blob: c64bad818e4efe591c26d14215cd1e6c56730b79 [file] [log] [blame] [edit]
import argparse
import math
import pickle
import random
from dataclasses import dataclass
from itertools import chain
from pathlib import Path
from typing import Dict, List
import common
import pandas as pd
import torchtext
from torchtext.functional import to_tensor
from tqdm import tqdm
import torch
import torch.nn as nn
XLMR_BASE = torchtext.models.XLMR_BASE_ENCODER
# This should not be here but it works for now
device = "cuda" if torch.cuda.is_available() else "cpu"
HAS_IMBLEARN = False
try:
import imblearn
HAS_IMBLEARN = True
except ImportError:
HAS_IMBLEARN = False
# 94% of all files are captured at len 5, good hyperparameter to play around with.
MAX_LEN_FILE = 6
UNKNOWN_TOKEN = "<Unknown>"
# Utilities for working with a truncated file graph
def truncate_file(file: Path, max_len: int = 5):
return ("/").join(file.parts[:max_len])
def build_file_set(all_files: List[Path], max_len: int):
truncated_files = [truncate_file(file, max_len) for file in all_files]
return set(truncated_files)
@dataclass
class CommitClassifierInputs:
title: List[str]
files: List[str]
author: List[str]
@dataclass
class CategoryConfig:
categories: List[str]
input_dim: int = 768
inner_dim: int = 128
dropout: float = 0.1
activation = nn.ReLU
embedding_dim: int = 8
file_embedding_dim: int = 32
class CommitClassifier(nn.Module):
def __init__(
self,
encoder_base: torchtext.models.XLMR_BASE_ENCODER,
author_map: Dict[str, int],
file_map: [str, int],
config: CategoryConfig,
):
super().__init__()
self.encoder = encoder_base.get_model().requires_grad_(False)
self.transform = encoder_base.transform()
self.author_map = author_map
self.file_map = file_map
self.categories = config.categories
self.num_authors = len(author_map)
self.num_files = len(file_map)
self.embedding_table = nn.Embedding(self.num_authors, config.embedding_dim)
self.file_embedding_bag = nn.EmbeddingBag(
self.num_files, config.file_embedding_dim, mode="sum"
)
self.dense_title = nn.Linear(config.input_dim, config.inner_dim)
self.dense_files = nn.Linear(config.file_embedding_dim, config.inner_dim)
self.dense_author = nn.Linear(config.embedding_dim, config.inner_dim)
self.dropout = nn.Dropout(config.dropout)
self.out_proj_title = nn.Linear(config.inner_dim, len(self.categories))
self.out_proj_files = nn.Linear(config.inner_dim, len(self.categories))
self.out_proj_author = nn.Linear(config.inner_dim, len(self.categories))
self.activation_fn = config.activation()
def forward(self, input_batch: CommitClassifierInputs):
# Encode input title
title: List[str] = input_batch.title
model_input = to_tensor(self.transform(title), padding_value=1).to(device)
title_features = self.encoder(model_input)
title_embed = title_features[:, 0, :]
title_embed = self.dropout(title_embed)
title_embed = self.dense_title(title_embed)
title_embed = self.activation_fn(title_embed)
title_embed = self.dropout(title_embed)
title_embed = self.out_proj_title(title_embed)
files: list[str] = input_batch.files
batch_file_indexes = []
for file in files:
paths = [
truncate_file(Path(file_part), MAX_LEN_FILE)
for file_part in file.split(" ")
]
batch_file_indexes.append(
[
self.file_map.get(file, self.file_map[UNKNOWN_TOKEN])
for file in paths
]
)
flat_indexes = torch.tensor(
list(chain.from_iterable(batch_file_indexes)),
dtype=torch.long,
device=device,
)
offsets = [0]
offsets.extend(len(files) for files in batch_file_indexes[:-1])
offsets = torch.tensor(offsets, dtype=torch.long, device=device)
offsets = offsets.cumsum(dim=0)
files_embed = self.file_embedding_bag(flat_indexes, offsets)
files_embed = self.dense_files(files_embed)
files_embed = self.activation_fn(files_embed)
files_embed = self.dropout(files_embed)
files_embed = self.out_proj_files(files_embed)
# Add author embedding
authors: List[str] = input_batch.author
author_ids = [
self.author_map.get(author, self.author_map[UNKNOWN_TOKEN])
for author in authors
]
author_ids = torch.tensor(author_ids).to(device)
author_embed = self.embedding_table(author_ids)
author_embed = self.dense_author(author_embed)
author_embed = self.activation_fn(author_embed)
author_embed = self.dropout(author_embed)
author_embed = self.out_proj_author(author_embed)
return title_embed + files_embed + author_embed
def convert_index_to_category_name(self, most_likely_index):
if isinstance(most_likely_index, int):
return self.categories[most_likely_index]
elif isinstance(most_likely_index, torch.Tensor):
return [self.categories[i] for i in most_likely_index]
def get_most_likely_category_name(self, inpt):
# Input will be a dict with title and author keys
logits = self.forward(inpt)
most_likely_index = torch.argmax(logits, dim=1)
return self.convert_index_to_category_name(most_likely_index)
def get_train_val_data(data_folder: Path, regen_data: bool, train_percentage=0.95):
if (
not regen_data
and Path(data_folder / "train_df.csv").exists()
and Path(data_folder / "val_df.csv").exists()
):
train_data = pd.read_csv(data_folder / "train_df.csv")
val_data = pd.read_csv(data_folder / "val_df.csv")
return train_data, val_data
else:
print("Train, Val, Test Split not found generating from scratch.")
