirtyRange : dirtyRanges)
{
if (dirtyRange.empty())
{
// consolidateDirtyRanges may end up with invalid range if it gets merged.
continue;
}
uint32_t srcOffset, dstOffset, numVertices;
CalculateOffsetAndVertexCountForDirtyRange(srcBuffer, conversion, srcFormat, dstFormat,
dirtyRange, &srcOffset, &dstOffset,
&numVertices);
if (numVertices > 0)
{
const uint8_t *srcBytes = src + srcOffset;
size_t bytesToCopy = maxNumVertices * dstFormat.pixelBytes;
ANGLE_TRY(StreamVertexData(contextVk, conversion->getBuffer(), srcBytes,
bytesToCopy, dstOffset, maxNumVertices, srcStride,
vertexLoadFunction));
}
}
}
conversion->clearDirty();
ANGLE_TRY(srcBuffer->unmapImpl(contextVk));
return angle::Result::Continue;
}
void VertexArrayVk::updateCurrentElementArrayBuffer()
{
ASSERT(mState.getElementArrayBuffer() != nullptr);
ASSERT(mState.getElementArrayBuffer()->getSize() > 0);
BufferVk *bufferVk = vk::GetImpl(mState.getElementArrayBuffer());
mCurrentElementArrayBuffer = &bufferVk->getBuffer();
}
angle::Result VertexArrayVk::syncState(const gl::Context *context,
const gl::VertexArray::DirtyBits &dirtyBits,
gl::VertexArray::DirtyAttribBitsArray *attribBits,
gl::VertexArray::DirtyBindingBitsArray *bindingBits)
{
ASSERT(dirtyBits.any());
ContextVk *contextVk = vk::GetImpl(context);
contextVk->getPerfCounters().vertexArraySyncStateCalls++;
const std::vector<gl::VertexAttribute> &attribs = mState.getVertexAttributes();
const std::vector<gl::VertexBinding> &bindings = mState.getVertexBindings();
for (auto iter = dirtyBits.begin(), endIter = dirtyBits.end(); iter != endIter; ++iter)
{
size_t dirtyBit = *iter;
switch (dirtyBit)
{
case gl::VertexArray::DIRTY_BIT_LOST_OBSERVATION:
{
// If vertex array was not observing while unbound, we need to check buffer's
// internal storage and take action if buffer storage has changed while not
// observing.
if (contextVk->getFeatures().compressVertexData.enabled ||
mContentsObservers->any())
{
// We may have lost buffer content change when it became non-current. In that
// case we always assume buffer has changed. If compressVertexData.enabled is
// true, it also depends on buffer usage which may have changed.
iter.setLaterBits(
gl::VertexArray::DirtyBits(mState.getBufferBindingMask().to_ulong()
<< gl::VertexArray::DIRTY_BIT_BINDING_0));
}
else
{
for (size_t bindingIndex : mState.getBufferBindingMask())
{
const gl::Buffer *bufferGL = bindings[bindingIndex].getBuffer().get();
vk::BufferSerial bufferSerial = vk::GetImpl(bufferGL)->getBufferSerial();
for (size_t attribIndex : bindings[bindingIndex].getBoundAttributesMask())
{
if (attribs[attribIndex].enabled &&
(!bufferSerial.valid() ||
bufferSerial != mCurrentArrayBufferSerial[attribIndex]))
{
iter.setLaterBit(gl::VertexArray::DIRTY_BIT_BINDING_0 +
bindingIndex);
break;
}
}
}
}
break;
}
case gl::VertexArray::DIRTY_BIT_ELEMENT_ARRAY_BUFFER:
case gl::VertexArray::DIRTY_BIT_ELEMENT_ARRAY_BUFFER_DATA:
{
gl::Buffer *bufferGL = mState.getElementArrayBuffer();
if (bufferGL && bufferGL->getSize() > 0)
{
// Note that just updating buffer data may still result in a new
// vk::BufferHelper allocation.
