blob: 95d882b461d48762f6393db8ba75167b898523c2 [file] [log] [blame] [edit]
import argparse
import functools
import traceback
from typing import Callable, List, Optional, Tuple
from torch.utils.jit.log_extract import (
extract_ir,
load_graph_and_inputs,
run_baseline_no_fusion,
run_nnc,
run_nvfuser,
)
"""
Usage:
1. Run your script and pipe into a log file
PYTORCH_JIT_LOG_LEVEL=">>graph_fuser" python3 my_test.py &> log.txt
2. Run log_extract:
log_extract.py log.txt --nvfuser --nnc-dynamic --nnc-static
You can also extract the list of extracted IR:
log_extract.py log.txt --output
Passing in --graphs 0 2 will only run graphs 0 and 2
"""
def test_runners(
graphs: List[str],
runners: List[Tuple[str, Callable]],
graph_set: Optional[List[int]],
):
for i, ir in enumerate(graphs):
_, inputs = load_graph_and_inputs(ir)
if graph_set and i not in graph_set:
continue
print(f"Running Graph {i}")
prev_result = None
prev_runner_name = None
for runner in runners:
runner_name, runner_fn = runner
try:
result = runner_fn(ir, inputs)
if prev_result:
improvement = (prev_result / result - 1) * 100
print(
f"{runner_name} : {result:.6f} ms improvement over {prev_runner_name}: improvement: {improvement:.2f}%"
)
else:
print(f"{runner_name} : {result:.6f} ms")
prev_result = result
prev_runner_name = runner_name
except RuntimeError:
print(f" Graph {i} failed for {runner_name} :", traceback.format_exc())
def run():
parser = argparse.ArgumentParser(
description="Extracts torchscript IR from log files and, optionally, benchmarks it or outputs the IR"
)
parser.add_argument("filename", help="Filename of log file")
parser.add_argument(
"--nvfuser", dest="nvfuser", action="store_true", help="benchmark nvfuser"
)
parser.add_argument(
"--no-nvfuser",
dest="nvfuser",
action="store_false",
help="DON'T benchmark nvfuser",
)
parser.set_defaults(nvfuser=False)
parser.add_argument(
"--nnc-static",
dest="nnc_static",
action="store_true",
help="benchmark nnc static",
)
parser.add_argument(
"--no-nnc-static",
dest="nnc_static",
action="store_false",
help="DON'T benchmark nnc static",
)
parser.set_defaults(nnc_static=False)
parser.add_argument(
"--nnc-dynamic",
dest="nnc_dynamic",
action="store_true",
help="nnc with dynamic shapes",
)
parser.add_argument(
"--no-nnc-dynamic",
dest="nnc_dynamic",
action="store_false",
help="DONT't benchmark nnc with dynamic shapes",
)
parser.set_defaults(nnc_dynamic=False)
parser.add_argument(
"--baseline", dest="baseline", action="store_true", help="benchmark baseline"
)
parser.add_argument(
"--no-baseline",
dest="baseline",
action="store_false",
help="DON'T benchmark baseline",
)
parser.set_defaults(baseline=False)
parser.add_argument(
"--output", dest="output", action="store_true", help="Output graph IR"
)
parser.add_argument(
"--no-output", dest="output", action="store_false", help="DON'T output graph IR"
)
parser.set_defaults(output=False)
parser.add_argument(
"--graphs", nargs="+", type=int, help="Run only specified graph indices"
)
args = parser.parse_args()
graphs = extract_ir(args.filename)
graph_set = args.graphs
graph_set = graph_set if graph_set else None
options = []
if args.baseline:
options.append(("Baseline no fusion", run_baseline_no_fusion))
if args.nnc_dynamic:
options.append(("NNC Dynamic", functools.partial(run_nnc, dynamic=True)))
if args.nnc_static:
options.append(("NNC Static", functools.partial(run_nnc, dynamic=False)))
if args.nvfuser:
options.append(("NVFuser", run_nvfuser))
test_runners(graphs, options, graph_set)
if args.output:
quoted = []
for i, ir in enumerate(graphs):
if graph_set and i not in graph_set:
continue
quoted.append('"""' + ir + '"""')
print("[" + ", ".join(quoted) + "]")
if __name__ == "__main__":
run()