commit_list_df = pd.read_csv(data_folder / "commitlist.csv")
test_df = commit_list_df[commit_list_df["category"] == "Uncategorized"]
all_train_df = commit_list_df[commit_list_df["category"] != "Uncategorized"]
# We are going to drop skip from training set since it is so imbalanced
print(
"We are removing skip categories, YOU MIGHT WANT TO CHANGE THIS, BUT THIS IS A MORE HELPFUL CLASSIFIER FOR LABELING."
)
all_train_df = all_train_df[all_train_df["category"] != "skip"]
all_train_df = all_train_df.sample(frac=1).reset_index(drop=True)
split_index = math.floor(train_percentage * len(all_train_df))
train_df = all_train_df[:split_index]
val_df = all_train_df[split_index:]
print("Train data size: ", len(train_df))
print("Val data size: ", len(val_df))
test_df.to_csv(data_folder / "test_df.csv", index=False)
train_df.to_csv(data_folder / "train_df.csv", index=False)
val_df.to_csv(data_folder / "val_df.csv", index=False)
return train_df, val_df
def get_author_map(data_folder: Path, regen_data, assert_stored=False):
if not regen_data and Path(data_folder / "author_map.pkl").exists():
with open(data_folder / "author_map.pkl", "rb") as f:
return pickle.load(f)
else:
if assert_stored:
raise FileNotFoundError(
"Author map not found, you are loading for inference you need to have an author map!"
)
print("Regenerating Author Map")
all_data = pd.read_csv(data_folder / "commitlist.csv")
authors = all_data.author.unique().tolist()
authors.append(UNKNOWN_TOKEN)
author_map = {author: i for i, author in enumerate(authors)}
with open(data_folder / "author_map.pkl", "wb") as f:
pickle.dump(author_map, f)
return author_map
def get_file_map(data_folder: Path, regen_data, assert_stored=False):
if not regen_data and Path(data_folder / "file_map.pkl").exists():
with open(data_folder / "file_map.pkl", "rb") as f:
return pickle.load(f)
else:
if assert_stored:
raise FileNotFoundError(
"File map not found, you are loading for inference you need to have a file map!"
)
print("Regenerating File Map")
all_data = pd.read_csv(data_folder / "commitlist.csv")
# Lets explore files
files = all_data.files_changed.to_list()
all_files = []
for file in files:
paths = [Path(file_part) for file_part in file.split(" ")]
all_files.extend(paths)
all_files.append(Path(UNKNOWN_TOKEN))
file_set = build_file_set(all_files, MAX_LEN_FILE)
file_map = {file: i for i, file in enumerate(file_set)}
with open(data_folder / "file_map.pkl", "wb") as f:
pickle.dump(file_map, f)
return file_map
# Generate a dataset for training
def get_title_files_author_categories_zip_list(dataframe: pd.DataFrame):
title = dataframe.title.to_list()
files_str = dataframe.files_changed.to_list()
author = dataframe.author.fillna(UNKNOWN_TOKEN).to_list()
category = dataframe.category.to_list()
return list(zip(title, files_str, author, category))
def generate_batch(batch):
title, files, author, category = zip(*batch)
title = list(title)
files = list(files)
author = list(author)
category = list(category)
targets = torch.tensor([common.categories.index(cat) for cat in category]).to(
device
)
return CommitClassifierInputs(title, files, author), targets
def train_step(batch, model, optimizer, loss):
inpt, targets = batch
optimizer.zero_grad()
output = model(inpt)
l = loss(output, targets)
l.backward()
optimizer.step()
return l
@torch.no_grad()
def eval_step(batch, model, loss):
inpt, targets = batch
output = model(inpt)
l = loss(output, targets)
return l
def balance_dataset(dataset: List):
if not HAS_IMBLEARN:
return dataset
title, files, author, category = zip(*dataset)
category = [common.categories.index(cat) for cat in category]
inpt_data = list(zip(title, files, author))
from imblearn.over_sampling import RandomOverSampler
# from imblearn.under_sampling import RandomUnderSampler
rus = RandomOverSampler(random_state=42)
X, y = rus.fit_resample(inpt_data, category)