updateCurrentElementArrayBuffer();
}
else
{
mCurrentElementArrayBuffer = nullptr;
}
mLineLoopBufferFirstIndex.reset();
mLineLoopBufferLastIndex.reset();
ANGLE_TRY(contextVk->onIndexBufferChange(mCurrentElementArrayBuffer));
mDirtyLineLoopTranslation = true;
break;
}
#define ANGLE_VERTEX_DIRTY_ATTRIB_FUNC(INDEX) \
case gl::VertexArray::DIRTY_BIT_ATTRIB_0 + INDEX: \
{ \
gl::VertexArray::DirtyAttribBits dirtyAttribBitsRequiresPipelineUpdate = \
(*attribBits)[INDEX] & mAttribDirtyBitsRequiresPipelineUpdate; \
const bool bufferOnly = dirtyAttribBitsRequiresPipelineUpdate.none(); \
ANGLE_TRY(syncDirtyAttrib(contextVk, attribs[INDEX], \
bindings[attribs[INDEX].bindingIndex], INDEX, bufferOnly)); \
(*attribBits)[INDEX].reset(); \
break; \
}
ANGLE_VERTEX_INDEX_CASES(ANGLE_VERTEX_DIRTY_ATTRIB_FUNC)
// Since BINDING already implies DATA and ATTRIB change, we remove these here to avoid redundant
// processing.
#define ANGLE_VERTEX_DIRTY_BINDING_FUNC(INDEX) \
case gl::VertexArray::DIRTY_BIT_BINDING_0 + INDEX: \
{ \
gl::VertexArray::DirtyBindingBits dirtyBindingBitsRequirePipelineUpdate = \
(*bindingBits)[INDEX] & mBindingDirtyBitsRequiresPipelineUpdate; \
\
for (size_t attribIndex : bindings[INDEX].getBoundAttributesMask()) \
{ \
gl::VertexArray::DirtyAttribBits dirtyAttribBitsRequiresPipelineUpdate = \
(*attribBits)[attribIndex] & mAttribDirtyBitsRequiresPipelineUpdate; \
const bool bufferOnly = dirtyBindingBitsRequirePipelineUpdate.none() && \
dirtyAttribBitsRequiresPipelineUpdate.none(); \
ANGLE_TRY(syncDirtyAttrib(contextVk, attribs[attribIndex], bindings[INDEX], \
attribIndex, bufferOnly)); \
iter.resetLaterBit(gl::VertexArray::DIRTY_BIT_BUFFER_DATA_0 + attribIndex); \
iter.resetLaterBit(gl::VertexArray::DIRTY_BIT_ATTRIB_0 + attribIndex); \
(*attribBits)[attribIndex].reset(); \
} \
(*bindingBits)[INDEX].reset(); \
break; \
}
ANGLE_VERTEX_INDEX_CASES(ANGLE_VERTEX_DIRTY_BINDING_FUNC)
#define ANGLE_VERTEX_DIRTY_BUFFER_DATA_FUNC(INDEX) \
case gl::VertexArray::DIRTY_BIT_BUFFER_DATA_0 + INDEX: \
ANGLE_TRY(syncDirtyAttrib(contextVk, attribs[INDEX], \
bindings[attribs[INDEX].bindingIndex], INDEX, false)); \
iter.resetLaterBit(gl::VertexArray::DIRTY_BIT_ATTRIB_0 + INDEX); \
(*attribBits)[INDEX].reset(); \
break;
ANGLE_VERTEX_INDEX_CASES(ANGLE_VERTEX_DIRTY_BUFFER_DATA_FUNC)
default:
UNREACHABLE();
break;
}
}
return angle::Result::Continue;
} // namespace rx
#undef ANGLE_VERTEX_DIRTY_ATTRIB_FUNC
#undef ANGLE_VERTEX_DIRTY_BINDING_FUNC
#undef ANGLE_VERTEX_DIRTY_BUFFER_DATA_FUNC
ANGLE_INLINE angle::Result VertexArrayVk::setDefaultPackedInput(ContextVk *contextVk,
size_t attribIndex,
angle::FormatID *formatOut)
{
const gl::State &glState = contextVk->getState();
const gl::VertexAttribCurrentValueData &defaultValue =
glState.getVertexAttribCurrentValues()[attribIndex];
*formatOut = GetCurrentValueFormatID(defaultValue.Type);
return contextVk->onVertexAttributeChange(attribIndex, 0, 0, *formatOut, false, 0, nullptr);
}
angle::Result VertexArrayVk::updateActiveAttribInfo(ContextVk *contextVk)
{
const std::vector<gl::VertexAttribute> &attribs = mState.getVertexAttributes();
const std::vector<gl::VertexBinding> &bindings = mState.getVertexBindings();
// Update pipeline cache with current active attribute info
for (size_t attribIndex : mState.getEnabledAttributesMask())
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
const gl::VertexBinding &binding = bindings[attribs[attribIndex].bindingIndex];
const angle::FormatID format = attrib.format->id;
ANGLE_TRY(contextVk->onVertexAttributeChange(
attribIndex, mCurrentArrayBufferStrides[attribIndex], binding.getDivisor(), format,
mCurrentArrayBufferCompressed.test(attribIndex),
mCurrentArrayBufferRelativeOffsets[attribIndex], mCurrentArrayBuffers[attribIndex]));
mCurrentArrayBufferFormats[attribIndex] = format;
}
return angle::Result::Continue;
}
angle::Result VertexArrayVk::syncDirtyAttrib(ContextVk *contextVk,
const gl::VertexAttribute &attrib,
const gl::VertexBinding &binding,
size_t attribIndex,
bool bufferOnly)
{
vk::Renderer *renderer = contextVk->getRenderer();
if (attrib.enabled)
{
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
// Init attribute offset to the front-end value
mCurrentArrayBufferRelativeOffsets[attribIndex] = attrib.relativeOffset;
gl::Buffer *bufferGL = binding.getBuffer().get();
// Emulated and/or client-side attribs will be streamed
bool isStreamingVertexAttrib =
(binding.getDivisor() > renderer->getMaxVertexAttribDivisor()) || (bufferGL == nullptr);
// If we sre switching between streaming and buffer mode, set bufferOnly to false since we
// are actually changing the buffer.
if (bufferOnly && isStreamingVertexAttrib != mStreamingVertexAttribsMask.test(attribIndex))
{
bufferOnly = false;
}
mStreamingVertexAttribsMask.set(attribIndex, isStreamingVertexAttrib);
bool compressed = false;
if (bufferGL)
{
mContentsObservers->disableForBuffer(bufferGL, static_cast<uint32_t>(attribIndex));
}
if (!isStreamingVertexAttrib && bufferGL->getSize() > 0)
{
BufferVk *bufferVk = vk::GetImpl(bufferGL);
const angle::Format &srcFormat = vertexFormat.getIntendedFormat();
unsigned srcFormatSize = srcFormat.pixelBytes;
uint32_t srcStride = binding.getStride() == 0 ? srcFormatSize : binding.getStride();
size_t numVertices = GetVertexCount(bufferVk, binding, srcFormatSize);
bool bindingIsAligned =
BindingIsAligned(srcFormat, binding.getOffset() + attrib.relativeOffset, srcStride);
if (renderer->getFeatures().compressVertexData.enabled &&
gl::IsStaticBufferUsage(bufferGL->getUsage()) &&
vertexFormat.canCompressBufferData())
{
compressed = true;
}
bool needsConversion =
numVertices > 0 &&
(vertexFormat.getVertexLoadRequiresConversion(compressed) || !bindingIsAligned);
if (needsConversion)
{
const angle::Format &dstFormat = vertexFormat.getActualBufferFormat(compressed);
// Converted buffer is tightly packed
uint32_t dstStride = dstFormat.pixelBytes;
ASSERT(vertexFormat.getVertexInputAlignment(compressed) <=
vk::kVertexBufferAlignment);
mContentsObservers->enableForBuffer(bufferGL, static_cast<uint32_t>(attribIndex));
WarnOnVertexFormatConversion(contextVk, vertexFormat, compressed, true);
const VertexConversionBuffer::CacheKey cacheKey{
srcFormat.id, srcStride,
static_cast<size_t>(binding.getOffset()) + attrib.relativeOffset,
!bindingIsAligned, false};
VertexConversionBuffer *conversion =
bufferVk->getVertexConversionBuffer(renderer, cacheKey);
// Converted attribs are packed in their own VK buffer so offset is relative to the
// binding and coversion's offset. The conversion buffer try to reuse the existing
// buffer as much as possible to reduce the amount of data that has to be converted.