merged = list(zip(X, y))
merged = random.sample(merged, k=2 * len(dataset))
X, y = zip(*merged)
rebuilt_dataset = []
for i in range(len(X)):
rebuilt_dataset.append((*X[i], common.categories[y[i]]))
return rebuilt_dataset
def gen_class_weights(dataset: List):
from collections import Counter
epsilon = 1e-1
title, files, author, category = zip(*dataset)
category = [common.categories.index(cat) for cat in category]
counter = Counter(category)
percentile_33 = len(category) // 3
most_common = counter.most_common(percentile_33)
least_common = counter.most_common()[-percentile_33:]
smoothed_top = sum(i[1] + epsilon for i in most_common) / len(most_common)
smoothed_bottom = sum(i[1] + epsilon for i in least_common) / len(least_common) // 3
class_weights = torch.tensor(
[
1.0 / (min(max(counter[i], smoothed_bottom), smoothed_top) + epsilon)
for i in range(len(common.categories))
],
device=device,
)
return class_weights
def train(save_path: Path, data_folder: Path, regen_data: bool, resample: bool):
train_data, val_data = get_train_val_data(data_folder, regen_data)
train_zip_list = get_title_files_author_categories_zip_list(train_data)
val_zip_list = get_title_files_author_categories_zip_list(val_data)
classifier_config = CategoryConfig(common.categories)
author_map = get_author_map(data_folder, regen_data)
file_map = get_file_map(data_folder, regen_data)
commit_classifier = CommitClassifier(
XLMR_BASE, author_map, file_map, classifier_config
).to(device)
# Lets train this bag of bits
class_weights = gen_class_weights(train_zip_list)
loss = torch.nn.CrossEntropyLoss(weight=class_weights)
optimizer = torch.optim.Adam(commit_classifier.parameters(), lr=3e-3)
num_epochs = 25
batch_size = 256
if resample:
# Lets not use this
train_zip_list = balance_dataset(train_zip_list)
data_size = len(train_zip_list)
print(f"Training on {data_size} examples.")
# We can fit all of val into one batch
val_batch = generate_batch(val_zip_list)
for i in tqdm(range(num_epochs), desc="Epochs"):
start = 0
random.shuffle(train_zip_list)
while start < data_size:
end = start + batch_size
# make the last batch bigger if needed
if end > data_size:
end = data_size
train_batch = train_zip_list[start:end]
train_batch = generate_batch(train_batch)
l = train_step(train_batch, commit_classifier, optimizer, loss)
start = end
val_l = eval_step(val_batch, commit_classifier, loss)
tqdm.write(
f"Finished epoch {i} with a train loss of: {l.item()} and a val_loss of: {val_l.item()}"
)
with torch.no_grad():
commit_classifier.eval()
val_inpts, val_targets = val_batch
val_output = commit_classifier(val_inpts)
val_preds = torch.argmax(val_output, dim=1)
val_acc = torch.sum(val_preds == val_targets).item() / len(val_preds)
print(f"Final Validation accuracy is {val_acc}")
print(f"Jobs done! Saving to {save_path}")
torch.save(commit_classifier.state_dict(), save_path)
def main():
parser = argparse.ArgumentParser(
description="Tool to create a classifier for helping to categorize commits"
)
parser.add_argument("--train", action="store_true", help="Train a new classifier")
parser.add_argument("--commit_data_folder", default="results/classifier/")
parser.add_argument(
"--save_path", default="results/classifier/commit_classifier.pt"
)
parser.add_argument(
"--regen_data",
action="store_true",
help="Regenerate the training data, helps if labeled more examples and want to re-train.",
)
parser.add_argument(
"--resample",
action="store_true",
help="Resample the training data to be balanced. (Only works if imblearn is installed.)",
)
args = parser.parse_args()
if args.train:
train(
Path(args.save_path),
Path(args.commit_data_folder),
args.regen_data,
args.resample,
)
return
print(
"Currently this file only trains a new classifier please pass in --train to train a new classifier"
)
if __name__ == "__main__":
main()