// When binding's offset changes, it will check if new offset and existing buffer's
// offset are multiple of strides apart. It yes it will reuse. If new offset is
// larger, all existing data are still valid. If the new offset is smaller it will
// mark the newly exposed range dirty and then rely on
// ContextVk::initBufferForVertexConversion to decide buffer's size is big enough or
// not and reallocate (and mark entire buffer dirty) if needed.
//
// bufferVk:-----------------------------------------------------------------------
// | |
// | bingding.offset + attrib.relativeOffset.
// conversion->getCacheKey().offset
//
// conversion.buffer: --------------------------------------------------------------
// |
// dstRelativeOffset
size_t srcRelativeOffset =
binding.getOffset() + attrib.relativeOffset - conversion->getCacheKey().offset;
size_t numberOfVerticesToSkip = srcRelativeOffset / srcStride;
size_t dstRelativeOffset = numberOfVerticesToSkip * dstStride;
if (conversion->dirty())
{
if (compressed)
{
INFO() << "Compressing vertex data in buffer " << bufferGL->id().value
<< " from " << ToUnderlying(srcFormat.id) << " to "
<< ToUnderlying(dstFormat.id) << ".";
}
if (bindingIsAligned)
{
ANGLE_TRY(convertVertexBufferGPU(contextVk, bufferVk, conversion, srcFormat,
dstFormat));
}
else
{
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_HIGH,
"GPU stall due to vertex format conversion of unaligned data");
ANGLE_TRY(convertVertexBufferCPU(
contextVk, bufferVk, conversion, srcFormat, dstFormat,
vertexFormat.getVertexLoadFunction(compressed)));
}
// If conversion happens, the destination buffer stride may be changed,
// therefore an attribute change needs to be called. Note that it may trigger
// unnecessary vulkan PSO update when the destination buffer stride does not
// change, but for simplicity just make it conservative
bufferOnly = false;
}
vk::BufferHelper *bufferHelper = conversion->getBuffer();
mCurrentArrayBuffers[attribIndex] = bufferHelper;
mCurrentArrayBufferSerial[attribIndex] = bufferHelper->getBufferSerial();
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
bufferHelper
->getBufferForVertexArray(contextVk, bufferHelper->getSize(), &bufferOffset)
.getHandle();
ASSERT(BindingIsAligned(dstFormat, bufferOffset + dstRelativeOffset, dstStride));
mCurrentArrayBufferOffsets[attribIndex] = bufferOffset + dstRelativeOffset;
mCurrentArrayBufferRelativeOffsets[attribIndex] = 0;
mCurrentArrayBufferStrides[attribIndex] = dstStride;
}
else
{
if (numVertices == 0)
{
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBuffers[attribIndex] = &emptyBuffer;
mCurrentArrayBufferSerial[attribIndex] = emptyBuffer.getBufferSerial();
mCurrentArrayBufferHandles[attribIndex] = emptyBuffer.getBuffer().getHandle();
mCurrentArrayBufferOffsets[attribIndex] = emptyBuffer.getOffset();
mCurrentArrayBufferStrides[attribIndex] = 0;
}
else
{
vk::BufferHelper &bufferHelper = bufferVk->getBuffer();
mCurrentArrayBuffers[attribIndex] = &bufferHelper;
mCurrentArrayBufferSerial[attribIndex] = bufferHelper.getBufferSerial();
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
bufferHelper
.getBufferForVertexArray(contextVk, bufferVk->getSize(), &bufferOffset)
.getHandle();
// Vulkan requires the offset is within the buffer. We use robust access
// behaviour to reset the offset if it starts outside the buffer.
mCurrentArrayBufferOffsets[attribIndex] =
binding.getOffset() < static_cast<GLint64>(bufferVk->getSize())
? binding.getOffset() + bufferOffset
: bufferOffset;
mCurrentArrayBufferStrides[attribIndex] = binding.getStride();
}
}
}
else
{
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBuffers[attribIndex] = &emptyBuffer;
mCurrentArrayBufferSerial[attribIndex] = emptyBuffer.getBufferSerial();
mCurrentArrayBufferHandles[attribIndex] = emptyBuffer.getBuffer().getHandle();
mCurrentArrayBufferOffsets[attribIndex] = emptyBuffer.getOffset();
bool combined = ShouldCombineAttributes(renderer, attrib, binding);
mCurrentArrayBufferStrides[attribIndex] =
combined ? binding.getStride()
: vertexFormat.getActualBufferFormat(compressed).pixelBytes;
}
if (bufferOnly)
{
ANGLE_TRY(contextVk->onVertexBufferChange(mCurrentArrayBuffers[attribIndex]));
}
else
{
const angle::FormatID format = attrib.format->id;
ANGLE_TRY(contextVk->onVertexAttributeChange(
attribIndex, mCurrentArrayBufferStrides[attribIndex], binding.getDivisor(), format,
compressed, mCurrentArrayBufferRelativeOffsets[attribIndex],
mCurrentArrayBuffers[attribIndex]));
mCurrentArrayBufferFormats[attribIndex] = format;
mCurrentArrayBufferCompressed[attribIndex] = compressed;
mCurrentArrayBufferDivisors[attribIndex] = binding.getDivisor();
}
}
else
{
contextVk->invalidateDefaultAttribute(attribIndex);
// These will be filled out by the ContextVk.
vk::BufferHelper &emptyBuffer = contextVk->getEmptyBuffer();
mCurrentArrayBuffers[attribIndex] = &emptyBuffer;
mCurrentArrayBufferSerial[attribIndex] = emptyBuffer.getBufferSerial();
mCurrentArrayBufferHandles[attribIndex] = emptyBuffer.getBuffer().getHandle();
mCurrentArrayBufferOffsets[attribIndex] = emptyBuffer.getOffset();
mCurrentArrayBufferStrides[attribIndex] = 0;
mCurrentArrayBufferDivisors[attribIndex] = 0;
mCurrentArrayBufferCompressed[attribIndex] = false;
mCurrentArrayBufferRelativeOffsets[attribIndex] = 0;
ANGLE_TRY(setDefaultPackedInput(contextVk, attribIndex,
&mCurrentArrayBufferFormats[attribIndex]));
}
return angle::Result::Continue;
}
gl::AttributesMask VertexArrayVk::mergeClientAttribsRange(
vk::Renderer *renderer,
const gl::AttributesMask activeStreamedAttribs,
size_t startVertex,
size_t endVertex,
std::array<AttributeRange, gl::MAX_VERTEX_ATTRIBS> &mergeRangesOut,
std::array<size_t, gl::MAX_VERTEX_ATTRIBS> &mergedIndexesOut) const
{
const std::vector<gl::VertexAttribute> &attribs = mState.getVertexAttributes();
const std::vector<gl::VertexBinding> &bindings = mState.getVertexBindings();
gl::AttributesMask attributeMaskCanCombine;
angle::FixedVector<size_t, gl::MAX_VERTEX_ATTRIBS> combinedIndexes;
for (size_t attribIndex : activeStreamedAttribs)
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
ASSERT(attrib.enabled);
const gl::VertexBinding &binding = bindings[attrib.bindingIndex];
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
bool combined = ShouldCombineAttributes(renderer, attrib, binding);
attributeMaskCanCombine.set(attribIndex, combined);
if (combined)
{
combinedIndexes.push_back(attribIndex);
}
GLuint pixelBytes = vertexFormat.getActualBufferFormat(false).pixelBytes;
size_t destStride = combined ? binding.getStride() : pixelBytes;
uintptr_t startAddress = reinterpret_cast<uintptr_t>(attrib.pointer);
mergeRangesOut[attribIndex].startAddr = startAddress;
mergeRangesOut[attribIndex].endAddr =
startAddress + (endVertex - 1) * destStride + pixelBytes;
mergeRangesOut[attribIndex].copyStartAddr =
startAddress + startVertex * binding.getStride();
mergedIndexesOut[attribIndex] = attribIndex;
}
if (attributeMaskCanCombine.none())
{
return attributeMaskCanCombine;
}
auto comp = [&mergeRangesOut](size_t a, size_t b) -> bool {
return mergeRangesOut[a] < mergeRangesOut[b];
};
// Only sort combined range indexes.
std::sort(combinedIndexes.begin(), combinedIndexes.end(), comp);
// Merge combined range span.
auto next = combinedIndexes.begin();
auto cur = next++;
while (next != combinedIndexes.end() || (cur != next))
{
// Cur and next overlaps: merge next into cur and move next.
if (next != combinedIndexes.end() &&
mergeRangesOut[*cur].endAddr >= mergeRangesOut[*next].startAddr)
{
mergeRangesOut[*cur].endAddr =
std::max(mergeRangesOut[*cur].endAddr, mergeRangesOut[*next].endAddr);
mergeRangesOut[*cur].copyStartAddr =
std::min(mergeRangesOut[*cur].copyStartAddr, mergeRangesOut[*next].copyStartAddr);
mergedIndexesOut[*next] = mergedIndexesOut[*cur];
++next;
}
else
{
++cur;
if (cur != next)
{
mergeRangesOut[*cur] = mergeRangesOut[*(cur - 1)];
}
else if (next != combinedIndexes.end())
{
++next;
}
}
}
return attributeMaskCanCombine;
}
// Handle copying client attribs and/or expanding attrib buffer in case where attribute
// divisor value has to be emulated.
angle::Result VertexArrayVk::updateStreamedAttribs(const gl::Context *context,
GLint firstVertex,
GLsizei vertexOrIndexCount,
GLsizei instanceCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::Renderer *renderer = contextVk->getRenderer();
const gl::AttributesMask activeAttribs =
context->getStateCache().getActiveClientAttribsMask() |
context->getStateCache().getActiveBufferedAttribsMask();
const gl::AttributesMask activeStreamedAttribs = mStreamingVertexAttribsMask & activeAttribs;
// Early return for corner case where emulated buffered attribs are not active
if (!activeStreamedAttribs.any())
{
return angle::Result::Continue;
}
GLint startVertex;
size_t vertexCount;
ANGLE_TRY(GetVertexRangeInfo(context, firstVertex, vertexOrIndexCount, indexTypeOrInvalid,
indices, 0, &startVertex, &vertexCount));
ASSERT(vertexCount > 0);
const auto &attribs = mState.getVertexAttributes();
const auto &bindings = mState.getVertexBindings();
std::array<size_t, gl::MAX_VERTEX_ATTRIBS> mergedIndexes;
std::array<AttributeRange, gl::MAX_VERTEX_ATTRIBS> mergeRanges;
std::array<vk::BufferHelper *, gl::MAX_VERTEX_ATTRIBS> attribBufferHelper = {};
auto mergeAttribMask =
mergeClientAttribsRange(renderer, activeStreamedAttribs, startVertex,
startVertex + vertexCount, mergeRanges, mergedIndexes);
for (size_t attribIndex : activeStreamedAttribs)
{
const gl::VertexAttribute &attrib = attribs[attribIndex];
ASSERT(attrib.enabled);
const gl::VertexBinding &binding = bindings[attrib.bindingIndex];
const vk::Format &vertexFormat = renderer->getFormat(attrib.format->id);
const angle::Format &dstFormat = vertexFormat.getActualBufferFormat(false);
GLuint pixelBytes = dstFormat.pixelBytes;
const bool compressed = false;
ASSERT(vertexFormat.getVertexInputAlignment(false) <= vk::kVertexBufferAlignment);
vk::BufferHelper *vertexDataBuffer = nullptr;
const uint8_t *src = static_cast<const uint8_t *>(attrib.pointer);
const uint32_t divisor = binding.getDivisor();
bool combined = mergeAttribMask.test(attribIndex);
GLuint stride = combined ? binding.getStride() : pixelBytes;
VkDeviceSize startOffset = 0;
if (divisor > 0)
{
// Instanced attrib
if (divisor > renderer->getMaxVertexAttribDivisor())
{
// Divisor will be set to 1 & so update buffer to have 1 attrib per instance
size_t bytesToAllocate = instanceCount * stride;
// Allocate buffer for results
ANGLE_TRY(contextVk->allocateStreamedVertexBuffer(attribIndex, bytesToAllocate,
&vertexDataBuffer));
gl::Buffer *bufferGL = binding.getBuffer().get();
if (bufferGL != nullptr)
{
// Only do the data copy if src buffer is valid.
if (bufferGL->getSize() > 0)
{
// Map buffer to expand attribs for divisor emulation
BufferVk *bufferVk = vk::GetImpl(binding.getBuffer().get());
void *buffSrc = nullptr;
ANGLE_TRY(bufferVk->mapImpl(contextVk, GL_MAP_READ_BIT, &buffSrc));
src = reinterpret_cast<const uint8_t *>(buffSrc) + binding.getOffset();
uint32_t srcAttributeSize =
static_cast<uint32_t>(ComputeVertexAttributeTypeSize(attrib));
size_t numVertices = GetVertexCount(bufferVk, binding, srcAttributeSize);
ANGLE_TRY(StreamVertexDataWithDivisor(
contextVk, vertexDataBuffer, src, bytesToAllocate, binding.getStride(),
stride, vertexFormat.getVertexLoadFunction(compressed), divisor,
numVertices));
ANGLE_TRY(bufferVk->unmapImpl(contextVk));
}
else if (contextVk->getExtensions().robustnessAny())
{
// Satisfy robustness constraints (only if extension enabled)
uint8_t *dst = vertexDataBuffer->getMappedMemory();
memset(dst, 0, bytesToAllocate);
}
}
else
{
size_t numVertices = instanceCount;
ANGLE_TRY(StreamVertexDataWithDivisor(
contextVk, vertexDataBuffer, src, bytesToAllocate, binding.getStride(),
stride, vertexFormat.getVertexLoadFunction(compressed), divisor,
numVertices));
}
}
else
{
ASSERT(binding.getBuffer().get() == nullptr);
size_t count = UnsignedCeilDivide(instanceCount, divisor);
size_t bytesToAllocate = count * stride;
// Allocate buffer for results
ANGLE_TRY(contextVk->allocateStreamedVertexBuffer(attribIndex, bytesToAllocate,
&vertexDataBuffer));
ANGLE_TRY(StreamVertexData(contextVk, vertexDataBuffer, src, bytesToAllocate, 0,
count, binding.getStride(),
vertexFormat.getVertexLoadFunction(compressed)));
}
}
else
{
ASSERT(binding.getBuffer().get() == nullptr);
size_t mergedAttribIdx = mergedIndexes[attribIndex];
const AttributeRange &range = mergeRanges[attribIndex];
if (attribBufferHelper[mergedAttribIdx] == nullptr)
{
size_t destOffset =
combined ? range.copyStartAddr - range.startAddr : startVertex * stride;
size_t bytesToAllocate = range.endAddr - range.startAddr;
ANGLE_TRY(contextVk->allocateStreamedVertexBuffer(
mergedAttribIdx, bytesToAllocate, &attribBufferHelper[mergedAttribIdx]));
ANGLE_TRY(StreamVertexData(
contextVk, attribBufferHelper[mergedAttribIdx],
(const uint8_t *)range.copyStartAddr, bytesToAllocate - destOffset, destOffset,
vertexCount, binding.getStride(),
combined ? nullptr : vertexFormat.getVertexLoadFunction(compressed)));
}
vertexDataBuffer = attribBufferHelper[mergedAttribIdx];
startOffset = combined ? (uintptr_t)attrib.pointer - range.startAddr : 0;
}
ASSERT(vertexDataBuffer != nullptr);
mCurrentArrayBuffers[attribIndex] = vertexDataBuffer;
mCurrentArrayBufferSerial[attribIndex] = vertexDataBuffer->getBufferSerial();
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
vertexDataBuffer
->getBufferForVertexArray(contextVk, vertexDataBuffer->getSize(), &bufferOffset)
.getHandle();
mCurrentArrayBufferOffsets[attribIndex] = bufferOffset + startOffset;
mCurrentArrayBufferStrides[attribIndex] = stride;
mCurrentArrayBufferDivisors[attribIndex] = divisor;
ASSERT(BindingIsAligned(dstFormat, mCurrentArrayBufferOffsets[attribIndex],
mCurrentArrayBufferStrides[attribIndex]));
}
return angle::Result::Continue;
}
angle::Result VertexArrayVk::handleLineLoop(ContextVk *contextVk,
GLint firstVertex,
GLsizei vertexOrIndexCount,
gl::DrawElementsType indexTypeOrInvalid,
const void *indices,
vk::BufferHelper **indexBufferOut,
uint32_t *indexCountOut)
{
if (indexTypeOrInvalid != gl::DrawElementsType::InvalidEnum)
{
// Handle GL_LINE_LOOP drawElements.
if (mDirtyLineLoopTranslation)
{
gl::Buffer *elementArrayBuffer = mState.getElementArrayBuffer();
if (!elementArrayBuffer)
{
ANGLE_TRY(mLineLoopHelper.streamIndices(
contextVk, indexTypeOrInvalid, vertexOrIndexCount,
reinterpret_cast<const uint8_t *>(indices), indexBufferOut, indexCountOut));
}
else
{
// When using an element array buffer, 'indices' is an offset to the first element.
intptr_t offset = reinterpret_cast<intptr_t>(indices);
BufferVk *elementArrayBufferVk = vk::GetImpl(elementArrayBuffer);
ANGLE_TRY(mLineLoopHelper.getIndexBufferForElementArrayBuffer(
contextVk, elementArrayBufferVk, indexTypeOrInvalid, vertexOrIndexCount, offset,
indexBufferOut, indexCountOut));
}
}
// If we've had a drawArrays call with a line loop before, we want to make sure this is
// invalidated the next time drawArrays is called since we use the same index buffer for
// both calls.
mLineLoopBufferFirstIndex.reset();
mLineLoopBufferLastIndex.reset();
return angle::Result::Continue;
}
// Note: Vertex indexes can be arbitrarily large.
uint32_t clampedVertexCount = gl::clampCast<uint32_t>(vertexOrIndexCount);
// Handle GL_LINE_LOOP drawArrays.
size_t lastVertex = static_cast<size_t>(firstVertex + clampedVertexCount);
if (!mLineLoopBufferFirstIndex.valid() || !mLineLoopBufferLastIndex.valid() ||
mLineLoopBufferFirstIndex != firstVertex || mLineLoopBufferLastIndex != lastVertex)
{
ANGLE_TRY(mLineLoopHelper.getIndexBufferForDrawArrays(contextVk, clampedVertexCount,
firstVertex, indexBufferOut));
mLineLoopBufferFirstIndex = firstVertex;
mLineLoopBufferLastIndex = lastVertex;
}
else
{
*indexBufferOut = mLineLoopHelper.getCurrentIndexBuffer();
}
*indexCountOut = vertexOrIndexCount + 1;
return angle::Result::Continue;
}
angle::Result VertexArrayVk::updateDefaultAttrib(ContextVk *contextVk, size_t attribIndex)
{
if (!mState.getEnabledAttributesMask().test(attribIndex))
{
vk::BufferHelper *bufferHelper;
ANGLE_TRY(
contextVk->allocateStreamedVertexBuffer(attribIndex, kDefaultValueSize, &bufferHelper));
const gl::VertexAttribCurrentValueData &defaultValue =
contextVk->getState().getVertexAttribCurrentValues()[attribIndex];
uint8_t *ptr = bufferHelper->getMappedMemory();
memcpy(ptr, &defaultValue.Values, kDefaultValueSize);
ANGLE_TRY(bufferHelper->flush(contextVk->getRenderer()));
VkDeviceSize bufferOffset;
mCurrentArrayBufferHandles[attribIndex] =
bufferHelper->getBufferForVertexArray(contextVk, kDefaultValueSize, &bufferOffset)
.getHandle();
mCurrentArrayBufferOffsets[attribIndex] = bufferOffset;
mCurrentArrayBuffers[attribIndex] = bufferHelper;
mCurrentArrayBufferSerial[attribIndex] = bufferHelper->getBufferSerial();
mCurrentArrayBufferStrides[attribIndex] = 0;
mCurrentArrayBufferDivisors[attribIndex] = 0;
ANGLE_TRY(setDefaultPackedInput(contextVk, attribIndex,
&mCurrentArrayBufferFormats[attribIndex]));
}
return angle::Result::Continue;
}
} // namespace rx